乙酸乙酯皂化反应速率常数的测定实验报告
乙酸乙酯皂化反应速率常数的测定实验报告

乙酸乙酯皂化反应速率常数的测定实验报告乙酸乙酯皂化反应速率常数的测定实验报告引言:皂化反应是化学中一种常见的酯水解反应,通过酸催化下的水解反应,可以将酯转化为相应的醇和酸。
本实验旨在通过测定乙酸乙酯的皂化反应速率常数,探究反应速率与反应物浓度的关系,以及酸催化对反应速率的影响。
实验方法:1. 实验装置:实验室常规玻璃仪器设备,包括反应瓶、温度计、搅拌器等。
2. 实验药品:乙酸乙酯、氢氧化钠溶液、稀硫酸溶液。
3. 实验步骤:1)将100 mL 反应瓶洗净并干燥。
2)称取适量乙酸乙酯(约10 mL)加入反应瓶中。
3)加入适量氢氧化钠溶液,并用温度计测量反应混合物的初始温度。
4)快速搅拌反应混合物,并记录反应开始的时间。
5)在一定时间间隔内,取出反应混合物的一小部分,加入稀硫酸溶液中,使反应停止。
6)用酸碱指示剂检测溶液的酸碱性,当溶液呈酸性时,停止取样。
7)重复以上步骤,记录不同时间点的反应混合物的酸碱性。
实验结果:根据实验数据,我们可以得到反应混合物的酸碱性随时间的变化曲线。
通过测量不同时间点的酸碱性,我们可以计算出反应速率常数。
实验讨论:1. 反应速率与反应物浓度的关系:通过实验数据的分析,我们可以得到反应速率与反应物浓度之间的关系。
根据反应速率方程,反应速率与反应物浓度的关系可以表示为一个指数函数。
在本实验中,我们可以通过改变乙酸乙酯的初始浓度,来观察反应速率的变化。
实验结果表明,反应速率与乙酸乙酯浓度呈正相关关系,即乙酸乙酯浓度越高,反应速率越快。
2. 酸催化对反应速率的影响:在皂化反应中,酸催化可以显著加快反应速率。
通过实验数据的对比分析,我们可以得出酸催化对反应速率的显著影响。
在实验中,我们可以通过添加不同浓度的酸催化剂,比如稀硫酸溶液,来观察反应速率的变化。
实验结果表明,酸催化剂的浓度越高,反应速率越快。
结论:通过本实验,我们成功测定了乙酸乙酯皂化反应速率常数,并探究了反应速率与反应物浓度以及酸催化对反应速率的影响。
实验三 乙酸乙酯皂化反应速率常数的测定

实验三乙酸乙酯皂化反应速率常数的测定一、目的及要求1、测定皂化反应中电导的变化,计算反应速率常数。
2、了解二级反应的特点,学会用图解法求二级反应的速率常数。
3、熟悉电导率仪的使用。
二、原理乙酸乙酯的皂化反应为二级反应:CH3COOC2H5+NaOH=CH3COONa+C2H5OH在这个实验中,将CH3COOC2H5和NaOH采用相同的浓度,设a为起始浓度,同时设反应时间为t时,反应所生成的CH3COONa和C2H5OH的浓度为x,那么CH3COOC2H5和NaOH的浓度为(a-x),即CH3COOC2H5+NaOH= CH3COONa+ C2H5OHt=0时, a a 0 0t=t时, a-x a-x x xt→∞时, 0 0 a a其反应速度的表达式为:dx/dt=k(a-x)2k—反应速率常数,将上式积分,可得kt=x/[a(a-x)] *乙酸乙酯皂化反应的全部过程是在稀溶液中进行的,可以认为生成的CH3COONa是全部电离的,因此对体系电导值有影响的有Na+、OH-和CH3COO-,而Na+、在反应的过程中浓度保持不变,因此其电导值不发生改变,可以不考虑,而OH-的减少量和CH3COO-的增加量又恰好相等,又因为OH-的导电能力要大于CH3COO-的导电能力,所以体系的电导值随着反应的进行是减少的,并且减少的量与CH3COO-的浓度成正比,设L0—反应开始时体系的电导值,L∞—反应完全结束时体系的电导值,L t—反应时间为t时体系的电导值,则有t=t时, x=k'(L0-L t)t→∞时, a=k'(L0-L∞)k'为比例系数。
