广东省深圳市2015年中考数学试题及答案(word版)
深圳市2015年中考数学试题及答案

深圳市2015年初中毕业学业考试数 学 试 题一、选择题(32361''⨯= ) 1.15-的相反数是( ) A .15B .15-C .15±D .1152.数361 000 000用科学记数法表示,以下表示正确的是( ) A .90.36110⨯B .83.6110⨯C .73.6110⨯D .73.6110⨯3.下列运算错误的是( ) A .2a a a ⋅=B .32a a a -=C .325()a a =D .314a a a -=÷4.如图1是用五块大小相同的小正方体搭的积木,该几何体的主视图为( )图1 ABCD5.下列图形中,既是中心对称又是轴对称的图形是( )ABCD6.有一组数据:75,80,80,85,90,这组数据的众数,中位数分别是( ) A .75,80B .80,80C .80,85D .80,907.不等式21x x -…的解集在数轴上表示正确的是( )ABCD8.某商品的标价为200元,8折销售仍赚40元,则商品进价是( )元 A .80B .100C .120D .1409.二次函数2(0)bx y ax c a ++≠=的图象如图2所示,下列说法①0a >;②0b >;③0c <;④240b ac ->, 其中正确的个数是( ) A .②④ B .①③ C .③④ D .①②③10.如图3,AB 为O 的直径,已知20ACD ∠=︒,则BAD ∠=( ) A .40︒B .50︒C .60︒D .70︒11.已知△ABC 中,AC AB BC <<,用尺规在线段BC 上确定一点P ,使得PA PC BC +=,则符合要求作图痕迹是( )ABCD12.如图4,已知正方形ABCD 的边长为12,点E 在BC 边上,BE EC =,将△DCE 沿DE 对折至△DFE ,延长EF 交AB 于G ,连接DG ,BF ,则给出以下4 个结论:①△ADG ≌△FDG ;②2GB AG =;③△EBF ∽△DEG ;④725BEFS=, 其所有正确结论个数是( ) A .1 B .2 C .3 D .4ABC PC P ABCPAB PCBAA 图3G F E DCBA 图4二、填空题(4312''⨯=)13.分解因式:2233a b -=______________.14.从数字1,2,3这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是______.15.如图所示,下列图均是由完全相同的“太阳型”图标按一定规律拼搭而成:第1个图案需要2个图标,第2个图案需要4个图案,第3个图案需要7个图标,…,按此规律,第5个案需要的图标个数是_______.16.如图5,Rt △ABC 直角边BC 在x 轴负半轴上,斜边AC 上的中线BD 的反向延长线交y 轴正半轴于点E , 双曲线(0)kxy x =<的图象经过A 点,若△BEC 的面积为8,则k =_______.三、解答题(567889952''''''''++++++=) 17.计算:)111222sin 60-⎛⎫︒+-⎪⎝⎭+.18.解方程:542332x x x+=--.第1个 第2个 第3个第4个19.2015年深圳市“读书月”活动结束后,教育部门就某校初三学生在该活动期间阅读课外书籍的数量进行了统计,将收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:学生读书数量扇形统计图学生读书数量条形统计图(1)x =______,这次共抽取______名学生进行调查,补全条形图;(2)在学生读书数量扇形统计图中,3本以上所对扇形的圆心角是________度;(3)若全市在校初三年级学生有6.7万名,请你估计全市初三学生在本次“读书月”活动中读书数量在3本以上的学生约有__________万名.20.如图6,小丽准备测一根测旗杆AB 的高度,已知的小丽眼睛距离地面 1.5EC =米,第一次测量点C 点和第二次测量点D 之间的距离10CD =米,30AEG ∠=︒,60AFG ∠=︒,请你帮小丽算出这旗杆的高度.(点ABCDEFG 在同一平面内,结果保留根号.)3本 以上3本2本 1本及1本以下数量3本 45%3本以上 x1本及1本以上10%2本 25%DCB 图621.为了增强居民节约用水意识,深圳市在2011年开始对供水范围内的居民用水实行“阶梯收费”,具体收费收费标准如下表:某户居民四月份用水10立方米,缴纳水费23元. (1)求a 的值;(2)若该户居民五月份所缴水费为71元,求该户居民五月份的用水量.22.如图7,形如量角器的半圆O 的半径3OE =cm ,形如三角板的△ABC 中,90ABC ∠=︒,6AB BC ==cm ,△ABC 以2cm/s 的速度从左向右移动匀速运动(点B 运到E 点时,运动停止),在运动过程中,点A ,B 始终在直线DE 上,设运动时间为t (s),当0t =时,△ABC 在半圆O 的左侧,1BD =cm .(1)当点B 运动到点O 时,求运动时间t 的值; (2)如图8,当斜边AC 与半圆O 相切时,求AD 的长;(3)如图9,当点B 运动到点E时,连接OC 交圆O 于F , 直线DF 交CE 于G ,求证:2C F C C G E=⋅.G DEO C 图9E O DBA 图8E OD CB A图723.如图10-1, 已知抛物线2bx c y x +-+=经过点(3,0)A -,)(0,3C 两点,点D 点为抛物线的顶点,DE 为抛物线的对称轴,点E 在x 轴上. (1)求抛物线的解析式;(2)探究:在抛物线线的对称轴DE 上是否存在点P ,使得点P 到直线AD 和到x 轴距离相等?若存在,求出点P 的坐标,若不存在,说明理由;(3)如图10-2,探究:在对称轴DE 左侧的抛物线上是否存在点F ,使23FBCEBCSS=,若存在,求点F 坐标,若不存在,说明理由.图10-2图10-1简明参考答案1-5.ABCBD 6-10.BABAD 11-12.DD 13.3())a b a b +-; 14.13;15.21; 16.16; 17.3;18.1x =,分式方程需要验根;19.(1)20%;400;补图略,3本以上80人;(2)72; (3)1.34.20.()1.5米;21.(1)2.3;(2)28吨.22.(1)2;(2)()3cm ;(3)略,提示:连接FE ,证: △CGF ∽△CFE .23.(1)223x y x --+=;(2)()11,P -;(3)F ⎝⎭.。
2015年广东省深圳市中考数学试题及参考答案(word解析版)

2015年广东省深圳市中考数学试题及参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.﹣15的相反数是()A.15 B.﹣15 C.115D.1152.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×1063.下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a44.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.5.下列主视图正确的是()A.B.C.D.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,907.解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.49.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A .50°B .20°C .60°D .70°10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .10011.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )A .B .C .D .12.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽△BEF ;④S △BEF =725.在以上4个结论中,正确的有( )A .1B .2C .3D .4二、填空题(本大题共4小题,每小题3分,共12分)13.因式分解:3a 2﹣3b 2= .14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 .15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 个太阳.16.如图,已知点A 在反比例函数k y x=(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E .若△BCE 的面积为8,则k= .三、解答题(本大题共7小题,共52分)17.(5分)计算:101|22sin 602-⎛⎫-+︒+- ⎪⎝⎭.18.(6分)解方程:54 2332xx x+=--.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.(83(1)某用户用水10(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(9分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣15的相反数是()A.15 B.﹣15 C.115D.115【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答过程】解:﹣15的相反数是15,故选:A.