二氧化碳的捕集与封存技术
二氧化碳捕集与封存

二氧化碳捕集与封存
随着科技的发展,技术已经成为现代社会不可或缺的一个部分。
有一种技术被
公认为对减少污染、缓解全球气候变暖具有重要意义——二氧化碳捕集与封存技术。
二氧化碳捕集与封存技术是一项可以预防气体排放大量二氧化碳上升温度的技术。
它将二氧化碳从火力发电厂、工业锅炉以及其他炼制等场所中抽取出来,并将其封存在地下地层,以阻止其进入大气中的反应。
目前,二氧化碳捕集与封存技术已经被广泛应用于全球范围内的各种场所,其效果显著。
二氧化碳捕集与封存技术可以减少或消除大量有害气体,例如:硫化物、氮氧
化物、挥发性有机物等等,从而减少污染并缓解全球变暖的威胁。
在美国,就采取了大量的措施,例如允许火力发电厂以及工业企业实施二氧化碳捕集和封存,以配合气候变化所需的改革,提高能源使用效率,缩小环境污染的尺度。
从生活上讲,二氧化碳捕集与封存技术可以保护林木,抑制空气污染,有助于
绿化环境,为周围提供美好的景色。
同时,由此可以节约大量能源,缩减空气、水质污染,并鼓励可持续技术的使用。
它The助于改善水、空气质量,从而改善我们的生活质量。
因此,二氧化碳捕集与封存技术是一项重要的技术,其重要性正日益被人们所
认识和认可。
未来,我们期待见到更多新型技术在本领域上取得突破,以更有效地改善大气环境。
科技成果——二氧化碳的捕集驱油及封存技术

科技成果——二氧化碳的捕集驱油及封存技术技术类别储碳技术适用范围石化、电力行业、CCUS行业现状二氧化碳的捕集驱油及封存技术(CCUS)是直接减少二氧化碳的储碳技术,该技术目前主要应用于燃煤电厂、油田等领域。
胜利油田已建成国内首个工业化规模燃煤电厂烟气CO2捕集、驱油与地下封存全流程示范工程,包括年处理4万吨烟气的CO2捕集装置,生产的CO2纯度大于99.5%,并在特低渗透油藏上进行驱油,已累计增产原油2.6万吨,地下封存CO29.8万吨。
另外,吉林油田、中原油田、延长石油靖边油田等也已建设运营了示范项目。
技术原理将燃煤电厂、煤化工等企业排放的烟气中低分压的CO2捕集纯化出来,并进行压缩、干燥等处理后,通过管道或罐车等方式输送至CO2驱油封存区块;通过CO2注入系统将CO2注入至地下,有效提高油田采收率的同时,实现CO2地下封存;通过采出气CO2捕集系统将返回至地面的CO2回收,并再次注入至地下,实现较高的CO2封存率。
关键技术(1)低分压CO2捕集工艺优化技术;(2)CO2驱油及封存耦合技术;(3)CO2气窜井化学调堵技术;(4)CO2驱注采输系统腐蚀控制技术;(5)采出气中CO2的分离纯化技术;(6)CO2封存环境监测及评价技术。
工艺流程CO2捕集→输送→注入→油藏(驱油、封存)→采油→地面集输主要技术指标1、CO2捕集能耗低于2.7GJ/tCO2;2、CO2动态封存率50%以上;3、提高采收率5%以上;4、注采输系统腐蚀速率<0.076mm/a;5、对于CO2驱油过程中地质封存能力的评价预测误差低于10%;6、近地表在线监测系统CO2浓度测定范围为0-5000ppm,检测精度≤±5%,重现性≤±5%,信号传输距离10m;地下水中在线监测系统CO2浓度测定范围为4-1800ppm,检测精度≤±10%,重现性≤±10%,信号传输距离30m。
