七年级数学第二学期试卷及答案

合集下载

人教版数学七年级第二学期期末考试试卷及答案二

人教版数学七年级第二学期期末考试试卷及答案二

人教版数学七年级第二学期期末考试试卷及答案一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×1083.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.54.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是20005.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a46.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.010.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣611.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=1012.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.2513.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x215.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.816.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=.18.计算:199×201=.19.已知10x=2,10y=5,则10x+y=.20.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为.三.解答题(共8小题)21.(1);(2);22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为人;(2)被调查的学生人数为人,A组人数为人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=2﹣1 ⑦×=2﹣1(2)写出你猜想的第n个等式(用含n的式子表示);(3)请你验证猜想的正确性.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①图②;(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为.参考答案与试题解析一.选择题(共16小题)1.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用普查的方式B.为保证“神舟9号”的成功发射,对其零部件进行检查采用抽样调查方式C.对乘坐某班次客车的乘客进行安检,采用抽查的方式D.调查本班同学的视力,采用普查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A.要了解一批节能灯的使用寿命适合抽样调查,原调查方式不合适;B.为保证“神舟9号”的成功发射,对其零部件进行检查采用全面调查,原调查方式不合适;C.对乘坐某班次客车的乘客进行安检,采用普查的方式,原调查方式不合适;D.调查本班同学的视力,采用普查的方式,原调查方式合适;故选:D.2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2019年全国共享单车投放数量达23 000 000辆.将23 000 000用科学记数法表示为()A.23×106B.2.3×107C.2.3×106D.0.23×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:23 000 000=2.3×107.故选:B.3.已知是方程mx﹣y=2的解,则m的值是()A.﹣1B.﹣C.1D.5【分析】直接利用二元一次方程的解法得出答案.【解答】解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.4.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法正确的是()A.这4万名考生的全体是总体B.每个考生是个体C.2000名考生是总体的一个样本D.样本容量是2000【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A.这4万名考生的数学成绩是总体,此选项错误;B.每个考生的数学成绩是个体,此选项错误;C.2000名考生的数学成绩是总体的一个样本,此选项错误;D.样本容量是2000,此选项正确;故选:D.5.下列运算错误的是()A.x2•x3=x5B.(x3)2=x6C.a+2a=3a D.a8÷a2=a4【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【解答】解:A、x2•x3=x5,原题计算正确,不合题意;B、(x3)2=x6,原题计算正确,不合题意;C、a+2a=3a,原题计算正确,不合题意;D、a8÷a2=a6,原题计算错误,符合题意.故选:D.6.利用如图中图形面积关系可以解释的公式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.2(a+b)=2a+2b【分析】由大正方形面积=两个小正方形面积+2个长方形面积,可得(a+b)2=a2+2ab+b2【解答】解:∵大正方形面积=两个小正方形面积+2个长方形面积∴(a+b)2=a2+2ab+b2故选:A.7.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~7071~8081~9091~100人数(人)1192218A.35%B.30%C.20%D.10%【分析】首先根据表格,计算其总人数;再根据频率=频数÷总数进行计算.【解答】解:优胜者的频率是18÷(1+19+22+18)=0.3=30%,故选:B.8.二元一次方程x+2y=11的正整数解的个数是()A.3个B.4个C.5个D.6个【分析】将x看做已知数求出y,找出正整数解即可.【解答】解:∵x+2y=11,∴y=,则:当x=1时,y=5;当x=3时,y=4;当x=5时,y=3;当x=7时,y=2;当x=9时,y=1;故选:C.9.在﹣12,(x﹣3.14)0,2﹣1,0这四个数中,最小的数是()A.﹣12B.(x﹣3.14)0C.2﹣1D.0【分析】直接利用负整数指数幂的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:∵﹣12=﹣1,(x﹣3.14)0=1,2﹣1=,0,∴最小的数是:﹣12.故选:A.10.下列运算中正确的是()A.(x+2)(x﹣2)=x2﹣2B.(﹣x﹣y)2=x2+2xy+y2C.(a+b)2=a2+b2D.(a﹣2)(a+3)=a2﹣6【分析】直接利用乘法公式结合整式的混合运算法则分别计算得出答案.【解答】解:A、(x+2)(x﹣2)=x2﹣4,故原题计算错误;B、(﹣x﹣y)2=x2+2xy+y2,故原题计算正确;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(a﹣2)(a+3)=a2+a﹣6,故原题计算错误;故选:B.11.若(x+5)(2x﹣3)=2x2+mx﹣15,则()A.m=7B.m=﹣3C.m=﹣7D.m=10【分析】先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加即可得出答案.【解答】解:∵(x+5)(2x﹣3)=2x2﹣3x+10x﹣15=2x2+7x﹣15,又∵(x+5)(2x﹣3)=2x2+mx﹣15,∴m=7;故选:A.12.已知x+y=5,xy=6,则x2+y2的值是()A.1B.13C.17D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.13.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A.B.C.D.【分析】此题中的等量关系有:①该班一男生请假后,男生人数恰为女生人数的一半;②男生人数+女生人数=49.【解答】解:根据该班一男生请假后,男生人数恰为女生人数的一半,得x﹣1=y,即y=2(x﹣1);根据某班共有学生49人,得x+y=49.列方程组为.故选:D.14.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x2【分析】表示出阴影部分的长与宽,计算即可得到面积.【解答】解:根据题意得:(a﹣x)(b﹣x)=ab﹣ax﹣bx+x2,故选:A.15.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2B.4C.6D.8【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x﹣y)中即可求出结论.【解答】解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.16.现有如图所示的卡片若干张,其中A类、B类为正方形卡片,C类为长方形卡片,若用此三类卡片拼成一个长为a+2b,宽为a+b的大长方形,则需要C类卡片张数为()A.1B.2C.3D.4【分析】表示出长方形的面积,利用多项式乘以多项式法则计算,即可确定出需要C类卡片的张数.