【总结归纳】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将316000000用科学记数法表示为:3.16×108.故选B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项法则对各选项分析判断即可得解.【解答过程】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选C.【总结归纳】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.【知识考点】中心对称图形;轴对称图形.【思路分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答过程】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【总结归纳】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.下列主视图正确的是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从正面看得到的图形是主视图,可得答案.【解答过程】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.【总结归纳】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90。
2015年广东省深圳市中考数学试卷

2015年广东省深圳市中考数学试卷一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C.D.2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×1063.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a44.(3分)下列图形既是中心对称又是轴对称图形的是()A. B.C.D.5.(3分)下列主视图正确的是()A.B.C.D.6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,907.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.49.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.10011.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.12.(3分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE 折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A.1 B.2 C.3 D.4二、填空题:13.(3分)因式分解:3a2﹣3b2=.14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D 为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.三、解答题:17.计算:|2﹣|+2sin60°+﹣.18.解方程:.19.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.2015年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:1.(3分)(2015•深圳)﹣15的相反数是()A.15 B.﹣15 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣15的相反数是15,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2015•深圳)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将316000000用科学记数法表示为:3.16×108.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•深圳)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项法则对各选项分析判断即可得解.【解答】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选C.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(3分)(2015•深圳)下列图形既是中心对称又是轴对称图形的是()A. B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)(2015•深圳)下列主视图正确的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.(3分)(2015•深圳)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【分析】首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.【点评】(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(3分)(2015•深圳)解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.【分析】先移项、合并同类项,把x的系数化为1即可.【解答】解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.【点评】本题考查了解一元一次不等式、在数轴上表示不等式的解集.把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(3分)(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.4【分析】根据抛物线开口方向对①进行判断;根据抛物线的对称轴位置对②进行判断;根据抛物线与y轴的交点位置对③进行判断;根据抛物线与x轴的交点个数对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.9.(3分)(2015•深圳)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.(3分)(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.100【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.11.(3分)(2015•深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12.(3分)(2015•深圳)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:=.在以上4个结论①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF中,正确的有()A.1 B.2 C.3 D.4【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题:13.(3分)(2015•深圳)因式分解:3a2﹣3b2=3(a+b)(a﹣b).【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(a2﹣b2)=3(a+b)(a﹣b),故答案为:3(a+b)(a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2015•深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.【分析】利用树状图法列举出所有可能,看是否能被3整除.找出满足条件的数的个数除以总的个数即可.【解答】解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为=.故答案为:.【点评】本题考查了树状图法求概率以及概率公式,注意能被3整除即两位数加起来和为3的倍数.15.(3分)(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.【分析】由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.故答案为:21.【点评】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.16.(3分)(2015•深圳)如图,已知点A在反比例函数y=(x<0)上,作Rt △ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.【分析】根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA•BO的值,从而求出△AOB的面积.【解答】解:∵△BCE的面积为8,∴,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16.