技术水平“大规模燃煤电厂烟气二氧化碳捕集驱油封存(CCUS)技术及应用”已通过中国石油化工股份有限公司科学技术成果鉴定;“燃煤电厂烟气CO2捕集纯化技术研发及应用”通过山东省科技成果鉴定。
二氧化碳捕集与封存技术

二氧化碳捕集与封存技术在21世纪的今天,人类面临着全球变暖的威胁。
其中,气候变化中的二氧化碳排放是不容忽视的问题。
在全球范围内,很多科学家和政府部门一直在努力寻找减少二氧化碳排放的方法。
而二氧化碳捕集与封存技术(Carbon Capture and Storage,简称CCS)就是其中一种解决二氧化碳排放问题的有效途径。
一、二氧化碳捕集技术首先,我们来了解什么是二氧化碳捕集技术。
该技术是指通过化学或物理方法从排放源头(如电厂、工厂等)中捕集二氧化碳,使其不会被释放到大气中。
目前,有三种主要的二氧化碳捕集技术。
1.化学吸收化学吸收技术采用了一种称为氨基甲酸酯的溶液,由化学反应来捕集二氧化碳。
首先,从发电站排放的烟气中去除氧气,然后将氨基甲酸酯溶液与烟气混合。
反应产生物质称为碳酸化氨,其中包含二氧化碳。
随着烟气经过吸收液体,二氧化碳会被溶解,最后将溶液转移到另一个位置进行处理,使二氧化碳被移除。
2.生物吸收生物吸收技术利用微生物来捕集二氧化碳。
此技术中,将微生物置于发酵装置中,并将二氧化碳直接注入装置中。
微生物会吸收这些二氧化碳,最终生成有用的产物。
3.膜分离膜分离技术利用聚合物膜将二氧化碳与其他气体分离。
该技术中,气体被迫通过膜,使二氧化碳被捕集并从中分离。
二、二氧化碳封存技术二氧化碳封存技术是将捕集的二氧化碳通过管道输送到地下、海洋、煤矿洞穴等地下储存,使其不会进入大气层。
在目前的技术水平下,二氧化碳储存在地下或海洋中,是可行的。
在封存二氧化碳之前,必须对其进行处理,以对其进行净化。
首先,使用酸将二氧化碳溶解,并从中提取杂质。
其次,将二氧化碳和水一起注入储存介质。
最后,密封储存区域,以防止任何二氧化碳泄漏。
三、二氧化碳捕集与封存技术的优势和不足1.优势尽管尚未得到广泛采用,但技术的潜力很大。
使用二氧化碳捕集和封存技术可以在许多情况下减少甚至消除二氧化碳的排放,这对于减缓全球变暖非常有益。
此外,这种技术还可以与其他技术或草案结合使用,以实现更便宜、更可持续、更绿色、更清洁的工业生产。
二氧化碳捕集利用与封存

二氧化碳捕集利用与封存
随着全球气候变化的日益严峻,减少二氧化碳排放成为了全球关注的热点话题。
然而,仅仅减少二氧化碳排放远远不足以应对全球气候变化的挑战。
这时,二氧化碳捕集利用与封存技术被提出,成为了解决全球气候变化的一项重要措施。
二氧化碳捕集利用与封存技术可以大大减少大气中的二氧化碳含量,从而减缓全球气候变化的速度。
该技术主要分为三个步骤:捕集、利用和封存。
首先,将二氧化碳从工业排放源、燃烧排放源或大气中捕集出来。
然后,将捕集的二氧化碳进行有效利用,例如用于生产有机化学品、肥料、塑料等。
最后,将未被利用的二氧化碳进行安全地封存,例如将其储存在地下岩层或海底。
二氧化碳捕集利用与封存技术的应用有很多优势。
首先,它可以减少二氧化碳排放,从而降低全球气候变化的速度。
其次,通过二氧化碳的利用,可以刺激经济增长,创造就业机会。
最后,该技术可以促进可持续发展,使得工业化的过程更加环保。
然而,二氧化碳捕集利用与封存技术也有一些挑战。
首先,大规模地应用该技术需要大量的资金和技术支持。