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3.故选:C.二.填空题(共4小题)17.把方程2x﹣y=1化为用含x的代数式表示y的形式:y=2x﹣1.【分析】把x看做已知数求出y即可.【解答】解:方程2x﹣y=1,移项得:﹣y=1﹣2x,解得:y=2x﹣1.故答案为:2x﹣1.18.计算:199×201=39999.【分析】先变形为原式=(200﹣1)×(200+1),然后利用平方差公式计算.【解答】解:原式=(200﹣1)×(200+1)=2002﹣12=40000﹣1=39999.故答案为39999.19.已知10x=2,10y=5,则10x+y=10.【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1020.如图,在长为5,宽为4的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为5.【分析】设小矩形的长为x,宽为y,根据矩形的对边相等已经大矩形的长为5,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(5×4﹣5xy)中即可求出结论.【解答】解:设小矩形的长为x,宽为y,依题意,得:,解得:,∴5×4﹣5xy=5×4﹣5×3×1=5.故答案为:5.三.解答题(共8小题)21.(1);(2);【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:2(2y﹣3)+3y=8,解得:y=2,把y=2代入①得:x=1,则方程组的解为;(2),①×2+②得:5x=15,解得:x=3,把x=3代入①得:y=﹣4,则方程组的解为.22.(1)a5•a3÷a2;(2)(﹣2m)3﹣(m3)2;(3)(﹣2a2b)•(abc);【分析】(1)根据同底数幂的乘法和同底数幂的除法求出即可;(2)先算乘方,再合并即可;(3)根据单项式乘以单项式法则求出即可.【解答】解:(1)a5•a3÷a2=a5+3﹣2=a6;(2)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(3)(﹣2a2b)•(abc)=﹣a3b2c.23.(1)5x(2x+1)﹣(x+3)(5x﹣1);(2)(π﹣2020)0+()﹣2﹣2101×()100;【分析】(1)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质、积的乘方运算法则分别计算得出答案.【解答】解:(1)5x(2x+1)﹣(x+3)(5x﹣1)=10x2+5x﹣(5x2+14x﹣3)=10x2+5x﹣5x2﹣14x+3=5x2﹣9x+3;(2)(π﹣2020)0+()﹣2﹣2101×()100=1+9﹣(2×)100×2=1+9﹣2=8.24.(a+2)2+3(a+1)(a﹣1),其中a=﹣1小明的解法如下:解:=a2+2a+4+3a2﹣3=……根据小明的解法解答下列问题:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;(2)请你借鉴小明的解题方法,写出此题的正确解答过程,并求出当x=﹣1时的值.【分析】(1)根据完全平方公式可知:(a+2)2=a2+2a+1,可作判断;(2)先根据整式的混合运算顺序和法则化简原式,再代入求值可得.【解答】解:(1)小明的解答过程里在标出①②③的几处中出现错误的在第②步;故答案为:②;(2)(a+2)2+3(a+1)(a﹣1)=a2+2a+1+3(a2﹣1)=a2+2a+1+3a2﹣3=4a2+2a﹣2,当x=﹣1时,原式=4×1+2×(﹣1)﹣2=4﹣2﹣2=0.25.疫情期间,我校“停课不停学”,开展云视讯网上教学,为了解七年级学生课堂发言情况,随机抽取年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:发言次数nA0≤n<3B3≤n<6C6≤n<9D9≤n<12E12≤n<15F15≤n<18(1)E组人数为4人;(2)被调查的学生人数为50人,A组人数为3人,并补全频数分布直方图;(3)求出扇形统计图中,“B”所对应的圆心角的度数:(4)七年级共有学生1500人,请估计全年级在这天里发言次数不少于12次的人数.【分析】(1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出E组的人数;(2)用(1)求出的样本容量乘以A组人数所占的百分比,求出A组的人数,用总人数乘以C组人数所占的百分比得出C组的人数,从而补全统计图;(3)用360°乘以“B”所占的百分比即可;(4)用总人数乘以发言次数不少于12次的人数所占的百分比即可.【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,∴B组所占的百分比是20%,∵B组的人数是10,∴样本容量为:10÷20%=50,∴E组人数为:50×8%=4(人);故答案为:4;(2)被调查的学生人数为50,A组人数为:50×6%=3(人),C组的人数是50×30%=15(人),补全频数分布直方图如下:故答案为:50,3;(3)“B”所对应的圆心角的度数是:360°×20%=72°;(4)F 组所占的百分比是×100%=10%,则全年级在这天里发言次数不少于12次的人数有:1500×(10%+8%)=270(人).26.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?【分析】(1)设需要购买的消毒液x瓶,酒精y瓶,根据从北国超市购买消毒液和酒精共40瓶需花费900元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用,用900减去该值即可得出结论.【解答】解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.27.观察下列关于自然数的等式:1×3=22﹣1,①2×4=32﹣1,②3×5=42﹣1,③4×6=52﹣1,④5×7=62﹣1,⑤根据上述规律解决下列问题:(1)用上面的形式填出第⑥式和第⑦式:⑥6×8=72﹣1 ⑦7×9=82﹣1(2)写出你猜想的第n个等式(用含n的式子表示)n(n+2)=(n+1)2+1;(3)请你验证猜想的正确性.【分析】(1)由规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,进行解答;(2)把规律:两个相差2的两个整数的积等于两个数的平均数的平方与1的差,用n的等式表示出来;(3)运用整数的混合运算顺序和运算法则对等式左右两边进行计算便可.【解答】解:(1)由题中前面6个算式可知,两个相差2的两个整数的积等于两个数的平均数的平方与1的差,所以,⑥6×8=72﹣1,⑦7×9=82﹣1,故答案为:7;7;9;8;(2)由规律可知:n(n+2)=(n+1)2﹣1,故答案为:n(n+2)=(n+1)2﹣1;(3)∵左边=n(n+2)=n2+2n,右边=n2+2n+1﹣1=n2+2n,∴左边=右边,∴n(n+2)=(n+1)2﹣1.28.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图①a2﹣b2图②(a+b)(a﹣b);(2)比较两图的阴影部分面积,可以得到乘法公式:(a+b)(a﹣b)=a2﹣b2(用字母a、b表示);【应用】请应用这个公式完成下列各题:①已知2m﹣n=3,2m+n=4,则4m2﹣n2的值为12;②计算:(x﹣3)(x+3)(x2+9);【拓展】计算(2+1)(22+1)(24+1)(28+1)…(232+1)的结果为264﹣1.【分析】(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2,而图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,可表示出面积为(a+b)(a﹣b).(2)由由图①与图②的面积相等,可以得到乘法公式;①利用公式将4m2﹣n2写成(2m﹣n)(2m+n)进而求出答案,②连续两次利用平方差公式进行计算即可,将原式转化为(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),再连续使用平方差公式,得出最后的结果.【解答】解:(1)图①阴影部分的面积为两个正方形的面积差,即a2﹣b2;图②的阴影部分为长为(a+b),宽为(a﹣b)的矩形,其面积为(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图①与图②的面积相等,可以得到乘法公式,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b)=a2﹣b2;①4m2﹣n2=(2m﹣n)(2m+n)=3×4=12,故答案为:12;②(x﹣3)(x+3)(x2+9)=(x2﹣9)(x2+9)=x4﹣81;(2+1)(22+1)(24+1)(28+1)…(232+1),=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1),=(22﹣1)(22+1)(24+1)(28+1)…(232+1),=(24﹣1)(24+1)(28+1)…(232+1),=(28﹣1)(28+1)…(232+1),=264﹣1.。