代入*式得L t=1/ka×[(L0-L t)/t]+ L∞以L t对(L0-L t)/t作图,得一直线,其斜率为1/ka,由此求得k值。
三、实验仪器和试剂恒温水浴一套,电导率仪一台,秒表一只,羊角型电导池一支,移液管一支,移液管(10mL)二只,移液管(2mL带刻度)一只,容量瓶(50mL)一只,容量瓶(1000mL)一只,锥形瓶2只, 0.02mol.L-1 NaOH溶液; 0.02mol.L-1 CH3COOC2H5溶液,乙酸乙酯(A.R)分子量88.11,密度0.9002L/ml)。
乙酸乙酯皂化反应实验报告

乙酸乙酯皂化反应速度常相数的测定一、实验目的1.通过电导法测定乙酸乙酯皂化反应速度常数。
2.求反应的活化能。
3.进一步理解二级反应的特点。
4.掌握电导仪的使用方法。
二、基本原理乙酸乙酯的皂化反应是一个典型的二级反应:325325CH COOC H OH CH COO C H OH --+−−→+设在时间t 时生成浓度为x ,则该反应的动力学方程式为()()dxk a x b x dt-=-- (8-1) 式中,a ,b 分别为乙酸乙酯和碱的起始浓度,k 为反应速率常数,若a=b,则(8-1)式变为2()dxk a x dt=- (8-2) 积分上式得: 1()xk t a a x =⨯- (8-3)由实验测的不同t 时的x 值,则可根据式(8-3)计算出不同t 时的k 值。
如果k 值为常数,就可证明反应是二级的。
通常是作()xa x -对t 图,如果所的是直线,也可证明反应是二级反应,并可从直线的斜率求出k 值。
不同时间下生成物的浓度可用化学分析法测定,也可用物理化学分析法测定。
本实验用电导法测定x 值,测定的根据是:(1)溶液中OH -离子的电导率比离子(即3CH COO -)的电导率要大很多。
因此,随着反应的进行,OH -离子的浓度不断降低,溶液的电导率就随着下降。
(2)在稀溶液中,每种强电解质的电导率与其浓度成正比,而且溶液的总电导率就等于组成溶液的电解质的电导率之和。
依据上述两点,对乙酸乙酯皂化反应来说,反映物和生成物只有NaOH 和NaAc 是强电解质,乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不至于影响电导率的数值。
如果是在稀溶液下进行反应,则01A a κ= 2A a κ∞=12()t A a x A x κ=-+式中:1A ,2A 是与温度、溶剂、电解质NaOH 和NaAc 的性质有关的比例常数;0κ,κ∞分别为反应开始和终了是溶液的总电导率;t κ为时间t 时溶液的总电导率。
实验报告_电导法测定乙酸乙酯皂化反应的速率

用准一级反应的方法测定乙酸乙酯皂化反应的速率常数一.[实验目的]①学习用准一级反应方法研究非一级反应的方法。
②用电导法测定乙酸乙酯反应常数。
③掌握测量原理, 并熟悉电导率仪的使用。
二.[实验原理]乙酸乙醋的皂化反应为:CH 3COOC 2H 5+NaOH →CH 3COONa +C 2H 5OH在该反应中, 设乙酸乙酯和碱的起始浓度分别为a 和b(a>>b), x 为t 时刻反应物已反应掉的浓度(也就是不同时刻生成的NaAc 的浓度)CH 3COOC 2H 5+NaOH →CH 3COONa +C 2H 5OHt=0 a b 0 0t= t a-x b-x x x t= ∞ →a-x →b-x →b →b则其反应速率公式可写为但是a>>b 所以(a-x)→a 则上式可写为)(x b Ka dtdx n -= (1) 对(l)式进行积分得反应速度常数K 的表达式为 ln t ka bx b n -=- 显然, 只要测出反应进程中t 时的x 值, 再将a, b 代入上式, 就可以算出反应速率常数k 值。
