仪器分析 第5章 伏安分析法PPT课件
伏安分析法

Id=KC Z:电子转移数,D:扩散系数m:滴汞速度:t:滴汞周 期。 3.影响扩散电流因素 (1)与扩散系数有关的因素:离子淌度,强度;溶液黏度,介 电常数;温度等.如温度上升1度,扩散电流增加1.3%. (2)影响汞滴因素:毛细管直径,汞柱高低等.
K 607 ZD 2 m 3 t 6
4.干扰电流以及消除方法 干扰电流种类:迁移电流,残余电流,极大现象和氧波等 (1)迁移电流 静电引力产生的电流它和溶液中的浓度 差无关.加支持电解质,这是导电良好但在电解条件下不 发生电极反应的物质如KCI,NH4CI,HCI等.浓度通常为 0.1mol/L.柠檬酸盐,酒石酸盐,氰化物,氨和EDTA等与可 以作为支持电解质,它们除起支持电解质的作用外还可 以提供合适的分析条件(作为缓冲溶液)并且能消除某些 离子的干扰(形成配位物改变干扰离子的半波电位) (2)残余电流 电解过程中产生的电容电流(充电电流)和 分解电压前滴汞电极上微量杂质产生的电流. 产生充电电流原因:滴汞电极断路时,汞滴上电位与溶液 电位相同,因此汞滴不带电荷. 当电解池接上极谱装置 而使外加电压为0,此时滴汞电极和甘汞电极短路. 由于 甘汞电极表面带正电荷,当和滴汞电极短路时,甘汞电极
伏安分析法 伏安分析法是指以被分析溶液中电极的电压-电流行为 为基础的一种电化学方法。与电位法不同,本法是对一 定电位下体系电流的测量,而电位法是在零电流条件下 测量体系电位。极谱分析法是伏安分析法的早期形式。 第一节极谱分析法 一,概述 一种特殊的伏安分析法。表现在(1)小面积的滴汞 电极是工作电极和大面积的甘汞电极为参比电极。(2) 在不搅拌条件下进行电解。电极表面只有扩散层,没有 对流层,才能产生极谱分析所需要的浓差极化条件。 极谱分析过程。试液为5X10-4mol/L的CdCI2加到电解 池并使KCI浓度为0.1mol/L作为支持电解质,除氧后使汞 滴以2~3滴/10S速度下落,同时外加电压从零增加,电流
第5章_伏安分析法知识分享

讨论:影响id的因素
① 影响扩散系数的因素: 如离子淌度、离子强度、溶液粘度、介电常数 、温度等。
② 影响滴汞速度m与滴汞周期t的因素: 如汞柱高度、毛细管粗细、电极电位等
如果温度、底液及毛细管特性不变,则:
id与c成正比 —— 极谱定量分析基础
2022/3/26
极谱定量方法
1.直接比较法
3.迁移电流来源于
()
A 电极表面双电层的充电过程
B 底液中的杂质的电极反应
C 电极表面离子的扩散
D 电解池中两电极间产生的库仑力
2022/3/26
4.极谱分析时在溶液中加入表面活性物质是为了 消除下列哪种干扰电流? ( )
A 极谱极大电流 B 迁移电流 C 残余电流 D 残留氧的还原电流
2022/3/26
所以i~U曲线i ~ Ede曲线基本重合
2022/3/26
讨论:
图中①~②段,仅有微小的 电流流过,这时的电流称为“残 余电流”或背景电流。
由于溶液静止,电极附近的镉离子在 电极表面迅速反应,此时,产生浓度梯度 (厚度约0.05mm的扩散层),电极反应 受浓度扩散控制。在④处达到扩散平衡。
2022/3/26
5.在经典极谱法中, 极谱图上会出现电流峰, 这个现 象在极谱中称为___,它是由于滴汞表面的____不均, 致使表面运动导致电极表面溶液产生___,使还原物质 增多。此干扰电流可加入___消除。
6.在极谱分析中为了建立浓差极化, 要求极化电极 ___, 溶液中被测物质的浓度____, 溶液____搅拌。
代入式(7)中得:
E1/2E' E0.0 n59 A BkkB A
E1/2在一定底液及试验条件下为常数,与浓度无关, 可作为定性分析依据
第05章 伏安与极谱分析-2

氧化波方程 P77 de = 1/2 -0.0592/z*lg [(id-i) / i]
式中,i和id是负值
综合波方程 de = 1/2 +0.0592/z*lg [ (id)c -i) / i- (id)a ] (id)c为还原电流 (id)a为氧化电流
§5.1.4 应用
1.