故答案为:16.【点评】本题考查了反比例函数系数k的几何意义,解决本题的关键是证明△EOB ∽△ABC,得到AB•OB•=BC•OE.三、解答题:17.(2015•深圳)计算:|2﹣|+2sin60°+﹣.【分析】原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=2﹣+2×+2﹣1=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2015•深圳)解方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,分解因式得:(x﹣1)(7x﹣13)=0,解得:x1=1,x2=,经检验x1=1与x2=都为分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(2015•深圳)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调查的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.【分析】(1)根据看1本书的人数为40人,所占的百分比为10%,40÷10即可求出总人数,用100%﹣10%﹣25%﹣45%即可得x的值,用总人数乘以x的值,即可得到3本以上的人数,即可补全统计图;(2)用x的值乘以360°,即可得到圆心角;(3)用6.7万乘以三本以上的百分比,即可解答.【解答】解:(1)40÷10%=400(人),x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),故答案为:20%,400;如图所示;(2)20%×360°=72°,故答案为:72°;(3)67000×20%=13400(人),故答案为:13400.【点评】此题主要考查了条形图与扇形图的综合应用,解决此类问题注意图形有机结合,综合分析获取正确信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(2015•深圳)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.【分析】关键三角形外角的性质求得∠DAF=30°,得出AF=DF=10,在Rt△FGA中,根据正弦函数求出AG的长,加上BG的长即为旗杆高度.【解答】解:如图,∵∠ADG=30°,∠AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10×=5,∴AB=1.5+5.答:旗杆AB的高度为(1.5+5)米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.21.(2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?【分析】(1)直接利用10a=23进而求出即可;(2)首先判断得出x>22,进而表示出总水费进而得出即可.【解答】解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.【点评】此题主要考查了一元一次方程的应用,根据图表中数据得出用户用水为x米3(x>22)时的水费是解题关键.22.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.【分析】(1)根据题意得出BO的长,再利用路程除以速度得出时间;(2)根据切线的性质和判定结合等腰直角三角形的性质得出AO的长,进而求出答案;(3)利用圆周角定理以及切线的性质定理得出∠CEF=∠ODF=∠OFD=∠CFG,进而求出△CFG∽△CEF,即可得出答案.【解答】(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.【点评】此题主要考查了切线的性质以及相似三角形的判定与性质、等腰直角三角形的性质等知识,根据题意得出△CFG∽△CEF是解题关键.23.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.【分析】(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在∠DAB 外角平分线上时,同理可求得P点坐标;(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ 的长,可设出F点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.【解答】解:(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),∴,解得,∴抛物线的解析式y=﹣x2﹣2x+3,(2)存在,当P在∠DAB的平分线上时,如图1,作PM⊥AD,设P(﹣1,m),则PM=PD•sin∠ADE=(4﹣m),PE=m,∵PM=PE,∴(4﹣m)=m,m=﹣1,∴P点坐标为(﹣1,﹣1);当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,设P(﹣1,n),则PN=PD•sin∠ADE=(4﹣n),PE=﹣n,∵PN=PE,∴(4﹣n)=﹣n,n=﹣﹣1,∴P点坐标为(﹣1,﹣﹣1);综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)∵抛物线的解析式y=﹣x2﹣2x+3,∴B(1,0),∴S△EBC=EB•OC=3,∵2S△FBC =3S△EBC,∴S△FBC=,过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,∵S△FBC =S△BQH﹣S△BFH﹣S△CFQ=HB•HQ﹣BH•HF﹣QF•FM=BH(HQ﹣HF)﹣QF•FM=BH•QF﹣QF•FM=QF•(BH﹣FM)=FQ•OB=FQ=,∴FQ=9,∵BC的解析式为y=﹣3x+3,设F(x0,﹣x02﹣2x0+3),∴﹣3x0+3+x02+2x0﹣3=9,解得:x0=或(舍去),∴点F的坐标是(,).【点评】本题主要考查二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积等知识点.在(1)中注意待定系数法的应用步骤,在(2)中注意分点P在∠DAB的角平分线上和在外角的平分线上两种情况,在(3)中求得FQ的长是解题的关键.本题所考查知识点较多,综合性很强,难度适中.参与本试卷答题和审题的老师有:gbl210;星期八;2300680618;放飞梦想;sdwdmahongye;gsls;1339885408;sks;73zzx;守拙;Ldt(排名不分先后)菁优网2017年2月5日。
2015年广东省深圳市中考数学试卷(含解析)

2015年广东省深圳市中考数学试卷一、选择题:D4.(3分)(2015•深圳)下列图形既是中心对称又是轴对称图形的是()D5.(3分)(2015•深圳)下列主视图正确的是()DD8.(3分)(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.>9.(3分)(2015•深圳)如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()11.(3分)(2015•深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()D12.(3分)(2015•深圳)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽BEF ;④S △BEF =.在以上4个结论中,正确的有( )GBE=וGBE==二、填空题:13.(3分)(2015•深圳)因式分解:3a2﹣3b2=3(a+b)(a﹣b).14.(3分)(2015•深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.两种.因此概率为=.故答案为:.15.(3分)(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.16.(3分)(2015•深圳)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.∴,∴三、解答题:17.(2015•深圳)计算:|2﹣|+2sin60°+﹣.﹣×18.(2015•深圳)解方程:.=都为分式方程的解.19.(2015•深圳)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调差的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.20.(2015•深圳)小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.×=5AB=1.5+51.5+5)米.(单位:元/m3).元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.t==2AO=cm3∴=,23.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.∴,解得ADE=∴(﹣﹣ADE=∴(,﹣,﹣OB=,或的坐标是(,。
2015年深圳中考数学试卷及试卷分析