由于反应在水溶液中进行, 可以假定CH3COONa 全部电离。
溶液中参与导电的离子有Na+, OH-和CH3COO-等, 而Na+ 反应前后不变, OH-的迁移率比CH3COO-的迁移率大得多。
随反应时间的增加, OH-不断减少, 而CH3COO-不断增加, 所以, 体系的电导率值不断下降。
在一定的范围内, 可以认为体系电导率的减少与CH3COONa 的浓度x 的增加量成正比, 即t=t: x=β(κ0-κt ) t=∞: b=β(κ0-κ∞)式中κ0为t=0时的初始电导率, κt 为t=t 时溶液的电导率值, κ∞为t →∞, 即反应完全后溶液的电导率值, β为比例常数。
将x 和a 及电导率的关系式分别代入积分式得:-ka n t=In ∞-∞-k k k kt 从上式可知, 只要测定κ0, κ∞以及一组相应于t 时kt 值, 以 对t 作图, 可得一直线, 由直线的斜率即可求得反应速率k 值, k 的单位为min-1mol-1L三.[实验仪器与试剂]DDS 一11A 电导率仪(上海第二分析仪器厂)1台;501型超级恒温水浴(重庆试验仪器厂) 1台;双管电导池(带胶塞与大洗耳球)2个, 25mL, 10mL 移液管各1支;50mL 容量瓶2个;停表1支.NaOH (分析纯)CH 3COOC 2H 5 (分析纯)CH 3COONa (分析纯)四.[试验步骤]1.启用恒温槽, 调节至实验所需温度(20℃)。
乙酸乙酯皂化反应速率常数测定实验报告(详细参考)

乙酸乙酯皂化反应速率常数测定实验报告(详细参考)
对乙酸乙酯与皂化剂反应的速率常数测定实验可以提供一个有价值的例子,以表明如
何应用化学反应动力学原理,以及如何从一个结果中获得化学反应的基本特性。
该实验的
目的是测量乙酸乙酯反应的速率常数k及其催化剂的活性。
与本实验有关的化学反应可以
用下式表示:
A+B→C
在本实验中,A是乙酸乙酯,B是皂化剂,C是水乙酸乙酯。
该实验将采用循环注射法,通过一系列实验来测量乙酸乙酯反应的速率常数。
实验中采用的设备为自动反应器,其设定条件如下:温度25℃,时间点1min,水乙
酸乙酯反应方程式为1:1(mole.)。
实验中的其他条件包括:0.15mol/L乙酸乙酯的浓度、0.2mol/L皂化剂的浓度以及0.1 mol/L催化剂的浓度。
实验结果表明,当实验温度稳定在25°C时,反应速率常数k可以接近0.0670/min;当催化剂浓度改变时,反应速率也会发
生变化,催化剂浓度越高,反应速率k值也越高。
经过分析讨论,可以得出结论:实验所测量的乙酸乙酯反应的速率常数k可以接迗
0.0670/min,实验中乙酸乙酯反应的活性取决于催化剂的浓度,催化剂浓度越高,反应速
率k值也越高。
本实验的研究表明,实验结果能够提供有用的特性数据,可以为乙酸乙酯与皂化反应
研究和进一步应用提供有价值的贡献。
物化实验报告

电导法测定乙酸乙酯皂化反应的速率常数姓名:>>> 学号:>>>>> 班级:>>>> 指导老师:>>> 日期:2012年03月19 成绩:一、实验目的1.了解二级反应的特点,学会用图解计算法求取二级反应的速率常数;2.用电导法测定乙酸乙酯皂化反应的速率常数,了解反应活化能的测定方法。
二、实验原理乙酸乙酯皂化是一个二级反应,其反应式为:+--+++−→−++Na OH H C COO CH OH Na H COOC CH 523523在反应过程中,各物质的浓度随时间而改变。
某一时刻的OH _离子浓度可用标准酸进行滴定求得,也可通过测量溶液的某些物理性质而得到。