定量分析
尤考维奇方程 id=ksc ks=607 zD1/2m2/3t1/6 尤考维奇常数 波高测量
Current goes to zero and then becomes anodic due to the reoxidation of the produced Fe(CN)64-. The anodic current peaks and then decreases as the accumulated Fe(CN)64- Is used up by the anodic reaction. The whole process is ended.
φ
pc
-φ
φ
pa
对可逆电极过程:
ip= K z3/2AD1/2v1/2c
ipa≈ipc,
φpc=φ1/2-1.11RT/zF φpa=φ1/2+1.11RT/zF Δφp=2.22RT/zF =φpa—φpc=56/z(mV) 经验表明,若z=1,Δφp通常在55-65mV。P96
二、应用
电极反应可逆性判断:
Cyclic Voltammogram {6.0 mM K3Fe(CN)6 and 1.0 M KNO3}
Between points D and F, the current decays. Current is reversed at point F but the current continues to be cathodic because the potentials are still negative enough to cause the reduction of Fe(CN)63-. Between H and I the potential becomes positive enough so that reduction of Fe(CN)63- can no longer occur.
第5章伏安分析法

二、电解池的伏安行为
当外加电压达到Cd2+的电解 还原电压时,电解池内会发生 氧化还原反应。
阴极:Cd2+ + 2e Cd
阳极:
2OH- -2e
H2O + 1/2 O2
U外 ∝ i
U外- Ud= iR
(Cd2+)
二、电解池的伏安行为
浓差极化:由于电解过程中电极表面离子浓度与 溶液本体浓度不同而使电极电位偏离平衡电位的 现象。
,当外加电压未达分解电压时 所观察到的微小电流。
产生原因: a.由于溶液中存在微量易在滴 汞电极上还原的杂质所致. b.电容电流(由于对滴汞电极 和待测液的界面双电层充电形 成的,故又称充电电流) 消除方法:
0.0120 39.55.00
99.0 (25.0 5.00) 25.039.5
0.00120mol / L
§5-4 定性分析依据
半波电位(E1/2): 是当电流等于平均 极限扩散电流的一 半时对应的电位。 它不随被还原离子 的浓度不同而改变 ,故用半波电位来 作为定性分析的依 据。
§5-5干扰电流及其消除方法 1.残余电流:在极谱分析时
(4)电解液组成的影响
§5-3极谱定量分析方法
1.极谱定量方法一般有3种:
(1)直接比较法:在相同实验条件下,分别
测浓度为Cs的标准液及未知液的极谱波的波
高hs及hx。
Cx
hx hs
cs
从而求出未知液的浓度
同一条件指两个溶液的底液组成、温度、
毛细管、汞柱高度等保持一致。
(2)标准曲线法:配制一系列含有不同浓度的待测离 子的标准溶液,在相同的实验条件下作各个溶液的 极谱波,求出各溶液的扩散电流
第五章 伏安法和极谱分析法.