2015年广东省深圳市中考数学试卷一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C.D.2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×1063.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a44.(3分)下列图形既是中心对称又是轴对称图形的是()A. B.C.D.5.(3分)下列主视图正确的是()A.B.C.D.6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,907.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.49.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.10011.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C. D.12.(3分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S =.在以上4个结论中,正确的有()△BEFA.1 B.2 C.3 D.4二、填空题:13.(3分)因式分解:3a2﹣3b2=.14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.三、解答题:17.(5分)计算:|2﹣|+2sin60°+﹣.18.(6分)解方程:.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.2015年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣15的相反数是15,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将316000000用科学记数法表示为:3.16×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项法则对各选项分析判断即可得解.【解答】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选:C.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.(3分)下列图形既是中心对称又是轴对称图形的是()A. B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)下列主视图正确的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【分析】首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.【点评】(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.【分析】先移项、合并同类项,把x的系数化为1即可.【解答】解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.【点评】本题考查了解一元一次不等式、在数轴上表示不等式的解集.把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.4【分析】根据抛物线开口方向对①进行判断;根据抛物线的对称轴位置对②进行判断;根据抛物线与y轴的交点位置对③进行判断;根据抛物线与x轴的交点个数对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.9.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.100【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.11.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C. D.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12.(3分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S=.在以上4个结论中,正确的有()△BEFA.1 B.2 C.3 D.4【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题:13.(3分)因式分解:3a2﹣3b2=3(a+b)(a﹣b).【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(a2﹣b2)=3(a+b)(a﹣b),故答案为:3(a+b)(a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.【分析】利用树状图法列举出所有可能,看是否能被3整除.找出满足条件的数的个数除以总的个数即可.【解答】解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为=.故答案为:.【点评】本题考查了树状图法求概率以及概率公式,注意能被3整除即两位数加起来和为3的倍数.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.【分析】由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.故答案为:21.【点评】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.【分析】根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA•BO的值,从而求出△AOB的面积.【解答】解:∵△BCE的面积为8,∴,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16.故答案为:16.【点评】本题考查了反比例函数系数k的几何意义,解决本题的关键是证明△EOB∽△ABC,得到AB•OB•=BC•OE.三、解答题:17.(5分)计算:|2﹣|+2sin60°+﹣.【分析】原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=2﹣+2×+2﹣1=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)解方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,分解因式得:(x﹣1)(7x﹣13)=0,解得:x1=1,x2=,经检验x1=1与x2=都为分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调查的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.【分析】(1)根据看1本书的人数为40人,所占的百分比为10%,40÷10即可求出总人数,用100%﹣10%﹣25%﹣45%即可得x的值,用总人数乘以x的值,即可得到3本以上的人数,即可补全统计图;(2)用x的值乘以360°,即可得到圆心角;(3)用6.7万乘以三本以上的百分比,即可解答.【解答】解:(1)40÷10%=400(人),x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),故答案为:20%,400;如图所示;(2)20%×360°=72°,故答案为:72°;(3)67000×20%=13400(人),故答案为:13400.【点评】此题主要考查了条形图与扇形图的综合应用,解决此类问题注意图形有机结合,综合分析获取正确信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.【分析】关键三角形外角的性质求得∠DAF=30°,得出AF=DF=10,在Rt△FGA中,根据正弦函数求出AG的长,加上BG的长即为旗杆高度.【解答】解:如图,∵∠ADG=30°,∠AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10×=5,∴AB=1.5+5.答:旗杆AB的高度为(1.5+5)米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?【分析】(1)直接利用10a=23进而求出即可;(2)首先判断得出x>22,进而表示出总水费进而得出即可.【解答】解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.【点评】此题主要考查了一元一次方程的应用,根据图表中数据得出用户用水为x米3(x>22)时的水费是解题关键.22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.【分析】(1)根据题意得出BO的长,再利用路程除以速度得出时间;(2)根据切线的性质和判定结合等腰直角三角形的性质得出AO的长,进而求出答案;(3)利用圆周角定理以及切线的性质定理得出∠CEF=∠ODF=∠OFD=∠CFG,进而求出△CFG∽△CEF,即可得出答案.【解答】(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.