新人教版七年级数学(下册)期末试卷及答案(新版)

新人教版七年级数学(下册)期末试卷及答案(新版)

新人教版七年级数学(下册)期末试卷及答案(新版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( )A .﹣4B .4C .﹣2D .22.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145° 3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+= B .x y 50{x y 180=++= C .x y 50{x y 90=++= D .x y 50{x y 90=-+= 5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( ) A .54573x x -=- B .54573x x +=+ C .45357x x ++= D .45357x x --= 8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=,C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________. 2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为________. 4.若()2320m n -++=,则m+2n 的值是________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程(1)35(2)2x x --= (2)212134x x +--=2.已知方程组137x y ax y a -=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、C6、C7、B8、D9、A 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、105°3、0.4、-15、两6、5三、解答题(本大题共6小题,共72分)1、(1)4x =;(2)25x = 2、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1. 3、50°.4、∠BOE 的度数为60°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。

2. 已知一个数的平方等于36,则这个数是______或______。

3. 下列各数中,是无理数的是______、______、______。

4. 一个等边三角形的周长为15,则它的边长是______,面积是______。

5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。

三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。

辽宁省大连市瓦房店市2023-2024学年七年级下学期期中考试数学试卷(含答案)

辽宁省大连市瓦房店市2023-2024学年七年级下学期期中考试数学试卷(含答案)

2023-2024学年度第二学期七年级数学2024.5注意事项:1.所有认题必须在答题卡上作答,在本试卷上作答无效。

2.本试卷共23道题,满分120分,考试时间共120分钟。

第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分,在给出的四个选项中,只有一项是符合题目要求的)1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各数中属于无理数的是()A.3.14B.C.D.3.的值为()A.9B.C.3D.4.下列说法正确的是()A.若,则B.若,则C.若,则D.若,则5.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡免同笼,上有三十五头,下有九十四足,问鸡兔各几何?”设有x只鸡、y只免,则可列方程组正确的是()A. B. C. D.6.下列方程是二元一次方程的是()A. B. C. D.7.如图,,,则等于()A. B. C. D.8.如图,数轴上A、B两点表示的数分别为和,,则点C所表示的数为()A. B. C. D.9.若,则的值为()A. B.1.01 C.101 D.10.如图是一块矩形的场地,,,从A、B两处入口中的路宽都为,两小路汇合处路宽为,其余部分种植草坪,则草坪的面积为()A. B. C. D.第二部分非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.已知方程,用含x的式子表示y的形式为____________.12.如图,已知,小亮把三角板的直角顶点放在直线b上.若,则的度数为________.13.若是关于x,y的二元一次方程的解,则m的值为______.14.将某不等式组的解集表示在数轴上如图所示,则此不等式组的解集为__________.15.平面直角坐标系中,点A、B坐标分别是,,点P是y轴上一点,三角形的面积为6,则点P坐标为__________.三、解答题(本题共8小题,共75分、解答应写出文字说明、演算步骤或推理过程)16.(8分)(1)计算:(2)解方程:17.(10分)解方程组:(1)(2)18.(8分)如图,点E在上,平分,.(1)若,求证:;(2)若,,且,求的度数.19.(8分)已知点是直角坐标系内一点.(1)若点A在y轴上,求出点A的坐标:(2)经过点,的直线,与x轴平行,求出点A的坐标;(3)点A到两坐标轴的距离相等,直接写出点A的坐标.20.(8分)如图是一种躺椅及其简化结构示意图,扶手与底座都平行于地面,前支架与后支架分别与交于点G和点D,与交于点N,.(1)求证:;(2)若平分,,求扶手与靠背的夹角的度数.21.(8分)根据下表素材,探索完成任务.背景为了迎接2024年五一劳动节,某班级开展知识竞赛活动,去咖啡店购买A、B两种款式的咖啡作为奖品素材1若买10杯A款咖啡,15杯B款咖啡需230元;若买12杯A型咖啡,8杯B型咖啡需176元.素材2小华购买A、B两种款式的咖啡共60杯(两种都要),总费用为524元问题解决任务1问A款咖啡和B款咖啡的销售单价各是多少元?任务2求小华A、B型的咖啡各买了多少杯?22.(12分)如图1,在平面直角坐标系中,已知,,其中a,b满足.图1备用图(1)填空:______,________;(2)若在第三象限内有一点,用含m的式子表示的面积;(3)在(2)条件下,线段与y轴相交于,当时,点P是y轴上的动点,当满足的面积是的面积的2倍时,求点P的坐标。