其次,二氧化碳的有效利用仍需要更多的研究和开发。
最后,封存二氧化碳也需要高度的安全措施,以避免二氧化碳泄漏带来的环境和健康风险。
总之,二氧化碳捕集利用与封存技术是解决全球气候变化的一项重要措施。
随着技术的不断改进和政策的不断推动,相信该技术将会得到更广泛的应用和发展。
碳捕集与封存技术的现状与挑战

碳捕集与封存技术的现状与挑战在全球气候变化的大背景下,减少温室气体排放已成为当务之急。
碳捕集与封存(Carbon Capture and Storage,简称 CCS)技术作为一种重要的减排手段,近年来受到了广泛的关注。
本文将探讨碳捕集与封存技术的现状,并分析其面临的挑战。
一、碳捕集与封存技术的原理碳捕集与封存技术主要包括三个环节:碳捕集、碳运输和碳封存。
碳捕集是指将二氧化碳从工业排放源(如发电厂、钢铁厂、水泥厂等)中分离出来的过程。
目前主要的碳捕集技术有燃烧后捕集、燃烧前捕集和富氧燃烧捕集。
燃烧后捕集是在燃烧过程完成后,从烟道气中捕集二氧化碳;燃烧前捕集则是在燃料燃烧前将其转化为氢气和二氧化碳,然后分离出二氧化碳;富氧燃烧捕集是采用高浓度氧气进行燃烧,从而产生高浓度的二氧化碳,便于捕集。
碳运输是将捕集到的二氧化碳通过管道、船舶或公路槽车等方式输送到封存地点。
碳封存则是将二氧化碳注入地下深处的地质构造中,如枯竭的油气田、深部盐水层等,使其长期与大气隔离。
二、碳捕集与封存技术的现状(一)技术进展经过多年的研究和发展,碳捕集与封存技术在某些方面取得了显著的进步。
燃烧后捕集技术中的化学吸收法不断优化,提高了二氧化碳的捕集效率和降低了成本。
同时,新型的吸附材料和膜分离技术也在研发中,有望进一步提高捕集效果。
在碳运输方面,管道运输技术相对成熟,但对于长距离和大规模的运输,还需要解决一些工程和安全问题。
碳封存的地质评估和监测技术也在不断改进,以确保二氧化碳的安全封存。
(二)示范项目全球范围内已经建立了一些碳捕集与封存的示范项目。
例如,挪威的 Sleipner 项目是世界上第一个大规模的二氧化碳封存项目,自 1996 年以来,已经成功将超过 1000 万吨的二氧化碳封存在北海的海底盐水层中。
美国的 Petra Nova 项目采用燃烧后捕集技术,每年可捕集约 140 万吨二氧化碳,并将其用于提高石油采收率。
中国也在积极推进碳捕集与封存技术的示范项目,如神华集团在鄂尔多斯的 10 万吨/年二氧化碳捕集与封存示范项目。
二氧化碳捕获和封存技术

二氧化碳捕获和封存技术
二氧化碳捕获和封存技术(CO2 Capture and Storage,CCS),是指将大量排放在大气中的二氧化碳捕获并封存到地下以减少温室气体排放。
这项技术旨在降低对全球变暖的影响,并促进实现温室气体减排目标。
它是按照一般流程来实现的:1. 使用各种技术捕获二氧化碳,比如活性碳捕集法、膜分离法、吸附法等;2. 将捕获的二氧化碳压缩成液体;3. 将二氧化碳通过管道输送到深海、湖泊、岩溶系统或油气田中;4. 在相应地点封存二氧化碳,以阻止其流失。
二氧化碳捕获和封存技术的好处在于可以帮助减少二氧化碳的排放,从而减缓温室效应的发展。
这项技术也可以帮助改善空气质量,因为二氧化碳是一种污染物。
然而,它也存在一些问题,比如封存的二氧化碳可能会造成环境污染,或者可能会导致地表沉降。
二氧化碳捕集、利用与封存技术