【点评】此题主要考查了切线的性质以及相似三角形的判定与性质、等腰直角三角形的性质等知识,根据题意得出△CFG∽△CEF是解题关键.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC =3S△EBC?若存在求出点F的坐标,若不存在请说明理由.【分析】(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;当点P在∠DAB外角平分线上时,同理可求得P点坐标;(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ的长,可设出F点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.【解答】解:(1)∵二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),∴,解得,∴抛物线的解析式y=﹣x2﹣2x+3,(2)存在,当P在∠DAB的平分线上时,如图1,作PM⊥AD,设P(﹣1,m),则PM=PD•sin∠ADE=(4﹣m),PE=m,∵PM=PE,∴(4﹣m)=m,m=﹣1,∴P点坐标为(﹣1,﹣1);当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,设P(﹣1,n),则PN=PD•sin∠ADE=(4﹣n),PE=﹣n,∵PN=PE,∴(4﹣n)=﹣n,n=﹣﹣1,∴P点坐标为(﹣1,﹣﹣1);综上可知存在满足条件的P点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)∵抛物线的解析式y=﹣x2﹣2x+3,∴B(1,0),∴S△EBC=EB•OC=3,∵2S△FBC =3S△EBC,∴S△FBC=,过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,∵S△FBC =S△BQH﹣S△BFH﹣S△CFQ=HB•HQ﹣BH•HF﹣QF•FM=BH(HQ﹣HF)﹣QF•FM=BH•QF﹣QF•FM=QF•(BH﹣FM)=FQ•OB=FQ=,∴FQ=9,∵BC的解析式为y=﹣3x+3,设F(x0,﹣x02﹣2x0+3),∴﹣3x0+3+x02+2x0﹣3=9,解得:x0=或(舍去),∴点F的坐标是(,),∵S△ABC=6>,∴点F不可能在A点下方,综上可知F点的坐标为(,).【点评】本题主要考查二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积等知识点.在(1)中注意待定系数法的应用步骤,在(2)中注意分点P在∠DAB的角平分线上和在外角的平分线上两种情况,在(3)中求得FQ的长是解题的关键.本题所考查知识点较多,综合性很强,难度适中.。
2015年广东省中考数学试题(Word版,含答案解析),推荐文档

2015年广东省初中毕业生学业考试数学一、选择题 1.21 1 A.2B. 2C.D.-22【答案】A.【解析】由绝对值的意义可得,答案为 A 。
2.据国家统计局网站 2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573000用科学记数法表示为A. 1.3573 106B.1.3573 107C. 1.3573 108D.1.3573 109【答案】B.【解析】科学记数法的表示形式为 aX10n 的形式,其中1W |齐10, n 为整数•确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.13 573 000=1.3573 107 ; 3.一组数据2, 6, 5, 2, 4,则这组数据的中位数是 A.2B.4C.5D.6【答案】B.【解析】由小到大排列,得:2, 2, 4, 5, 6,所以,中位数为 4,选B 。
4.如图,直线 a // b ,/仁75 °,/ 2=35°,则/ 3的度数是 A.75 ° B.55 ° C.40 °D.35 ° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻 的两个内角之和,所以,75°=/ 2+Z 3,所以,/ 3 = 40°,选 G 5.下列所述图形中,既是中心对称图形,又是轴对称图形的是 A.矩形 B.平行四边形 C.正五边形【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.( 4x)2【答案】D.【解析】原式=(-4)2x 2 = 16x 2 7.在0, 2, ( 3)0 , 5这四个数中,最大的数是D.正三角形A. 8x 22 2 2B.8xC. 16xD.16xA.0B.2C. ( 3)0D. 5【答案】B.【解析】(—3) 0= 1,所以,最大的数为2,选B。
2015年广东省深圳市中考真题数学

2015年广东省深圳市中考真题数学一、选择题:1.-15的相反数是( )A.15B.-15C.1 15D.-1 15解析:-15的相反数是15.答案:A2.用科学记数法表示316000000为( )A.3.16×107B.3.16×108C.31.6×107D.31.6×106解析:将316000000用科学记数法表示为:3.16×108. 答案:B3.下列说法错误的是( )A.a·a=a2B.2a+a=3aC.(a3)2=a5D.a3÷a-1=a4解析:A、a·a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a-1=a3-(-1)=a4,正确,故本选项错误.答案:C4.下列图形既是中心对称又是轴对称图形的是( ) A.B.C.D.解析:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.答案:D5.下列主视图正确的是( )A.B.C.D.解析:从正面看第一层是三个小正方形,第二层中间一个小正方形.答案:A6.在以下数据75,80,80,85,90中,众数、中位数分别是( )A.75,80B.80,80C.80,85D.80,90解析:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.答案:B7.解不等式2x ≥x-1,并把解集在数轴上表示( )A.B.C.D.解析:2x ≥x-1,2x-x ≥-1,x ≥-1.答案:B8.二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,下列说法正确的个数是() ①a >0;②b >0;③c <0;④b 2-4ac >0.A.1B.2C.3D.4解析:∵抛物线开口向下,∴a <0,所以①错误;∵抛物线的对称轴在y 轴右侧,∴2ba >0,∴b >0,所以②正确;∵抛物线与y 轴的交点在x 轴上方,∴c >0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以④正确.答案:B9.如图,AB 为⊙O 直径,已知∠DCB=20°,则∠DBA 为( )A.50°B.20°C.60°D.70°解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.答案:D10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A.140B.120C.160D.100解析:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.答案:B11.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )A.B.C.D.解析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.答案:D12.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽BEF;④S△BEF=725.在以上4个结论中,正确的有( )A.1B.2C.3D.4解析:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12-x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12-x)2,解得:x=4,∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=12×6×8=24,S△BEF=EFFG·S△GBE=610·24=725,④正确.答案:C.二、填空题:13.因式分解:3a2-3b2= .解析:原式=3(a2-b2)=3(a+b)(a-b),答案:3(a+b)(a-b)14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 .解析:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为26=13. 答案:1315.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 个太阳.解析:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n-1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.答案:2116.如图,已知点A 在反比例函数y=k x(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E.