七年级数学下册期末测试题及答案共五套

七年级数学下册期末测试题及答案共五套

七下期期末姓名: 学号 班级一、选择题:本大题共10个小题,每小题3分,共30分1.若m >-1,则下列各式中错误的...是 A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是A.±4B.=-4 3.已知a >b >0,那么下列不等式组中无解..的是 A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为A 先右转50°,后右转40°B 先右转50°,后左转40°C 先右转50°,后左转130°D 先右转50°,后左转50°5.解为12xy=⎧⎨=⎩的方程组是A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是A.1000 B.1100 C.1150 D.1200PCBA小刚小军小华1 2 37.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用•0,0表示,小军的位置用2,1表示,那么你的位置可以表示成A.5,4B.4,5C.3,4D.4,3二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3x+1的解集是________. 13.如果点Pa,2在第二象限,那么点Q-3,a 在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便即距离最近,请你在铁路旁选一点来建火车站位置已选好,说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.将所有答案的序号都填上 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.C BAD19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗请说明理由;22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.23.如图, 已知A-4,-1,B-5,-4,C-1,-3,△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点Px 1,y 1平移后的对应点为P′x 1+6,y 1+4;1请在图中作出△A′B′C′;2写出点A′、B′、C′的坐标.24.某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B 两种货厢的节数,有哪几种运输方案请设计出来.答案:一、选择题:共30分BCCDD,CBBCD二、填空题:共24分11.±7,7,-2 12. x≤613.三 14.垂线段最短;15. 40 16. 40017. ①②③ 18. x=±5,y=3三、解答题:共46分19. 解:第一个不等式可化为x-3x+6≥4,其解集为x≤1.第二个不等式可化为22x-1<5x+1,有 4x-2<5x+5,其解集为x>-7.∴原不等式组的解集为-7<x≤1.把解集表示在数轴上为:20. 解:原方程可化为896 27170 x yx y-=⎧⎨++=⎩∴8960 828680 x yx y--=⎧⎨++=⎩两方程相减,可得 37y+74=0,∴ y=-2.从而32x=-.因此,原方程组的解为322 xy⎧=-⎪⎨⎪=-⎩21. ∠B=∠C; 理由:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C22. 解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.所以∠CED=•∠AEF=55°,所以∠ACD=180°-∠CED-∠D=180°-55°-42=83°.23. A′2,3,B′1,0,C′5,1.24. 解:设甲、乙两班分别有x、y人.根据题意得810920 55515 x yx y+=⎧⎨+=⎩解得5548 xy=⎧⎨=⎩故甲班有55人,乙班有48人.25. 解:设用A型货厢x节,则用B型货厢50-x节,由题意,得解得28≤x≤30.因为x为整数,所以x只能取28,29,30.相应地5O-x的值为22,21,20.所以共有三种调运方案.第一种调运方案:用 A型货厢 28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,用B型货厢20节.人人教版七年级第二学期综合测试题二班别姓名成绩一、填空题:每题3分,共15分的算术平方根是2.如果1<x<2,化简│x-1│+│x-2│=________.3.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.4.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是________.二、选择题:每题3分,共15分6.点Pa,b在第四象限,则点P到x轴的距离是FDCBH EG A C.│a │ D.│b │ 7.已知a<b,则下列式子正确的是+5>b+5 B.3a>3b; C.-5a>-5b D.3a >3b8.如图,不能作为判断AB ∥CD 的条件是A.∠FEB=∠ECDB.∠AEC=∠ECD;C.∠BEC+∠ECD=180°D.∠AEG=∠DCH9.以下说法正确的是A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个角都是对顶角C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在同一直线上,这两个角互为对顶角 10.下列各式中,正确的是A.±34 B.34; C.±38±34三、解答题: 每题6分,共18分11.解下列方程组: 12.解不等式组,并在数轴表示:2525,4315.x y x y +=⎧⎨+=⎩ 236,145 2.x x x x -<-⎧⎨-≤-⎩13.若A2x-5,6-2x 在第四象限,求a 的取值范围. 四,作图题:6分① 作BC 边上的高② 作AC 边上的中线;五.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克8分六,已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|6分FDC B EA 八,填空、如图1,已知∠1 =∠2,∠B =∠C,可推得AB ∥CD;理由如下:10分∵∠1 =∠2已知,且∠1 =∠4 ∴∠2 =∠4等量代换∴CE ∥BF ∴∠ =∠3 又∵∠B =∠C 已知 ∴∠3 =∠B 等量代换 ∴AB∥CDFEDCBA2143图1 图2九.如图2,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.8分十、14分某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务;该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料万千克,乙种原料万千克,造价万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价万元;1利用现有原料,该厂能否按要求完成任务若能,按A、B两种花砖的生产块数,有哪几种生产方案请你设计出来以万块为单位且取整数;2试分析你设计的哪种生产方案总造价最低最低造价是多少人都版七年级数学下学期末模拟试题三1.若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为A、()3,3B、()3,3-C、()3,3-- D、()3,3-2.△ABC中,∠A=13∠B=14∠C,则△ABC是 A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3.商店出售下列形状的地砖:①正方形;②长方形;③正五边形;正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有. A1种 B2种 C3种 D4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是 A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x 6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是=1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=354D3E21C BA7. 一个四边形,截一刀后得到的新多边形的内角和将A 、增加180oB 、减少180oC 、不变D 、以上三种情况都有可能8. 如右图,下列能判定AB ∥CD 的条件有 个.1 ︒=∠+∠180BCD B ;221∠=∠;3 43∠=∠;4 5∠=∠B . .2 C9. 下列调查:1为了检测一批电视机的使用寿命;2为了调查全国平均几人拥有一部手机;3为了解本班学生的平均上网时间;4 为了解中央电视台春节联欢晚会的收视率;其中适合用抽样调查的个数有 A 、1个 B 、2个 C 、3个 D 、4个10. 某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 A .a >b B .a <b C .a =b D .与ab 大小无关11. 如果不等式⎩⎨⎧-b y x <>2无解,则b 的取值范围是A .b >-2B . b <-2C .b ≥-2D .b ≤-212. 某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果见上图.根据此条形图估计这一天该校学生平均课外阅读时为 A 时 B 时 C 时 D 时13. 两边分别长4cm 和10cm 的等腰三角形的周长是________cm 14. 内角和与外角和之比是1∶5的多边形是______边形15. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直;请把你认为是真命题的命题的序号填在横线上___________________16. 不等式-3≤5-2x <3 的正整数解是_________________.17. 如图.小亮解方程组 ⎩⎨⎧=-=+1222y x y x ●的解为 ⎩⎨⎧==★y x 5,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★= 18. 数学解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8…,观察以上规律并猜想第六个数是_______.19. 解方程组和解不等式组并把解集表示在数轴上8分 132522(32)28x y x x y x +=+⎧⎨+=+⎩ .2()4321213x x xx -<-⎧⎪⎨++>⎪⎩ 20. 如图,EF 1∠2∠明:∠DGA+∠BAC=180°.请将说明过程填写完成.5分解:∵EF 2∠_____________________________.又∵1∠=2∠,______∴1∠=3∠,________________________. ∴AB_____________________________21. 如图,在3×3的方格内,填写了一些代数式和数6分1在图中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值.2把满足1的其它6个数填入图2中的方格内.A2x y 4y32-332-3图(1)图(2)22.如图,AD为△ABC的中线,BE为△ABD的中线;81∠ABE=15°,∠BAD=40°,求∠BED的度数;2在△BED中作BD边上的高;3若△ABC的面积为40,BD=5,则点E到BC边的距离为多少23.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况收入取整数,单位:元,并绘制了如下的频数分布表和频数分布直方图.8分分组频数百分比600≤x<80025%800≤x<1000615%1000≤x<120045%9%1补全频数分布表.2补全频数分布直方图.3绘制相应的频数分布折线图.4请你估计该居民小区家庭属于中等收入大于1000不足1600元的大约有多少户24.四川5·12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间这批灾民有多少人7分25.学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:8分娃”和微章前,了解到如下信息:1求一盒“福娃”和一枚徽章各多少元2若本次活动设一等奖2名,则二等奖和三等奖应各设多少名26..情系灾区. 5月12日我国四川汶川县发生里氏级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.10分1学校如何安排甲、乙两种货车可一次性把这些物资运到灾区有几种方案2若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少最少运费是多少。