二氧化碳捕集、利用与封存技术
首先,让我们来谈谈二氧化碳的捕集。
二氧化碳捕集是指从工业排放或其他源头捕集二氧化碳,防止其进入大气。
捕集二氧化碳的方法包括化学吸收、物理吸收和膜分离等技术。
化学吸收是通过将二氧化碳溶解在特定溶剂中来捕集它,而物理吸收则是利用物理吸附剂来捕集二氧化碳。
膜分离则是利用半透膜来分离二氧化碳和其他气体。
这些方法可以在发电厂、工厂和其他排放源头处实施。
其次,我们来谈谈二氧化碳的利用。
捕集到的二氧化碳可以被用于生产合成燃料、化学品和其他产品。
例如,通过将二氧化碳与氢反应,可以生产甲醇或其他燃料。
此外,二氧化碳还可以用于增强油田采油,促进石油的开采。
这些利用方法有助于减少二氧化碳的排放,并为其赋予经济价值。
最后,我们来谈谈二氧化碳的封存。
二氧化碳封存是指将捕集到的二氧化碳储存在地下或其他地方,防止其再次进入大气。
地下封存通常是将二氧化碳注入地下岩层或空旷地下盐蓄中。
此外,二氧化碳还可以被封存在海底或其他地方。
封存二氧化碳有助于长期减少大气中的二氧化碳浓度。
总的来说,二氧化碳捕集、利用与封存技术是一项重要的环保技术,可以帮助减少大气中的二氧化碳浓度,减缓气候变化。
通过综合利用这些技术,我们可以更好地应对气候变化挑战,保护地球环境。
二氧化碳捕集与封存

二氧化碳捕集与封存全球变暖是当今时代人们面临的最大环境问题,大量二氧化碳(CO2)排放正在加剧全球变暖现象。
二氧化碳收集和封存技术(CCS)被认为是减少温室气体排放的有效途径之一。
然而,从技术和经济角度看,二氧化碳的捕集和封存是一项艰巨的任务,也是当今世界面临的主要挑战之一。
二氧化碳收集和封存(CCS)是指将燃烧过程中产生的二氧化碳从气体流中分离出来,然后在地下封存起来,这样可以有效地阻止二氧化碳进入大气环境,从而减少全球变暖和温室效应。
CCS技术通常是指以三种方式实现二氧化碳收集和封存:大气CCS,陆地CCS和海洋CCS。
大气CCS是指从空气中捕集CO2,比如从火力发电厂的废气中收集CO2,然后从大气中封存。
陆地CCS是指将CO2注入地下,以减少CO2进入大气。
海洋CCS是指将CO2注入海洋,这样CO2就不会进入大气。
尽管CCS技术有助于减少CO2的排放,但它也有一些潜在的风险,比如地震、地质不稳定、区域环境污染和其他环境污染等。
此外,由于CCS技术成本较高,因此可能会抑制经济发展。
为了有效地利用CCS技术,有必要采取一些步骤。
首先,加强CO2收集和封存技术研究,并开展相关培训项目,以提高人们对CCS 技术的认知度。
其次,加强对二氧化碳收集和封存项目的监督,以确保收集和封存的安全性和有效性。
最后,加强对收集和封存技术的法律法规管理,以防止滥用或滥用。
随着人们对全球变暖问题的深入研究,人们意识到二氧化碳收集和封存作为解决全球变暖问题的方法变得越来越重要。
二氧化碳收集和封存技术是一项技术复杂的工作,但如果正确使用,它可以长期地减少温室气体的排放,从而减少全球变暖的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
863计划资源环境技术领域重点项目
“二氧化碳的捕集与封存技术”课题申请指南
一、指南说明
全球气候变暖已成为国际热点问题,二氧化碳因具有温室效应被普遍认为是导致全球气候变暖的重要原因之一。