第五章伏安法和极谱分析法基本要求:1.掌握直流极谱法的基本原理及其不足之处2.掌握尤考维奇方程和极谱波方程3.理解单扫描极谱法、脉冲极谱法和阳极溶出伏安法灵敏度高的原因4.掌握循环伏安法的原理及应用伏安法(V oltammetry)和极谱分析法(Polarography)都是通过由电解过程中所得的电流-电位(电压)或电位-时间曲线进行分析的方法。
它们的区别在于伏安法使用的极化电极是固体电极或表面不能更新的液体电极,而极谱分析法使用的是表面能够周期更新的滴汞电极。
自1922年J.Heyrovsky开创极谱学以来,极谱分析在理论和实际应用上发展迅速。
继直流极谱法后,相继出现了单扫描极谱法、脉冲极谱法、卷积伏安法等各种快速、灵敏的现代极谱分析方法,使极谱分析成为电化学分析的重要组成部分。
极谱分析法不仅可用于痕量物质的测定,而且还可用于化学反应机理,电极动力学及平衡常数测定等基础理论的研究。
与两种电解过程相对应,极谱分析法也可分为控制电位极谱法(如直流极谱法、单扫描极谱法、脉冲极谱法和溶出伏安法等)和控制电流极谱法(如交流示波极谱法和计时电位法等)。
5.1 直流极谱法5.1.1 原理1.装置直流极谱法也称恒电位极谱法,其装置如图5-1所示。
它包括测量电压、测量电流和极谱电解池三部分。
图5-1 直流极谱装置示意图图5-2 饱和甘汞电极(a)和滴汞电极(b)现以测定Pb2+和Zn2+为例。
在电解池中安装一支面积小的滴汞电极,另一支面积大的饱和甘汞电极,如图5-2所示。
电解池中盛有浓度均为1.00 ×10-3mol·L-1Pb2+ 和Zn2+ 溶液以及0.1mol·L-1KCl(称为支持电解质,浓度比被测离子大50-100倍),并加入1%的动物胶(称为极大抑制剂)几滴。
电解前,通入N2除去电解液中溶解的O2。
按图5-1,以滴汞电极为阴极,饱和甘汞电极为阳极,在不搅拌溶液的静止条件下电解。
课件伏安分析法.ppt

图中a~b段,仅有微小的电流流过,这时的电流称为“ 残余电流”或背景电流。当外加电压到达Cd2+的析出电位时,
2024/10/8
8
(-0.5V~-0.6V),Cd2+开始在滴汞电极上迅速反应:
滴汞电极: 甘汞电极:
Cd2+ + 2e + Hg = Cd(Hg)(汞齐) 2Hg - 2e + 2Cl- = Hg2Cl2
Ede = E ⊝ +
0.O59 n
lg
ABccABee
2024/10/8
20
-id = kA cA
未达到极限电流之前:
-i = kA (cA- cAe)
则:
cAe =
-id + i kA
由法拉第电解定律: cBe =
-i kB
Ede =
E
⊝
+
0.O59
n
lg(
A B
kB kA
•
id -i i
)
令:E´ = E ⊝ + 0.On59
第四节 干扰电流及其消除方法 1.残余电流 (a)微量杂质等所产生的微弱电流
产生的原因:溶剂及试剂中的微量杂质及微量氧等。 消除方法:可通过试剂提纯、预电解、除氧等; (b)电容电流(也称充电电流) 影响极谱分析灵敏度的主要因素。 产生的原因:由于汞滴表面与溶液间形成的双电层,在与 参比电极连接后,随着汞滴表面的周期性变化而发生的充电现 象所引起。分析过程中由于汞滴不停滴下,汞滴表面积在不断
消除方法: 加入强电解质(支持电解质,为惰性电解质,如KCl、HCl、 H2S04等)。加入强电解质后,被测离子所受到的静电吸引力 减小。一般支持电解质的浓度比待测物质的浓度大100倍以上。 3.极谱极大 在极谱分析过程中产生的一种特殊现象,即在极谱波刚出 现时,扩散电流随着滴汞电极电位的降低而迅速增大到一极大
伏安分析法

2 扩散电流的影响因素
1)溶液组成的影响
这体现在id与扩散系数D1/2成正比上 , D1/2与溶液的组
成有关。 2)毛细管特性的影响 尤科维奇方程表明id与m2/3,t1/6成正比 ,m , t均为毛细管 特性, m2/3,t1/6称为毛细管常数。m,t均为汞柱高度的 函数,故在具体操作中应保持汞柱高度不变。 3)温度的影响 在扩散电流方程中除n以外,都受温度的影响。
如:当过氧化氢与铁离子共存时,可产生催化波。
Fe 3 e Fe 2 (电极反应) Fe 2 H 2 O 2 1 OH OH Fe3
k
(1) ( 2) (3)
Fe 2 OH Fe3 OH
其中(3)式反应较慢,决定着整个化学反应的速
4)在微酸性溶液中可加入抗坏血酸。
六 极谱定量方法