北师大版七年级数学第二学期期末试卷及答案二

北师大版七年级数学第二学期期末试卷及答案二

北师大版七年级数学第二学期期末试卷及答案一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形是轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a63.(3分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.4.(3分)已知:a﹣b=2,ab=﹣1,则a2+b2=()A.0B.2C.4D.65.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.6.(3分)下列语句正确的有()个(1)线段是轴对称图形,对称轴是这条线段的垂直平分线;(2)确定事件的概率是1;(3)同位角相等;(4)过一点有且只有一条直线与已知直线平行.A.0B.1C.2D.37.(3分)如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为()A.B.C.D.8.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对9.(3分)端午节期间,某商场搞优惠促销活动,其活动内容是:“凡在本商场一次性购买粽子超过100元者,超过100元的部分按8折优惠”.在此活动中,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品件数x(件)之间的关系式是()A.y=48x B.y=48x+20C.y=48x﹣80D.y=48x+4010.(3分)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4二、填空题(本大题共8小题,每小题题3分,共24分)11.(3分)若一个角的余角是其补角的,则这个角的度数为.12.(3分)光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为米.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为.14.(3分)把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率.15.(3分)某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成个,这些细菌再继续分裂t分后共分裂成个.16.(3分)(2+1)(22+1)(24+1)…(232+1)的个位数字是.17.(3分)已知:如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,图形中相等的角有对,互余的角有对.18.(3分)已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交边AB于点D,交边AC于点E,BF垂直平分CE,交AC于点F,则∠A=度.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)计算:(1)a4+(a2)4﹣(a3)2÷a2;(2)20192﹣2020×2018(用简便方法计算).20.(6分)已知:如图,在△ABC中,BD⊥AC于D,点E在边BC上,EF⊥AC于F,点M、G在边AB上,∠AMD=∠AGF,BD与GF交于点H,∠BHG=∠FEC=54°.(1)求∠GFC的度数.(2)判断DM与BC的位置关系,并说明理由.21.(6分)先化简,再求值:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b),其中a4=9﹣2,2b=42.四、解答题(本大题共2小题,22题6分,23题8分共14分)22.(6分)已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.23.(8分)已知:如图,点B、E、C、F四点在一条直线上,且AB∥DE,AB=DE,BE=CF.(1)试说明:△ABC≌△DEF;(2)判断线段AC与DF的关系,并说明理由.五、解答题(本大题共2小题,24题6分,25题8分,共14分)24.(6分)某城市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示,根据图形回答:(1)当每户每月的用水量不足5吨时,每吨水费多少元?当每户每月的用水量超过5吨时,超过的部分每吨交水费多少元?(2)若某户居民某月交了水费19.5元,则该户居民用了多少吨水?25.(8分)已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=CF.(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,∠BMN=∠ACB,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选:B.3.(3分)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.【分析】让黄球的个数除以球的总个数即为所求的概率.【解答】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.故选:C.4.(3分)已知:a﹣b=2,ab=﹣1,则a2+b2=()A.0B.2C.4D.6【分析】原式利用完全平方公式变形,把已知等式代入计算即可求出值.【解答】解:∵a﹣b=2,ab=﹣1,∴原式=(a﹣b)2+2ab=4﹣2=2.故选:B.5.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向左对折,向上对折,从直角三角形的一直角边的正中间剪去一个正方形,展开后实际是从正方形的一条对角线上剪去两个小长方形,得到结论.故选B.6.(3分)下列语句正确的有()个(1)线段是轴对称图形,对称轴是这条线段的垂直平分线;(2)确定事件的概率是1;(3)同位角相等;(4)过一点有且只有一条直线与已知直线平行.A.0B.1C.2D.3【分析】根据平行公理及推论、概率公式以及概率的意义分别对每一项进行分析,即可得出答案.【解答】解:(1)线段是轴对称图形,对称轴是这条线段的垂直平分线和这条线段所在直线,故本选项错误;(2)确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0,故本选项错误;(3)两直线平行,同位角相等,故本选项错误;(4)经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;故选:A.7.(3分)如图,向一个半径为R、容积为V的球形容器内注水,则能反映容积内水的体积y与容器内水深x之间的关系的图象可能为()A.B.C.D.【分析】水深h越大,水的体积v就越大,故容器内水的体积y与容器内水深x间的函数是增函数,根据球的特征进行判断分析即可.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R 时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选:A.8.(3分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OC,然后判断出△AOE和△COE全等,再根据等腰三角形三线合一的性质可得AD⊥BC,从而得到△ABC关于直线AD轴对称,再根据全等三角形的定义写出全等三角形即可得解.【解答】解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.9.(3分)端午节期间,某商场搞优惠促销活动,其活动内容是:“凡在本商场一次性购买粽子超过100元者,超过100元的部分按8折优惠”.在此活动中,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,则应付款y(元)与商品件数x(件)之间的关系式是()A.y=48x B.y=48x+20C.y=48x﹣80D.y=48x+40【分析】根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.【解答】解:∵凡在该商店一次性购物超过100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,∴李明应付货款y(元)与办公用品件数x(件)的函数关系式是:y=(60x﹣100)×0.8+100=48x+20(x>2),故选:B.10.(3分)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4【分析】根据SAS证明△AEF≌△ABC,由全等三角形的性质和外角性质可依次判断即可求解.【解答】解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EF A,∴∠EAB=∠F AC,∠AFC=∠C,∴∠EF A=∠AFC,即F A平分∠EFC.又∵∠AFB=∠C+∠F AC=∠AFE+∠BFE,∴∠BFE=∠F AC.故①②③④正确.故选:D.二、填空题(本大题共8小题,每小题题3分,共24分)11.(3分)若一个角的余角是其补角的,则这个角的度数为45°.【分析】设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,再根据题意列出方程,求出x的值即可.【解答】解:设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=(180°﹣x),解得x=45°.故答案为:45°.12.