若△BCE 的面积为8,则k= .解析:∵△BCE 的面积为8,∴12BC ·OE=8,∴BC ·OE=16, ∵点D 为斜边AC 的中点,∴BD=DC ,∴∠DBC=∠DCB=∠EBO , 又∠EOB=∠ABC ,∴△EOB ∽△ABC ,∴B C A B O B O E ,∴AB ·OB ·=BC ·OE ,∴k=AB ·BO=BC ·OE=16. 答案:1617.计算:°+(12)-1)0. 解析:原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.答案:原式+2-1=3.18.解方程:54 2332xx x+=--.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.答案:去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得:3x2-2x+10x-15=24x2-52x+24,即7x2-20x+13=0,分解因式得:(x-1)(7x-13)=0,解得:x1=1,x2=137,经检验x1=1与x2=137都为分式方程的解.19.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调差的总人数为,补全统计图;(2)三本以上的圆心角为 .(3)全市有6.7万学生,三本以上有人.解析:(1)根据看1本书的人数为40人,所占的百分比为10%,40÷10即可求出总人数,用100%-10%-25%-45%即可得x的值,用总人数乘以x的值,即可得到3本以上的人数,即可补全统计图;(2)用x的值乘以360°,即可得到圆心角;(3)用6.7万乘以三本以上的百分比,即可解答.答案:(1)40÷10%=400(人),x=100%-10%-25%-45%=20%,400×20%=80(人),如图所示.(2)20%×360°=72°.(3)67000×20%=13400(人).20.小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.解析:关键三角形外角的性质求得∠DAF=30°,得出AF=DF=10,在Rt△FGA中,根据正弦函数求出AG的长,加上BG的长即为旗杆高度.答案:如图,∵∠ADG=30°,AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF·sin∠AFG=10答:旗杆AB的高度为米.21.下表为深圳市居民每月用水收费标准,(单位:元/m3).(1)某用户用水10立方米,公交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解析:(1)直接利用10a=23进而求出即可;(2)首先判断得出x>22,进而表示出总水费进而得出即可.答案:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3.(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x-22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.22.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG·CE.解析:(1)根据题意得出BO的长,再利用路程除以速度得出时间;(2)根据切线的性质和判定结合等腰直角三角形的性质得出AO的长,进而求出答案;(3)利用圆周角定理以及切线的性质定理得出∠CEF=∠ODF=∠OFD=∠CFG,进而求出△CFG∽△CEF,即可得出答案.答案:(1)由题意可得:BO=4cm,t=42=2(s);(2)如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴,∴(3)如图3,连接EF,∵OD=OF ,∴∠ODF=∠OFD ,∵DE 为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG ,又∵∠FCG=∠ECF ,∴△CFG ∽△CEF ,∴CF CE CG CF=,∴CF 2=CG ·CE23.如图1,关于x 的二次函数y=-x 2+bx+c 经过点A(-3,0),点C(0,3),点D 为二次函数的顶点,DE 为二次函数的对称轴,E 在x 轴上.(1)求抛物线的解析式;(2)DE 上是否存在点P 到AD 的距离与到x 轴的距离相等?若存在求出点P ,若不存在请说明理由;(3)如图2,DE 的左侧抛物线上是否存在点F ,使2S △FBC =3S △EBC ?若存在求出点F 的坐标,若不存在请说明理由.解析:(1)把A 、C 两点坐标代入可求得b 、c ,可求得抛物线解析式;(2)当点P 在∠DAB 的平分线上时,过P 作PM ⊥AD ,设出P 点坐标,可表示出PM 、PE ,由角平分线的性质可得到PM=PE ,可求得P 点坐标;当点P 在∠DAB 外角平分线上时,同理可求得P 点坐标;(3)可先求得△FBC 的面积,过F 作FQ ⊥x 轴,交BC 的延长线于Q ,可求得FQ 的长,可设出F 点坐标,表示出B 点坐标,从而可表示出FQ 的长,可求得F 点坐标.答案:(1)∵二次函数y=-x2+bx+c 经过点A(-3,0),点C(0,3),∴3930c b c =⎧⎨--+=⎩,,解得23b c =-⎧⎨=⎩,,∴抛物线的解析式y=-x 2-2x+3.(2)存在,当P 在∠DAB 的平分线上时,如图1,作PM ⊥AD ,设P(-1,m),则PM=PD·sin∠ADE=5(4-m),PE=m,∵PM=PE,∴5(4-m)=m,,∴P点坐标为(-1;当P在∠DAB的外角平分线上时,如图2,作PN⊥AD,设P(-1,n),则PN=PD·sin∠ADE=5(4-n),PE=-n,∵PM=PE,∴5(4-n)=-n,,∴P点坐标为(-1,;综上可知存在满足条件的P点,其坐标为(-1或(-1,;(3)∵S△EBC=3,2S△FBC=3S△EBC,∴S△FBC=92,过F作FQ⊥x轴,交BC的延长线于Q,如图3,∵S △FBC =12FQ ·OB=12FQ=92,∴FQ=9, ∵BC 的解析式为y=-3x+3,设F(x 0,-x 02-2x 0+3),∴-3x 0+3+x 02+2x 0-3=9,解得:x 0=12或2(舍去),∴点F 的坐标是(12,152-).。
广东深圳中考数学真题测试卷有答案

2015年广东省深圳市中考数学试卷(满分100分,考试时间90分钟)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-15的相反数是()A.15 B.-15 C.±15 D.1 152.数361000000用科学记数法表示,以下表示正确的是()A.0.361×109B.3.61×108C.3.61×107D.36.1×1073.下列运算错误的是()A.a•a=a2B.3a-a=2a C.(a2)3=a5D.a3÷a-1=a44.下图是用五块大小相同的小正方体搭的积木,该几何体的主视图是()5.下列图形中,既是中心对称图形又是轴对称图形的是()6.有一组数据:75,80,80,85,90,这组数据的众数和中位数分别为()A.75、80 B.80,80 C.80,85 D.80,907.不等式2x≥x-1的解集在数轴上表示正确的是()8.一件标价为200元的服装以8折销售,仍可获利40元,则该服装的成本价是()A.80元B.100元C.120元D.140元9.二次函数y=ax2+bx+c的图象如下图所示,给出以下结论:①a>0,②b>0,③c<0,④b2-4ac>0其中所有正确结论的序号是()A.②④B.①③C.③④D.①②③10.如图,AB为⊙O直径,已知∠DCD=20°,则∠DBA的度数是()A.40°B.50°C.60°D.70°11.如图所示,已知△ABC(AC<AB<BC),用尺规在线段BC上确定一点P,使得P A+PC =BC,则符合要求的作图痕迹是()12.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG,BF.给出以下结论:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=725.其中所有正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题3分,满分12分.)13. j因式分解:3a2-3b2=.14.从1,2,3这三个数中,任意抽取两个不同..数字组成一个两位数,则这个两位数能被3整除的概率是.15.如图所示,下列图案均是由完全相同的“太阳型”图表按一定的规律拼搭而成:第1个图案需要2个图标,第2个图案需要4个图标,第3个图案需要7个图标,…,按此规律,第5个图案需要图标的个数是 .16.如图,Rt △ABC 的直角边BC 在x 轴负半轴上,斜边AC 上的中线BD 的反向延长线交y轴正半轴于点E ,双曲线y =kx(x <0)的图象经过点A ,若S △BEC =8,则k 等于 .三、解答题(本大题共7小题,满分52分,解答应写出文字说明、证明过程或演算步骤) 17. |2-3|+2sin60°+(12)-1-(2015+1)0. 18.解方程:52332x x x+--=4 19.2015年深圳市“读书月”活动结束后,教育部门就某校初三学生在该活动期间阅读课外书籍的数量进行统计,将收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题.