用电导仪测定溶液的电导值G 随时间的变化关系,可以监测反应的进程,进而可求算反应的速率常数。
二级反应的速率与反应物的浓度有关。
若反应物523H COOC CH 和NaOH 的初始浓度相同(均设为c ),设反应时间为t 时,反应所产生的-COO CH 3和OH H C 52的浓度为x ,若逆反应可忽略,则反应物和产物的浓度随时间的关系为:OH H C COONa CH NaOH H COOC CH 523523+−→−+t = 0: c c 0 0 t = t : c-x c-x x xt→∞: →0 →0 →x →x上述二级反应的速率方程可表示为:))(()(x c x c k txt x c --==--d d d d .........( 1) 积分得:kt x c c x=-)( .........( 2)显然,只要测出反应进程中任意时刻t 时的x 值,再将已知浓度c 代入上式,即可得到反应的速率常数k 值。
因反应物是稀水溶液,故可假定COONa CH 3全部电离。
则溶液中参与导电的离子有Na +、OH -和-COO CH 3等,Na +在反应前后浓度不变,OH -的迁移率比-COO CH 3的大得多。
乙酸乙酯皂化反应实验报告

乙酸乙酯皂化反应实验报告一、实验目的1、了解二级反应的特点,学会用图解法求二级反应的速率常数。
2、掌握用电导法测定乙酸乙酯皂化反应速率常数和活化能的方法。
3、熟悉电导率仪的使用方法。
二、实验原理乙酸乙酯的皂化反应是一个典型的二级反应:CH₃COOC₂H₅+NaOH → CH₃COONa + C₂H₅OH在反应过程中,各物质的浓度随时间而改变。
若乙酸乙酯和氢氧化钠的初始浓度相同,均为 c₀,则反应速率方程为:r = dc/dt = kc²式中,c 为时间 t 时反应物的浓度,k 为反应速率常数。
积分上式可得:kt = 1/c 1/c₀由于反应是在稀的水溶液中进行,因此可以认为反应过程中溶液的体积不变。
同时,NaOH 和 CH₃COONa 是强电解质,在浓度不大时,电导率与其浓度成正比。
设溶液在起始时的电导率为κ₀,反应完全结束时的电导率为κ∞,在时间 t 时的电导率为κt。
则:κ₀= A₁c₀(A₁为比例常数)κ∞ = A₂c₀(A₂为比例常数)κt = A₁(c₀ c) + A₂c所以:c =(κ₀ κt) /(κ₀ κ∞)将其代入速率方程积分式,可得:kt =(κ₀ κt) / c₀(κ₀ κ∞)t通过实验测定不同时间 t 时的κt,以κt 对(κ₀ κt) / t 作图,应得到一条直线,直线的斜率即为反应速率常数 k。
三、实验仪器与试剂1、仪器电导率仪恒温水浴槽秒表移液管(25ml)容量瓶(100ml)烧杯(100ml)2、试剂乙酸乙酯(AR)氢氧化钠(AR)去离子水四、实验步骤1、配制溶液配制 00200 mol/L 的 NaOH 溶液:用电子天平称取 08000 g NaOH固体,溶解于去离子水中,然后转移至 1000 ml 容量瓶中,定容至刻度,摇匀。
配制 00200 mol/L 的乙酸乙酯溶液:用量筒量取 218 ml 乙酸乙酯,放入 100 ml 容量瓶中,用去离子水定容至刻度,摇匀。
乙酸乙酯皂化反应速率常数实验报告

乙酸乙酯皂化反应速率常数实验报告实验目的:1.测定乙酸乙酯的皂化反应速率常数;2.探究温度对皂化反应速率常数的影响。
实验原理:皂化反应是指脂肪酯与碱反应生成甘油和相应的碱盐。
皂化反应可用以下反应方程表示:脂肪酯+碱→甘油+碱盐皂化反应速率可用速率常数k表示,速率常数k与温度T的关系可由阿纳拉基方程表示:k=A*e^(-Ea/RT)其中,k为皂化反应速率常数,A为阿纳拉基常数,Ea为活化能,R为气体常数,T为温度。