极谱定量的依据是:
ib k C
峰高的测量,其测量方法如下图: 1)平行线法 2)切线法 3)矩形法
峰高测量法
极谱定量的方法有:
1 直接比较法 将浓度为Cs的标准溶液及浓度为Cx的未知溶液在同一 实验条件下,分别测的极谱波的波高hs及hx由
hx cx cs hs
动力波可分为三类:
1)化学反应超前于电极反应:
Y A B
kf kb
ne
2)化学反应滞后于电极反应:
A B P
kf kb
ne
3)化学反应与电极反应平行: A ne B(电极反应)
B X k1 A Z (化学反应)
极谱催化波就是基于第三类反应,这里存在一个电极 反应—化学反应—电极反应的循环。A在电极反应中被消 耗,又在化学反应中生成,因两反应平行,故A的浓度几 乎不变,相当于催化剂,催化了X的还原。这时会因催化 反应而增大电流(催化电流),催化电流与A的浓度呈正 比。极谱催化波因此而具有高的灵敏度。 物质X应具有强的氧化性 ,在电极反应中具有很高的 超电压。 催化电流除受A,B,X的扩散速度控制外,还受k1所 控制,k1愈大,反应速度愈快,催化电流也愈大。
伏安分析法

温度、离子强度等因素及毛细管的影响
1 21
id KnD2m 3t 6c
影响扩散电流常数的因素:离子淌度、离子 强度、溶液黏度、介电常数、温度等。保证 待测溶液的各种条件恒定不变,控制温度。 影响毛细管常数的因素:毛细管内径,汞柱 高度。使汞柱高度维持恒定。
4、直流极谱波方程式
极谱波方程式:用于描述极谱波上任意时刻电 流、极限扩散电流与电极电位之间的关系。
三、方波极谱法
方波极谱法:为解决充电电流干扰,提高测 定灵敏度而发展起来的一种快速极谱法。
将叠加的交流正弦波 改为方波,使用特殊 的时间开关,利用充 电电流随时间很快衰 减的特性,在方波改 变方向前一瞬间记录 通过电解池交流极化 电流信号。 记录的
法拉第电流
峰电流与峰电位
电极面积
1
峰电流: i p 1.4107 n2Es D2 Ac
简单金属离子:Mn+ +ne +Hg = M(Hg)
极谱波方程式:EDME
E1/ 2
0.0591 lg n
id
i
i
半波电位 定性分析的依据
E DME
E1/ 2
0.0591 lg
n
id
i i
还原波+,氧化波得以E到D一ME~直l线g i,d i其i 作斜率图:
lg id i
i
一、直流极谱法
以滴汞电极为极化电极(工 作电极),饱和甘汞电极为 去极化电极(参比电极)进 行特殊的电解反应,根据电 流-电位曲线对被测物质进 行定量分析。
特殊性:使用了一支极化电 极和一支去极化电极;在溶 液静止的情况下进行的非完 全的电解过程。
极化电极和去极化电极
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2 扩散电流方程式 — 定量分析基础
• 金属离子在滴汞电极上的反应:
Cd2+ + 2e- +Hg
Cd(Hg)
EERnБайду номын сангаасTlncM '
2020/11/13
( xc)电极表面cMcM '
电解电流受电极表面金属离 子的扩散速率所控制
iK(cMcM ' )
外加电压继续增加,cM′趋向于0
化——去极化电极。 ★ 溶液静止,不搅动。 ★ 电解液被测离子浓度不太大,小于10-2 mol/L
特殊的目的何在?
使电解过程处于浓差极化状态 传质过程由浓差扩散所控制,获得极谱波
2020/11/13
二、极谱分析过程和极谱波
绘制电流-电压曲线。
U = ( ESCE -Ede ) + i R
U = ESCE - Ede = -Ede( vs. SCE)
所以i~U曲线i ~ Ede曲线基本重合
2020/11/13
讨论:
图中①~②段,仅有微小的 电流流过,这时的电流称为“残 余电流”或背景电流。
由于溶液静止,电极附近的镉离子在 电极表面迅速反应,此时,产生浓度梯度 (厚度约0.05mm的扩散层),电极反应 受浓度扩散控制。在④处达到扩散平衡。
2020/11/13
2020/11/13
讨论:影响id的因素
① 影响扩散系数的因素: 如离子淌度、离子强度、溶液粘度、介电常数 、温度等。
② 影响滴汞速度m与滴汞周期t的因素: 如汞柱高度、毛细管粗细、电极电位等
如果温度、底液及毛细管特性不变,则:
id与c成正比 —— 极谱定量分析基础
2020/11/13
U外-Ud=iR
注:此式仅当电解时电流密度 不大;溶液充分搅拌,使电极 表面的金属离子CM′与溶液本 体浓度CM相差很小时成立