(3分)光在真空中的速度约为3×108米/秒,太阳光照射到地球上大约需要5×102秒,地球与太阳距离约为 1.5×1011米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3×108×5×102=1.5×1011.故答案为:1.5×1011.13.(3分)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的底角为75°或15°.【分析】首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.【解答】解:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°,∴∠ABC=∠C=75°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠ABC=∠C=∠BAD=15°.故这个等腰三角形的底角是:75°或15°.故答案为:75°或15°.14.(3分)把一根长度为6的铁丝截成3段,若三段的长度均为正整数,则能构成三角形的概率.【分析】先求出将长度为6的铁丝截成3段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.【解答】解:因为将长度为6的铁丝截成3段,每段长度均为整数厘米,共有3种情况,分别是1,1,4;1,2,3;2,2,2;其中能构成三角形的是:2,2,2一种情况,所以能构成三角形的概率是.故答案为:.15.(3分)某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成64个,这些细菌再继续分裂t分后共分裂成22t+6个.【分析】把3分、t分转化为含30秒的次数,根据乘方的意义得结论.【解答】解:因为3分=6个30秒,所以1个细菌经过3分钟分裂成26个,即64个.t分=2t个30秒,再继续分裂t分钟,即一个细菌分裂了(2t+6)次,此时共分裂22t+6个.故答案为:64,22t+6.16.(3分)(2+1)(22+1)(24+1)…(232+1)的个位数字是5.【分析】先根据平方差公式进行计算,求出264的末位数字是6,再求出答案即可.【解答】解:(2+1)(22+1)(24+1)…(232+1)=(2﹣1)(2+1)(22+1)(24+1)…(232+1)=(22﹣1)(22+1)(24+1)…(232+1)=(24﹣1)(24+1)…(232+1)=…=264﹣1,∵21=2,22=4,23=8,24=16,25=32,26=64,…∴264的末位数字是6,∴264﹣1的末位数字是5,故答案为:5.17.(3分)已知:如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,图形中相等的角有5对,互余的角有3对.【分析】可以在Rt△ABC和Rt△BDC、Rt△ADC分别找出与相等和互余的角.【解答】解:图形中相等的角有∠A=∠BCD,∠B=∠ACD,∠A=∠BCD,∠ACB=∠BDC,∠ACB=∠CDA,∠BDC=∠CDA,一共5对,互余的角有∠A和∠B,∠A和∠ACD,∠B和∠BCD,一共3对.故答案为:5;3.18.(3分)已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交边AB于点D,交边AC于点E,BF垂直平分CE,交AC于点F,则∠A=36度.【分析】连结BE,根据线段垂直平分线的性质,三角形外角的性质,等腰三角形的性质可得5∠A=180°,即可得出答案.【解答】解:连结BE,∵DE垂直平分AB,∴∠ABE=∠A,∵BF垂直平分AC,∴∠BEF=∠C,∵∠BEC=∠ABE+∠A,∴∠C=2∠A,∵AB=AC,∴∠C=∠ABC=2∠A,∴5∠A=180°,解得∠A=36°.故答案为:36.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)计算:(1)a4+(a2)4﹣(a3)2÷a2;(2)20192﹣2020×2018(用简便方法计算).【分析】(1)先算乘方,再算除法,最后合并同类项即可;(2)先变形,再根据平方差公式进行计算,最后求出即可.【解答】解:(1)原式=a4+a8﹣a6÷a2=a4+a8﹣a4=a8;(2)原式=20192﹣(2019+1)×(2019﹣1)=20192﹣20192+1=1.20.(6分)已知:如图,在△ABC中,BD⊥AC于D,点E在边BC上,EF⊥AC于F,点M、G在边AB上,∠AMD=∠AGF,BD与GF交于点H,∠BHG=∠FEC=54°.(1)求∠GFC的度数.(2)判断DM与BC的位置关系,并说明理由.【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的判定解答即可.【解答】解:(1)∵BD⊥AC于D,EF⊥AC于F,∴∠BDF=∠EFC=90°,∴BD∥EF,∴∠HBE=∠FEC,∵∠BHG=∠FEC=54°,∴∠BHG=∠HBE=54°,∴GF∥BC,∴∠GFE=∠FEC=54°,∴∠GFC=∠HFE+∠EFC=54°+90°=144°;(2)DM∥BC,理由如下:∵∠AMD=∠AGF,∴DM∥GF,∵GF∥BC,∴DM∥BC.21.(6分)先化简,再求值:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b),其中a4=9﹣2,2b=42.【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,求出a、b的值,最后再代入求出即可.【解答】解:(a﹣2b)2﹣(a﹣b)(2a+b)+(a+b)(a﹣b)=a2﹣4ab+4b2﹣2a2﹣ab+2ab+b2+a2﹣b2=4b2﹣3ab,∵a4=9﹣2,2b=42,∴a4=(3﹣1)4,2b=24,∴a=±,b=4,当a=,b=4时,原式=4×42﹣3××4=60;当a=﹣,b=4时,原式=64+4=68.四、解答题(本大题共2小题,22题6分,23题8分共14分)22.(6分)已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.【分析】(1)利用网格特点,分别画出A、B、C关于直线的对称点A1、B1、C1即可;(2)由于P A=P A1,则|PB﹣P A|=|PB﹣P A1|,而|PB﹣P A1|≤A1B,当点P、A1、B共线时取等号,从而得到|PB ﹣P A|的最大值.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,点P为所作,|PB﹣P A|的最大值为3.23.(8分)已知:如图,点B、E、C、F四点在一条直线上,且AB∥DE,AB=DE,BE=CF.(1)试说明:△ABC≌△DEF;(2)判断线段AC与DF的关系,并说明理由.【分析】(1)直接利用全等三角形的判定方法得出答案;(2)由全等三角形的性质可得出结论.【解答】(1)证明:∵AB∥DE,∴∠B=∠DEF∵BE=FC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).(2)AC=DF,AC∥DF.理由如下:∵△ABC≌△DEF,∴AC=DF,∠ACB=∠DFE,∴AC∥DF.五、解答题(本大题共2小题,24题6分,25题8分,共14分)24.(6分)某城市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(吨)之间关系的图象如图所示,根据图形回答:(1)当每户每月的用水量不足5吨时,每吨水费多少元?当每户每月的用水量超过5吨时,超过的部分每吨交水费多少元?(2)若某户居民某月交了水费19.5元,则该户居民用了多少吨水?【分析】(1)根据图象给出的数据即可求出答案.(2)设该户居民用了x吨水,根据题意列出方程即可求出答案.【解答】解:(1)当用水量不足5吨时,每吨水费为:=元/吨,当用水量超过5吨时,每吨水费为:=元/吨.(2)设该户居民用了x吨水,由题意可知:5×+(x﹣5)=19.5,解得:x=7,答:该户居民用了7吨水.25.(8分)已知:如图,BD、CE是△ABC的高,BD、CE交于点F,BD=CD,CE平分∠ACB.(1)如图1,试说明BE=CF.(2)如图2,若点M在边BC上(不与点B重合),MN⊥AB于点N,交BD于点G,∠BMN=∠ACB,请直接写出BN与MG的数量关系,并画出能够说明该结论成立的辅助线,不必书写过程.【分析】(1)由“SAS”可证△ABD≌△FCD,可得AB=CF,由“ASA”可证△ACE≌△BCE,可得AE=BE,可得结论;(2)如图,过点M作MH∥AC,交AB于H,交BD于P,由“SAS”可证BPH≌△MPG,可得GM=BH,由“ASA”可证△BMN≌△HMN,可得BN=NH,可得结论.【解答】解:(1)∵BD⊥AC,CE⊥AB,∴∠ADB=∠BDC=∠AEC=90°,∴∠A+∠ABD=90°,∠A+∠ACE=90°,∴∠ABD=∠ACE,在△ABD和△FCD中,,∴△ABD≌△FCD(SAS),∴AB=CF,∵CE平分∠ACB,∴∠ACE=∠BCE,在△ACE和△BCE中,,∴△ACE≌△BCE(ASA),∴AE=BE,∴BE=AB=CF;(2)BN=MG,理由如下:如图,过点M作MH∥AC,交AB于H,交BD于P,∵BD=CD,BD⊥CD,∴∠DBC=∠DCB=45°,∵MH∥AC,∴∠PMB=∠DCB=∠PBM=45°,∠BPM=∠BDC=90°,∴BP=PM,∵∠BHP+∠HBP=90°,∠BHP+∠HMN=90°,∴∠HBP=∠HMN,在△BHP和△MGP中,,∴△BPH≌△MPG(ASA),∴GM=BH,∵∠BMN=∠ACB=22.5°,∴∠BMN=∠HMN=22.5°,在△BMN和△HMN中,,∴△BMN≌△HMN(ASA)∴BN=NH,∴BN=BH=MG.。