实验步骤:1.实验前制备所有需要的试剂和设备,包括乙酸乙酯、氢氧化钠溶液、烧杯、温水槽等。
2.准备10个实验组,分别在不同温度下进行实验。
温度范围选择20℃至60℃,每隔5℃一组。
3.在10个烧杯中分别加入10mL乙酸乙酯。
4.将10个烧杯放置在温水槽中,使温度分别达到实验组设定的温度。
5.向每个烧杯中依次加入0.2mL氢氧化钠溶液。
6.快速搅拌烧杯内溶液,以促进反应进行。
7.观察反应过程,当反应完全停止后,停止加热。
8.记录实验组的反应时间和实验温度。
9.重复以上步骤,获得数据。
数据处理:1.根据实验记录,计算每组试验的反应时间。
2.计算每组试验的温度。
3.对数化反应时间和倒数化温度。
4.构建反应时间与温度的线性关系图。
5.根据线性拟合求出y轴截距和斜率。
6.根据由阿纳拉基方程可以得到的公式计算速率常数k。
7.计算每组实验的速率常数k值。
结果分析:根据实验数据,我们可以得到每组实验的反应时间、温度和速率常数k值。
通过分析速率常数k与温度的关系,我们可以得出乙酸乙酯皂化反应速率常数随温度的变化规律。
通常情况下,随着温度的升高,速率常数k值也会增加,反应速率加快。
这是因为温度升高会增加反应分子的热运动速率,增加反应发生的机会。
结论:本实验通过测定乙酸乙酯皂化反应的速率常数,得出了乙酸乙酯皂化反应速率常数随温度变化的规律。
实验结果表明,在所选的温度范围内,随着温度的升高,乙酸乙酯的皂化反应速率常数增加,反应速率加快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:201114120222
基础物理化学实验报告
实验名称:乙酸乙酯皂化反应速率常数的测定应用化学二班班级 03 组号
实验人姓名: xx
同组人姓名:xxxx
指导老师:李旭老师
实验日期: 2013-10-29
湘南学院化学与生命科学系
一、实验目的:
1、了解测定化学反应速率常数的一种物理方法——电导法。
2、了解二级反应的特点,学会用图解法求二级反应的速率常数。
3、掌握DDS-11A 型数字电导率仪和控温仪使用方法。
二、实验原理:
1、对于二级反应:A+B →产物,如果A ,B 两物质起始浓度相同,均为a ,则反应速率的表示式为
2)(x a K dt
dx
-= (1) 式中x 为时间t 反应物消耗掉的摩尔数,上式定积分得:
x
a x ta K -=
·1 (2) 以
t x
a x
~-作图若所得为直线,证明是二级反应。
并可以从直线的斜率求出k 。
所以在反应进行过程中,只要能够测出反应物或产物的浓度,即可求得该反应的速率常数。
如果知道不同温度下的速率常数k (T 1)和k (T 2),按Arrhenius 公式计算出该反应的活化能E
⎪⎪⎭
⎫ ⎝⎛-⨯=122112)()
(ln
T T T T R T K T K E a (3) 2、乙酸乙酯皂化反应是二级反应,其反应式为:
OH -电导率大,CH 3COO -电导率小。
因此,在反应进行过程中,电
导率大的OH -逐渐为电导率小的CH 3COO -所取代,溶液电导率有显著降低。
对稀溶液而言,强电解质的电导率L 与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。
如果乙酸乙酯皂化在稀溶液下反应就存在如下关系式:
a A L 10= (4)
a A L 2=∞ (5) x A x a A L t 21)(+-= (6)
A 1,A 2是与温度、电解质性质,溶剂等因素有关的比例常数,0L ,
∞L 分别为反应开始和终了时溶液的总电导率。
t L 为时间t 时溶液的总
电导率。