(1)x = ,这次共抽取 名学生进行调查,并补全条形图;(2)在学生读书数量扇形统计图中,3本以上所对扇形的圆心角是 度;(3)若全市在校初三年级学生有6.7万名,请你估计全市初三学生在本次“读书月”活动中读书数量在3本以上的学生约有 万名.20.如图,小丽准备测一根旗杆AB 的高度,已知小丽的眼睛离地面BC =1.5米,第一次测量点C 和第二次测量点D 之间的距离CD =10米,∠AEG =30°,∠AFG =60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)图1 图2 图3 图421.为增强居民节约用水意识,深圳市在2011年开始对供水范围内的居民用水实行“阶梯收费”,具体收费标准如下表:一户居民一个月用水量即为x立方米水费单价(单位:元/立方米)x≤22 a超出22立方米的部分a+1.1某户居民四月份用水10立方米时,缴纳水费23元.(1)求a的值;(2)若该户居民五月份所缴水费为71元,求该户居民五月份的用水量.22.如图1,形如量角器的半圆O的半径OE=3 cm,形如三角板的△ABC中,∠ABC=90°,AB=BC=6 cm,△ABC以2 cm/s的速度从左向右匀速运动(点B运动到E点时,运动停止),在运动过程中,点A,B始终在直线DE上,设运动时间为t(s),当t=0时,△ABC在半圆O的左侧,BD=1 cm.(1)当点B运动到O时,求运动时间t的值;(2)当斜边AC与半圆O相切时,求AD的长;(3)如图,当点B运动到E点时,连接CO,交半圆O于点F,连接DF并延长交CE于点G,求证:CF2=CG•CE.23.如图,已知抛物线y=-x2+bx+c的图象过点A(-3,0),C(0,3).(1)求抛物线的解析式;(2)探究:在抛物线的对称轴DE上是否存在点P,使得点P到直线AD和到x轴的距离相等?若存在,求出点P的坐标;若不存在,说明理由;(3)探究:在对称轴DE左侧的抛物线上是否存在点F,使得2S△FBC=3S△EBC?若存在,求出点F的坐标;若不存在,说明理由.参考答案一、选择题 1.A解析:把-15前加上“-”,再化简即可. -(-15)=15,故选A.点评:本题考查了实数的相反数,解题的关键是理解怎样的两个数互为相反数. 2.B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.表示较大的数时,n 的个数是原整数位少1位,7700000共7位,所以n =8.:把316 000 000的小数点各左移动8位,为3.16,于是316 000 000可记为:83.1610⨯,故选B . 点评:本题考查了大数的科学计数法,解题的关键是确定a 的值以及n 的值. 3.C解析:2a a a ⋅=,选项A 是对的,2a +a =3a ,选项B 是对的,326()a a =,选项C 是错的,313(1)4a a a a ---÷==,选项D 是正确的,故选C .点评:本题考查了幂的运算及整式加减,解题的关键是运用正确的公式进行计算. 4.B解析:主视图是从下面看过去,共有三列,左边和右各一层,中间两层,故选A . 点评:本题考查了几何体的三视图,解题的关键是分清三个视图的三个角度. 5.D解析:用中心对称图形和轴对称图形的特征一一对照确认. A B C D 轴对称 是 是 是 是 中心对称不是不是不是是点评:本题考查了中心对称图形和轴对称图形的识别,解题的关键是区分中心对称和轴对称图形的特征. 6.B解析:把数按由小到大的顺序排列,然后找出出现次数最多的数和中间一个数(或两个数的平均数).0出现两次,最多,于是众数为80,按由小到大排序后,第三位数是80,于是这一组数的中位数为80,故选B .点评:本题考查了数据的代表,解题的关键是找出那个数出现的次数最多以及把数据排序后确定中位数. 7.B解析: ∵21x x ≥-,∴1x ≥-,在数轴上表示点-1向右的数,包括-1,于是是实心点,故选B .点评:本题考查了不等式的解法及解集的数轴表示,解题的关键是用好不等式的三个性质. 8.C解析:运用关系式:标价×折数-成本=利润.假设成本价为x 元,则200×0.8-x =40,解得x =120.点评:本题考查了一元一次方程在销售中的应用,解题的关键是找出题目中的相等关系. 9. A解析:开口向下,∴a <0,①错误;对称轴在y 轴右侧,∴-2ba>0,∵b >0,②正确; 与y 轴交点在y 轴正半轴上,∴c >0,③错误;与x 轴有两个不同的交点,即方程ax 2+bx +c =0有两个不等实根,∴△=b 2-4ac >0,④ 正确.故选A. 点评:本题考查了二次函数图形与参数之间的关系,解题的关键是掌握数形结合在二次函数中的应用. 10.D解析: ∵AB 为直径,∴∠ACB =90°,又∠DCD =20°,∴∠DBA =∠ACD =70° 点评:解题的关键是与圆有关的解的计算;解题关键是弄清楚圆周角的相关性质. 11.D 解析:假设点P 在BC 上存在,由P A +PC =BC ,可得P A =PB ,于是点P 在AB 垂直平分线上,故选D . 点评:本题考查了尺规作图及线段垂直平分线的应用,解题的关键是掌握线段垂直平分线的性质和判定. 12.C解析: 由折叠可知,DF =DC =DA ,∠DFE =∠C =90°, ∴∠DFG =∠A =90°,∴△ADG ≌△FDG ,∴①正确; ∵正方形边长12,∴BE =EC =EF =6设AG =GF =x ,则EG =x +6,BG =12-x ,由勾股定理:EG 2=BE 2+BG 2,即:(x +6)2=62+(12-x )2, 解得:x =4,∴AG =GF =4,BG =8,BG =2AG ,∴②正确;BE =EF =6,△BEF 为等腰三角形,易知△GDE 不是等腰三角形,∴③错误; S △BEG =12×6×8=24,S △BEF =EF EG •S △BEG =610•24=275,∴④正确,故选C . 点评:本题考查了有关正方形的折叠,解题的关键是掌握折叠图形中的计算和证明的方法. 二、填空题(本大题共4小题,每小题3分,满分12分.) 13.3(a +b )(a -b ) 解析: 2322333()3()()a b a b a b a b -=-=+-故填3()()a b a b +-.点评:本题考查了多项式的因式分解,解题的关键是按因式分解的步骤进行分解.14.13解析:列表十位\个位1 2 3 1 \ 12 13 2 21 \ 23 33132\则一共有6种选择,其中只有12和21符合要求,所以概率为2163=点评:本题考查了简单概率的计算,解题的关键是找出所有的等可能事件以及满足条件的事件分别是多少 15.21解析:第一行的规律是1,2,3,4,…,第二行的规律是1,2,4,8,…,所以第五个数应是5+16=21,故选21.点评:本题考查了图形规律的探究,解题的关键是找出图形排列的规律. 16.16解析:由三角形的中线分成的两个三角形的面积相等,把已知的图形的面积转化成△OAB的面积,由反比例函数的几何意义直接得出k.连接EA ,AO ∵D 为AC 中点,∴S △ECD =S △EAD ,S △BCD =S △BAD , ∴S △ECB =S △EAB =8 又AB ∥y 轴,∴S △ABO =S △BAE =8, ∴k =16 点评:本题考查了与反比例函数有关三角形面积的计算,解题的关键是运用反比例函数的几何意义及三角形中线的性质来解决问题.三、解答题(本大题共7小题,满分52分,解答应写出文字说明、证明过程或演算步骤) 17.解析:先分别求出:2323-=-;32sin 60232︒=⨯=;11()22-=;0(2015)1=,然后再用加减.解:原式=2-3+3+2-1=3点评:本题考查了实数的运算,解题的关键是把各个部分的实数值先准确的算出来.18.解析:解分式方程,先把分式的两边同时乘以最简公分母,化成整式方程后,解整式方程,得到整式方程的根,代入原分式方程的最简公分母检验,如果不为零,则整式方程的根就是分式方程的根,否则是增根. 解:去分母得:x -5=4(2x -3)去括号:x -5=8x -12 移项得:-7x =-7 ∴x =1经检验,原分式方程的解为x =1点评:本题考查了分式方程的解法,解题的关键是把分式方程转化为整式方程.19.解析:(1)由所有的百分率之和为1,可求出扇形图中的x ;(2)从扇形图中可以看了看两本书的占25%,从条形中看出看两本的人有100人,由此可算出参加调查的总人数, 用看三本以上的百分率与圆周角相乘可得圆心角的度数.(3)用样本的百分率去估算总体对应的百分率.(1)解: 20%,400,补全条形图见解析;x =1-10%-25%-45%=20%,总人数为40÷10%=400(人) (2)72°; 360°×20%=72°(3)6.7×20%=1.34(万人)点评:本题考查了有关统计图的计算,解题的关键是从扇形统计图和条形图中读出有用的信息,并能进行相关的计算.20.解析:通过解的关系先得出EF=AF,再解直角三角形AFG.解:由题意,∠AEG=30°,∠AFG=60°,EF=10∴∠EAF=∠AFG-∠AEG=30°∴∠F AE=∠FEA∴EF=AF=10 m,∴AG=AF sin∠AFG=10×32=53m∴AB=AG+GB=(1.5+53)m∴旗杆的高度为(1.5+53)m点评:本题考查了解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形.21.解析:(1)用水10立方米,小于22,用23除以10即可得a;(2)估算一下用水22立方米时的费用,把71元跟它比较后可立方程来解决问题.