河南省安阳市殷都区2023-2024学年七年级下学期期末数学试题(含答案)

河南省安阳市殷都区2023-2024学年七年级下学期期末数学试题(含答案)

2023-2024学年第二学期期末教学质量检测七年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,三个大题,满分120分,考试时间100分钟.2.请直接将答案写在答题卡上,写在试题卷上的答案无效.3.答题时,必须使用2B 铅笔按要求规范填涂,用0.5毫米的黑色墨水签字笔书写.一、选择题(每小题3分,共30分)1.甲骨文是我国的一种古代文字,是汉字的最早形式,下列甲骨文中,能用其中一部分平移得到的是()A. B. C. D.2.下列调查中,最适合采用抽样调查的是( )A.调查某中学七年级一班学生的视力情况B.中央电视台《2024年第九季诗词大会》的收视率C.选出某校短跑最快的学生参加全市比赛D.对乘坐高铁的乘客进行安检3.下列各点中,在第二象限的点是( )A. B. C. D.4.下列无理数中,介于4和5之间的数是( )5.如图是木匠师傅利用直尺和三角尺过已知直线外一点作直线的平行线的方法,其直接理由是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.平面内垂直于同一条直线的两条直线互相平行6.已知,下列式子不一定成立的是( )A. B. C. D.7.下列命题中,属于假命题的是( )A.带根号的数都是无理数B.对顶角相等C.同角的补角相等D.两直线平行,内错角相等8.已知x ,y 满足方程组,则的值是( )()4,2-()4,2--()4,2()4,2-a b >11a b ->-22a b-<-3131a b +>+ma mb>2728x y x y +=⎧⎨+=⎩x y +A.3B.5C.7D.99.中国清代算书《御制数理精蕴》中有这样一题:“马六匹、牛五头,共价四十四两;马二匹、牛三头共价二十四两,问马,牛各价几何?”译文:“有6匹马,5头牛,总价值44两;有2匹马,3头牛,总价值24两.求每匹马价值多少两,每头牛价值多少两?”设每匹马价值x 两,每头牛价值y 两,根据题意可列方程组为().A. B. C. D.10.如图,科技兴趣小组爱好编程的同学编了一个“步步高升”程序,已知点A 在平面直角坐标系中按规律跳动,开始时,已知,,,,,……以此类推,则的坐标为( )A. B. C. D.二、填空题(每小题3分,共15分)11.9的平方根是_______.12.若点在y 轴上,则_______.13.在对某班50名同学的身高进行统计时,发现最高的为,最矮的为.若以为组距分组,则应分为_______组.14.如图,点E 在的延长线上,在不添加任何辅助线和字母的情况下,添加一个条件_______,使(填一个即可).15.定义一种法则“”如下:,例如:,.若,则m 的取值范围是_______.三、解答题(本大题共8个小题,满分75分)16.(10分)计算:56443224x y x y +=⎧⎨+=⎩62445324x y x y +=⎧⎨+=⎩65442324x y x y +=⎧⎨+=⎩65242344x y x y +=⎧⎨+=⎩123O A A A →→→→ ()11,2A ()22,1A ()33,3A ()44,2A ()55,4A ()66,3A 100A ()100,50()100,51()101,50()100,52()3,4M a a +-a =177cm 153cm 5cm AB AB DC ∥⊗()()a ab a b b a b >⎧⎪⊗=⎨≤⎪⎩525⊗=233⊗=()351111m -+⊗=(1(217.(8分)解方程组18.(9分)解不等式组,请按下列步骤完成解答:(1)解不等式①,得________;(2)解不等式②,得________;(3)将不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为________.19.(9分)某中学计划组织七年级学生前往4个安阳市景点中的1个开展研学活动,这4个景点为:A.林州红旗渠;B.殷墟博物馆;C.汤阴岳飞庙;D.中国文字博物馆.该中学数学兴趣小组针对七年级学生的意向目的地开展抽样调查(注:每位被抽样调查的学生选择且只选择1个意向前往的景点),并将调查结果绘制成如下两幅不完整的统计图:请结合图中所给信息,解答下列问题:(1)本次被抽样调查的学生共有_______名,并补全条形统计图;(2)在扇形统计图中,“C.汤阴岳飞庙”对应的圆心角度数为______;(3)该校七年级共有学生500名,请你估计七年级意向前往“D.中国文字博物馆”的学生人数.20.(9分)如图,点O 在直线上,,与互余.(1)求证:;(2)平分交于点F ,若,补全图形,并求的度数.21.(9分)如图,在平面直角坐标系中,三角形的顶点都在正方形网格的格点上,其中点A 的坐标为,现将三角形平移,使得点A 变换为点,点,分别是点B ,C 的对应点.-)12332x y x y -=⎧⎨+=⎩①②11321x x x x -⎧<+⎪⎨⎪+≥⎩①②AB OC OD ⊥D ∠1∠DE AB ∥OF BOD ∠DE 58OFD ∠=︒1∠ABC ()1,3-ABC A 'B 'C '(1)请画出平移后的三角形(不写画法);(2)点的坐标为______,点的坐标为______;(3)若三角形内部有一点P ,其平移后的对应点为,则点P 的坐标为______.22.(10分)北京时间2024年5月3月17时27分,嫦蛾六号探测器由长征五号遥八运载火箭在中国文昌航天发射场发射,之后准确进入地月转移轨道,发射任务取得圆满成功.某超市为了满足广大航天爱好者的需求,计划购进A 、B 两种型号运载火箭模型进行销售,据了解,2件A 种型号运载火箭模型和4件B 种型号运载飞船模型的进价共计140元;3件A 种型号运载火箭模型和2件B 种型号运载火箭模型的进价共计130元.(1)求A 、B 两种型号运载火箭模型每件的进价分别为多少元?(2)若该超市计划用不超过800元的资金购进这两种型号运载火箭模型共30件,求A 种型号运载火箭模型最多能购买多少件?23.(11分)综合与实践问题情境:数学课上,老师让同学们以“三角板与平行线”为主题开展数学活动.如图1,已知,直角三角板中,,将其顶点A 放在直线上,并使边于点D ,与相交于点H .(1)试判断边与直线的位置关系并说明理由;操作探究:(2)如图2,将图1中三角板的直角顶点B 放在平行线之间,两直角边,分别与,相交于点E ,F ,得到和,试探究与的数量关系并说明理由;下面是小明不完整的解答过程,请你补充完整.解:,理由:过点B 作直线,如图4所示.因为(已知)A B C '''B 'C 'ABC ()3,1P '-12l l ∥ABC 90B ∠=︒2l 1AB l ⊥AC 1l BC 1l ABC AB CB 1l 2l 1∠2∠1∠2∠1290∠+∠=︒1BN l ∥12l l ∥所以(______________)所以,________(______________)因为________,所以深入探究:(3)受小明启发,同学们继续探究下列问题.在图2中作线段和,使它们分别平分和的顶角,如图3,请直接写出的度数.2BN l ∥1ABN ∠=∠2∠=NBC ABC +∠=∠90ABC ∠=︒1290∠+∠=︒EO FO 1∠2∠EOF ∠2023——2024学年第二学期七年级数学参考答案及评分标准评分说明:解答题中,对于一题多解的题目,视学生解法过程的合理性恰当评分。