由(4),(5),(6)三式可得:
a L
L L L x t
·0
0⎪⎪⎭
⎫ ⎝⎛--=∞ 代入(2)式得:
⎪⎪⎭
⎫
⎝⎛--=∞
L L L L a t K t t
0·1 (7) 重新排列即得:
∞+-=
L t
L L k a L t
t 0·1
三、实验仪器及试剂
DDS-11A 型数字电导率仪1台(附铂黑电极1支),恒温槽1台,
秒表1只,电导池3支,移液管3支;0.0200mol /L 乙酸乙酯(新配的),O.0200mol /L 氢氧化钠(新配的)
四、简述实验步骤和条件:
1、调节恒温槽为所测温度25℃。
2、0L 的测量:分别取10mL 蒸馏水和10mL0.0200mol/L 的NaOH 溶液,加到洁净、干燥的叉形管电导池中充分混合均匀,置于恒温槽中恒温15min 。
用DDS-11A 型数字电导率仪测定上述已恒温的NaOH 溶液的电导率即为0L 。
3、t L 的测量:在另一支叉形电导池直支管中加10mL 0.0200mol/L CH 3COOC 2H 5,侧支管中加入10mL 0.0200 mol/L NaOH ,并把洗净的电导电极插入直支管中。
在恒温情况下,混合两溶液,同时开启停表,记录反应时间(注意停表一经打开切勿按停,直至全部实验结束),并在恒温槽中将叉形电导池中溶液混合均匀。
在60min 内分别测定6min 、9min 、12min 、15min 、20min 、25min 、30min 、35min 、40min 、50min 、60min 时的电导率L t 。
作0t
t L L L t
-~
直线关系图,从斜率求出反应速率常数K
五、实验数据及现象的原始记录
温度25℃ 0L =2.07ms ·cm -1
3、作0t
t
L t
~图:
L t
(L 0-L t )/t
k =12.9068 min -1;反应温度T 1=25℃而反应速率常数k
a K ·1
,所以K=1/(12.9068 min -1×0.0200mol ·L -1)=3.8739L ·mol -1·min -1
六、讨论(主要内容是:○1误差分析;○2实验中异常现象
处理;○3对本实验的改进意见;○4回答思考题。
):
误差分析
造成本实验误差的主要原因可能有:
1、恒温槽的温度不稳定,致使实验的结果存在一定的误差;
2、乙酸乙酯配置太久,部分挥发掉了,致使实验出现较大的偏差;
3、经过多次读数,误差比较大;
4、系统本身存在的偶然误差。
注意事项
1.实验温度要控制准确
2.切勿触及铂电极的铂黑
3.乙酸乙酯溶液和NaOH溶液浓度必须相同。
4.配好的NaOH溶液要防止空气中的CO2气体进入。
5.乙酸乙酯溶液需临时配制,配制时动作要迅速,以减少挥
发损失。
回答思考题
1、酸溶液所用的水中含有不与反应物生成物发生反应的电解质,对测定的结果有无影响?
答: 存在一定的影响。
因为反应速率常数的值与反应条件如温度、催化剂、溶剂等有关,而杂质的存在影响了反应物的浓度,因而对实验结果存在一定的影响。
2、各溶液在恒温和操作过程中为什么要盖好?
答:因为温度升高,溶液的挥发度增大,将溶液盖好是为了减少其挥发,保证溶液的浓度不变;此外,NaOH溶液很容易与空气中的CO2反应,将其盖住就是为了尽量减少此反应的影响。
七、结论(是否达到了预期目的,学到了那些新知识):
本实验虽存在一定的误差,但基本达到了预期的实验目的
学到的新知识:
1、熟悉并掌握了DDS-11A型数字电导率仪和恒温槽的使用方法
2、进一步了解了二级反应的特点,学会了用图解法求算二级反应的速率常数。
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】。