如何减少二氧化碳排放,降低大气中二氧化碳浓度,是人类面临的共同难题。
研究开发具有我国自主知识产权的、经济高效的二氧化碳捕集与封存技术,推动二氧化碳减排,对于实现我国社会经济可持续发展和营造良好的国际环境具有重要意义。
本项目针对二氧化碳减排的迫切需求,瞄准国际技术前沿,研发吸附、吸收等二氧化碳捕集技术,探索二氧化碳封存技术,为我国二氧化碳减排提供科技支撑,项目下设3个课题。
二、指南内容
课题一、二氧化碳的吸收法捕集技术
研究目标:
研发先进实用的CO2高效吸收溶剂、吸收塔填料以及新型高效吸收分离设备和分离技术,发展CO2吸收分离过程模拟和集成优化新技术,通过关键技术的突破,着重研究解决CO2捕集的高能耗和高
费用问题,进行中间试验并进行技术经济与风险评价,形成具有自主知识产权的吸收法捕集CO2的技术方案。
研究内容:
(1)新型高效吸收溶剂的研制
针对燃煤电厂等工业的CO2排放源,采用分子模拟、分子设计和实验研究相结合的方法开发高性能、低能耗和低腐蚀性的化学、物理及化学物理耦合吸收溶剂。
测定其中CO2的吸收溶解度和吸收-解吸动力学,建立相应的溶解度和动力学模型,研究吸收性能和溶剂分子结构的定量关系,根据不同气体情况研制和优化溶剂体系,并进行硫、碳一体化脱除、以及膜—吸收耦合等新技术的探索性研究。
(2)特大型吸收设备强化和过程优化
通过先进的实验测量技术、计算流体力学模拟和实验相结合的方法,研究特大型分离设备强化的途径,研制高效吸收塔填料等塔内构件;发展CO2吸收分离过程模拟优化技术,研究节能降耗的新流程,继而形成吸收法捕集CO2的集成技术方案及开发平台。
进行中间试验,获取工艺和能耗数据,进行技术经济与风险评价。
主要考核指标:
(1)针对燃煤电厂等工业的CO2排放源,研发1~2项具有自主知识产权的、国际先进水平的高效吸收溶剂。
(2)研发1~2项具有自主知识产权的、国际先进水平的高效吸收塔填料。
(3)通过过程模拟优化和中间实验,形成1~2种具有自主知识产权的吸收法捕集CO2的新技术。
(4)中间试验规模和指标:
常压(1bar),试验规模为吸收塔径≥200mm,气体处理量≥60万标准立方米/年,对溶剂的指标要求是在气体含8-15%的CO2的情况下对CO2的循环吸收量≥50~60克/升;
中高压(≥20bar),试验规模为吸收塔径≥60mm,气体处理量≥60万标准立方米/年,对溶剂的指标要求是在气体含30~40%CO2的情况下对CO2的吸收量≥37~50克/升;
试验总体技术经济指标为:CO2捕集率≥90%,CO2的捕集成本比现有吸收技术的可比成本下降20%以上。
(5)申请发明专利2~3项。
课题实施年限:
2008年5月至2010年12月
课题经费来源及构成
本课题国拨专项经费控制额不超过700万元,要求承担单位自筹或配套研究经费不少于350万元。
课题二、二氧化碳的吸附法捕集技术
研究目标:
研究开发高效节能的CO2吸附材料,发展CO2吸附分离过程模拟和优化新技术。
通过关键技术的突破着重解决CO2捕集的高能耗和高费用问题,进行中间试验并进行技术经济与风险评价,形成具有自主知识产权的吸附法捕集CO2的技术方案。
研究内容:
(1)新型高效吸附材料的制备筛选和基础物性研究
针对燃煤电厂等工业过程产生的气体中CO2的捕集问题,通过分子模拟、分子设计和实验研究相结合的方法,研究和开发具有高选择性、高吸附容量、低解吸能耗的新型吸附分离材料。