2020/11/13
当电流密度大时:
电极表面周围的金属离 子浓度由于电解反应迅速降 低,搅拌不充分,溶液本体 的金属离子来不及扩散到电 极表面补充,使得CM′>CM
EERTlncM nF
cM′ CM
δ
id Kc
扩散电流正比于溶液中的金属离子达到极限值,不再 随外加电压的增加而改变
2020/11/13
讨论:比例常数K(尤考维奇常数)
K= 607nD1/2m2/3t 1/6 所以: id=607nD1/2m2/3t 1/6c
n 电极反应的电子转移数 D 反应物在溶液中的扩散系数(cm2.s-1); m 汞滴速率 (mg.s-1); t 滴汞周期 (s); c 反应物浓度(mmol.L-1)
2020/11/13
滴汞电极特点
a. 电极毛细管口处的汞滴很小,易形成浓 差极化。 b. 汞滴不断滴落,电极表面不断更新,重 复性好。(极谱曲线呈快速锯齿性变化)。
2020/11/13
特殊条件下的电解
★ 阴极改用DME,表面积小,电解时电流密度大,
很快发生浓差极化——极化电极。 阳极改用SCE,表面积大,电解时不会发生浓差极
由于金属离子浓度的降低,电极电位偏离原来的平衡 电位发生极化现象
2020/11/13
改变条件以利用浓差极化与溶液浓度的关系:
以微铂电极代替原来具有较 大面积的铂片电极,电解时不搅 拌溶液
电流不再随外加电压的增加而 增加,而受Cd2+从溶液本体扩散到 达电极表面的速率所控制,达到一 个极限值,称为极限电流
第五章 伏安分析法
Voltammetry analysis
5.1 极谱分析基本原理 5.2 极谱定量分析 5.3 极谱定性分析 5.4 干扰电流及其消除 方法
2020/11/13
分解电压
使某电解池能连续不断发生电解时所必须外加 的最小电压,在理论上应等于该电解池作为可逆电 池时的可逆电动势
E分解电压 = E可逆=φ+-φ-
2020/11/13
极化作用(polarization) 当电极上无电流通过时,电极处于平衡状态,这
时的电极电势称为可逆电极电势 E O x |R ed ,R
当电极上有电流通过时,随着电流密度增大,这
时电极电势发生偏离,称为不可逆电极电势E O x |R e d ,I
这种由于有电流通过,使得电极的实际电势对可 逆电势的偏离称为“极化”。
|EO x|Red, REO x|Red, I|
2020/11/13
由于极化作用的存在,无论是电解池还是原电池, 阳极的实际电势变大,阴极的实际电势变小
E E a(O x|R ed,I) a(O x|R ed,R ) a
电解池要连续工作,实际的分解电压为
E 分 解 E a (O x |R e d ,I) E c (O x |R e d ,I) IR|E R|acIR
讨论:
极限扩散电流 id (极谱定量分析的基础)。
图中③处电流随电压 变化的比值最大,
i=1/2id 时 的 电 位 称 为 半波电位。
(极谱定性的依据)
2020/11/13
极谱曲线形成条件
(1) 待测物质的浓度要小,快 速形成浓度梯度。 (2) 溶液保持静止 (3) 电解液中含有较大量的惰性电解质 (4) 使用两支不同性能的电极。
扩散速率与溶液本体浓度有关,可根据极限电流测 定溶液中金属离子的浓度
2020/11/13
使用微铂电极的弊端
1.表面不能保持新鲜状态,不 能保证良好的重现性 2.测量扩散电流时,电流值不 是恒定,而是随测量时间的增 加而降低 3.进行新的测量时需要重新搅 动溶液破坏原来电极表面的扩 散层,难以用简单仪器连续记 录极谱图
2020/11/13
浓差极化 在电解过程中,电极上产生(或消耗)了某种 离子,而离子的扩散速率跟不上离子的产生(或消 耗)速率,使电极附近离子的浓度与本体溶液中的 浓度产生了偏差。
2020/11/13
5.1 极谱分析的基本原理
伏安分析法:以测定电解过程中的电流电压曲线为基础的电化学分析方法; 极谱法(polarography): 采用滴汞电极的伏安分析法。
极谱分析是在特殊条件下进行的电 解分析。
2020/11/13
一、电解池的伏安行为
当外加电压U外达到的Cd2+分解电 压Ud时,电解池内会发生如下的氧化 还原反应。
阴极还原反应:
Cd2+ + 2e Cd
阳极氧化反应:
(Cd2+)
2OH- -2e H2O + 1/2 O2
2020/11/13
电流和电压的关系理论上应该是一直线