解:(1)由题意,10a=23,解得a=2.3答:a的值为2.3(2)设用户用水量为x立方米,∵用水22立方米时,水费为22×2.3=50.6<71,∴用水量x>22∴22×2.3+(x-22)×(2.3+1.1)=71,解得x=28答:该用户用水为28立方米点评:本题考查了一次函数的分段计算,解题的关键是按自变量的取值范围选取合适的解析式进行计算.22.解析:(1)路程是4,速度是2,就可求出时间;(2)如图2,设切线与⊙O 切于中H ,连接OH ,由45°的直角三角形求出OA 的长,再算出AD 的长;(3)由于CF ,CG ,CE 分布在两个三角形中,连接EF ,证△CF G ∽△CEF 即可.解:(1)BO =4 cm ,t =42=2s (2)连接O 与切点H ,则OH ⊥AC 又∠A =45°,∴AO =2OH =32cm , AD =AO -DO =(32-3)cm (3)连接EF∵OD =OF ,∴∠ODF =∠OFD ∵DE 为直径,∴∠ODF +∠DEF =90°∠DEC =∠DEF +∠CEF =90°∴∠CEF =∠ODF =∠OFD =∠CFG 又∠FCG =∠ECF , ∴△CFG ∽△CEFCF CECG CF=CF 2=CE •CG点评:本题以三角板和圆为背景,考查了图形平移中的计算和证明,解题的关键是弄清楚图形的整个运动过程,以及在运动过程中特殊的位置关系中特殊的关系.23.解析:(1)把点(-3,0),(0,3)代入2y x bx c =-++可得关于b ,c 的二元一次方程组,解之可得解析式:(2)根据角平分线的判定定理,满足条件的点应该是∠DAB 或是∠DAB 的角平分线,所以本小题应该分以上两种情形来分别求解.(3)过点F 作x 轴的垂线,垂足为H ,交BC 的延长线于点Q , 则FBC FQB FQC S S S ∆∆∆=-=111()222FQ BH FQ OH FQ BH OH ⨯-⨯=-=12FQ OB ⨯ 然后通过函数值之差求出点F 的坐标.解:(1)将A (-3,0),C (0,3)代入y =-x 2+bx +c解3930c b c ⎧⎨⎩=--+= ∴23b c ⎧⎨⎩=-= y =-x 2-2x +3(2)方法一:存在,当P 在∠DAB 的角平分线上时,如答图1,作PM ⊥AD ,设P (-1,y 0), 则PM =PD sin ∠ADE =55(4-y 0),PE =y 0 ∵PM =PE ,∴55(4-y 0)=y 0,解得y 0=5-1,P (-1,5-1) 当P 在∠DAB 的外角平分线上时,如答图2,作PN ⊥AD ,设P (-1,y 0),则PN =PD sin ∠ADE =55(4-y 0),PE =-y 0 ∵PM =PE , ∴55(4-y 0)=-y 0,解得y 0=-5-1,P (-1,-5-1) 综上所述,P 点坐标为P (-1,5-1)或P (-1,-5-1) 方法二:存在,设P (-1,y 0) AD 解析式:y =2x +6 则:|y 0|=265y -+-(利用点到直线的距离公式)解得:y 0=5-1或y 0=-5-1∴P 1(-1,-5-1),P 2(-1,5-1) (3)方法一:S △BCE =3,又S △FBC =3S △EBC∴S △FBC =92如答图3,过F 作FQ ⊥x 轴交BC 延长线于Q , 则S △FBC =12FQ •OB =12FQ =92BC :y =-3x +3设F (x 0,-x 02-2x 0+3),则Q (x 0,-3x 0+3) ∴-3x 0+3+x 02+2x 0-3=9 ∴x 02-x 0-9=0 ∴x 0=1372-,(x 0=1372+舍去) ∴F (1372-,337152-)方法二:S △BCE =3,又2S △FBC =3S △EBC∴S △FBC =92如答图4,过F 点作FG ∥BC ,交x 轴于G 点则GB =2GBC SOC=3,可得G (-2,0)∵k GF =k BC =-3∴GF:y=-3x+6∴22336y x xy x⎧⎨⎩=--+=-+解得x1=1372-,x2=1372+(舍去)∴F(1372-,337152-)点评:本题以二次函数为背景,考查了角平分线的性质,考查了三角形面积的关系,解题的关键是用含有参数的点的坐标,借助于解直角三角形和角平分线的性质来解决问题,用含有参数的点的坐标,借助于三角形的面积公式的变形来解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市2015年中考数学真题
一、选择题:
1、15-的相反数是( ) A 、15 B 、15- C 、
151 D 、15
1- 2、用科学计数法表示316000000为( )
A 、7
1016.3⨯ B 、8
1016.3⨯ C 、7
106.31⨯ D 、6
106.31⨯ 3、下列说法错误的是( )
A 、2a a a =∙
B 、a a a 32=+
C 、523)(a a =
D 、4
13a a a =÷-
4、下列图形既是中心对称又是轴对称图形的是( )
5、下列主视图正确的是( )
6、在一下数据90,85,80,80,75中,众数、中位数分别是( )
A 、8075,
B 、80,80
C 、85,80
D 、90,80
7、解不等式12-≥x x ,并把解集在数轴上表示( )
8、二次函数)0(2≠++=a c bx ax y 的图像如下图所示,下列说法 正确的个数是( )
○
10>a ;○20>b ;○30<c ;○4042>-ac b 。
A 、1
B 、2
C 、3
D 、4
9、如图,AB 为⊙O 直径,已知为∠DCB=20o ,则∠DBA 为( ) A 、o
50 B 、o
20 C 、o
60 D 、o
70
10、某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元。
A 、140 B 、120 C 、160 D 、100
11、如图,已知⊿ABC ,AB<BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正
确的是( )
12、如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折
叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论 :○
1⊿ADG ≌⊿FDG ;○2GB=2AG ;○3⊿GDE ∽BEF ;○4S ⊿BEF =5
72。
在以上4个结论中,正确的有( )
A 、1
B 、2
C 、3
D 、4 二、填空题:
13、因式分解:=-2233b a 。
14、在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 。
15、观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 个太阳。
16、如图,已知点A 在反比例函数)0(<=
x x
k
y 上,作RT ⊿ABC ,点D 为斜边 AC 的中点,连DB 并延长交y 轴于点E ,若⊿BCE 的面积为8,则k= 。
三、解答题:
17、计算:01
)2015()
2
1(60sin 2|32|-++--o。
18、解方程:
42
35
32=-+-x x x 。
19、11月读书节,深圳市为统计某学校初三学生读书状况,如下图:
(1)三本以上的x 值为 ,参加调差的总人数为 ,补全统计图; (2)三本以上的圆心角为 。
(3)全市有6.7万学生,三本以上有 万人。
20、小丽为了测旗杆AB 的高度,小丽眼睛距地图1.5米,小丽站在C 点,测出旗杆A 的仰角为30o ,小
丽向前走了10米到达点E ,此时的仰角为60o ,求旗杆的高度。
213
(1(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?
22、如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,
,3,6cm OD cm BC AB ===开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动。
(1)当B 与O 重合的时候,求三角板运动的时间; (2)如图2,当AC 与半圆相切时,求AD ;
(3)如图3,当AB 和DE 重合时,求证:CE CG CF ∙=2。
23、如图1,关于x 的二次函数c bx x y ++-=2经过点)0,3(-A ,点)3,0(C ,点D 为二次函数的顶点,
DE 为二次函数的对称轴,E 在x 轴上。
(1)求抛物线的解析式;
(2)DE 上是否存在点P 到AD 的距离与到x 轴的距离相等,若存在求出点P ,若不存在请说明理由; (3)如图2,DE 的左侧抛物线上是否存在点F ,使2S ⊿FBC =3 S ⊿EBC ,若存在求出点F 的坐标,若不存在请
说明理由。
一、选择题:
1、A
2、B .
3、C
4、D
5、A
6、B.
7、B
8、B
9、D 10、B. 11、D 12、C. 二、填空题:
13、3()()a b a b +- 14、1
3
15、21 16、16 三、解答题:
17、计算:01
)2015()2
1(60sin 2|32|-++--o。
原式=221-=1 18、解方程:
42
35
32=-+-x x x 。
去分母,得:x (3x -2)+5(2x -3)=4(2x -3)(3x -2), 化简,得:7x 2-20x +13=0,解得:x 1=1,2137
x =
19、(1)1-10%-25%-45%=20%,总人数为:40÷10%=400 (2)20%⨯360°=72° (3)20%⨯6.7=1.34
20、 21
22、
23
、。