测定CO2在吸附材料中的吸附基础物性数据,阐明吸附材料结构与其吸附分离CO2性能的内在相关性,为吸附分离整体过程设计提供依据,并最终确立高性能低成本的吸附材料体系。
(2)吸附分离过程优化技术研究
优化设计CO2吸附分离过程的工艺流程,建立实验室规模和中间实验装置,研究确定低操作能耗的工艺参数;开发流程模拟程序并优化分离过程;在确立吸附材料结构和性能与关键设备适配性的基础
上,建立从吸附剂研制到吸附塔设计优化的技术平台,形成吸附法捕集CO2的集成新技术。
进行中间试验,进行相关的技术经济可行性评价。
主要考核指标:
(1)针对燃煤电厂等工业过程产生的含CO2气体,开发1~2项具有自主知识产权的、国际先进水平的新型高效吸附剂。
(2)通过过程模拟优化和中间实验,形成变压或变温耦合吸附/脱附的CO2捕集集成新技术。
(3)中间试验规模和指标为:
常压(1bar),气体处理量≥20万标准立方米/年,对吸附剂的指标要求是在气体含8~15%CO2的情况下对CO2的吸附量≥0.035~0.066克/克;
试验总体技术经济指标为:CO2的捕获率≥90%,捕集成本比现有吸附技术的可比成本下降20%以上。
(4)申请发明专利2~3项。
课题实施年限:
2008年5月至2010年12月
课题经费来源及构成
本课题国拨专项经费控制额不超过600万元,要求承担单位自
筹或配套研究经费不少于300万元。
课题三、二氧化碳的封存技术
研究目标:
针对温室气体二氧化碳减排的迫切需求,对陆地或海底地质咸水层的CO2封存技术进行研究。
瞄准国外发展的最新动向,研发具有自主知识产权的先进实用的CO2封存技术。
通过关键技术突破,发展适合我国地质条件的低成本、实用性CO2封存技术。
研究内容:
(1)咸水层封存能力评价技术
研究CO2封存条件下温度、压力等物理参数、流体化学组成、骨架岩石的矿物组成(包括新生矿物),以及地球化学作用过程(包括溶解和缓冲、矿物沉淀过程)对于固碳(碳捕获)的影响机制,发展咸水层介质CO2封存能力的评价技术。
(2)咸水层CO2封存体的安全性评价技术
研究咸水层地下水循环属性对于封存安全性的影响。
研究不同沉积类型盖层的力学性质及其对封存体封闭性的影响。
通过岩石力学实验和模拟,研究CO2封存体的水文地质结构对高压突破的影响及盖层破坏机理与过程。
开发封存压力影响下毛细作用对CO2扩散影响
的模拟和评价技术。
研究咸水层渗透性及边界条件对CO2运移的影响。
(3)咸水层CO2封存效果的监测技术
研究超临界态CO2、水和烃等多相流体在低pH值的酸性环境中与介质作用机理,开发多相多场耦合模拟技术,研究封存效果与环境安全性评价指标,开发CO2封存环境安全性的示踪、监测与探测技术。
主要考核指标:
(1)开发一套可用于咸水层CO2地质封存物理模拟研究的实验装置和封存效果监测评价的分析测试流程。
(2)开发一套可用于咸水层CO2地质封存条件下超临界CO2、咸水与岩石相互作用及CO2在咸水层内运移模拟的数值模拟系统。
(3)开展咸水层CO2封存技术现场试验研究;试验需有注入与观测井,封存地质条件超过CO2的临界点即温度>31℃、压力>74bar,CO2注入量>100吨,在观测井中可检测到回归CO2。
(4)申请发明专利2~3项。
课题实施年限:
2008年5月至2010年12月
课题经费来源及构成。