北师大版七年级第二学期期末数学试卷及答案七

北师大版七年级第二学期期末数学试卷及答案七

北师大版七年级第二学期期末数学试卷及答案一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上.1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)计算a4÷(﹣a2)的结果是()A.a2B.a C.﹣a2D.﹣a63.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣84.(3分)如图把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为()A.25°B.35°C.45°D.55°5.(3分)汽车开始行驶时,油箱内有油50升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为()A.B.C.D.6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC7.(3分)一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定8.(3分)若9x2﹣kxy+49y2是一个完全平方式,那么k的值是()A.42B.﹣42C.±21D.±429.(3分)如图,已知AD是△ABC的角平分线,ED是线段AB的垂直平分线,∠ACB=90°,AC=6,则BE的长为()A.5B.6C.7D.1210.(3分)如图,在长方形ABCD中,AD=16,AB=8,点M、N分别在AD、BC上,将长方形ABCD沿MN折叠,使点A,B分别落在长方形ABCD外部的点A′,B′处,则阴影部分的图形的周长为()A.12B.24C.48D.56二、填空题(每小题3分,共15分)11.(3分)已知∠a=35°,则∠a的余角是.12.(3分)若m=20,按下列程序计算,最后得出的结果是.13.(3分)某镇要修建一条灌溉水渠,如图所示,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,为了保持水渠CE与AB方向一致,则∠BCE为度.14.(3分)如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为.(结果保留π)15.(3分)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x(x+4y),其中x=1,y=﹣1.17.(10分)计算(1)(x3y3+4x2y2﹣3xy)÷(﹣3xy);(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2.18.(9分)如图,在正方形网格中,每个小正方形的边长都是1,网格中有一条直线l,△ABC的三个顶点A、B、C均在格点处.(1)画出△ABC关于直线l的对称图形△A'B'C';(2)求△A'B'C'的面积.19.(9分)桌子上放有两张卡片,正面分别写有4cm,5cm;小明手里有四张卡片,正面分别写有1cm,3cm,4cm和5cm.将卡片正面向下,小亮随机从小明手里抽取一张,与桌子上的卡片放在一起,以卡片上的数量分别作为三条线段的长度,请回答下列问题:(1)求这三条线段能构成三角形的概率;(2)求这三条线段能构成等腰三角形的概率.20.(9分)如图,在△ABC和△BDE中,BA=BC,BE=BD,∠ABC=∠DBE=90°,连接AE、DC,试说明:△ABE≌△CBD.21.(9分)直线AB、CD交于点O,OE为∠BOD的平分线,OF⊥OE,CG∥OE,且∠C=30°.(1)求∠AOE为多少度;(2)判断∠FOA与∠FOD的大小关系,并说明理由.22.(10分)(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:.(4)应用公式计算:(1﹣)(1﹣)(1﹣).23.(11分)在一次劳动技能竞赛中,甲、乙两名工人同时生产相同数量的一种口罩,他们生产的口罩数y(个)与生产所用时间t(时)之间的关系如图所示.(1)在甲生产的过程中,自变量是,因变量是;(2)甲、乙两人中,先完成生产任务;(3)当甲、乙所生产的口罩个数相等时,求t的值.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上.1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念的对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)计算a4÷(﹣a2)的结果是()A.a2B.a C.﹣a2D.﹣a6【分析】根据整式的运算法则即可求出答案.【解答】解:原式=﹣a2,故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000095=9.5×10﹣7,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)如图把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为()A.25°B.35°C.45°D.55°【分析】根据两直线平行,内错角相等可得∠3=∠1,然后根据∠2=60°﹣∠3计算即可得解.【解答】解:∵直尺的两边互相平行,∴∠3=∠1=25°,∴∠2=60°﹣∠3,=60°﹣25°,=35°.故选:B.【点评】本题考查了平行线的性质,直角三角板的知识,熟记性质并准确识图是解题的关键.5.(3分)汽车开始行驶时,油箱内有油50升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为()A.B.C.D.【分析】根据题意,可以写出Q与t的函数关系式,然后即可判断哪个选项中的函数图象符合题意,本题得以解决.【解答】解:由题意可得,Q=50﹣5t,当t=0时,Q=50,当Q=0时,t=10,故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC【分析】根据全等三角形的判定解决问题即可.【解答】解:∵∠ABC=∠DCB,BC=CB,要使得△ABC≌△DCB,可以添加:∠A=∠D,AB=DC,∠ACB=∠DBC,故选:C.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.7.(3分)一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定【分析】根据几何概率的求法:最终停留在阴影区域的概率就是阴影区域的面积与总面积的比值.【解答】解:观察这个图可知:阴影区域(6块)的面积占总面积(15块)的=,则它最终停留在阴影部分的概率是,故选:A.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8.(3分)若9x2﹣kxy+49y2是一个完全平方式,那么k的值是()A.42B.﹣42C.±21D.±42【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵9x2﹣kxy+49y2是一个完全平方式,∴k=±42,故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.(3分)如图,已知AD是△ABC的角平分线,ED是线段AB的垂直平分线,∠ACB=90°,AC=6,则BE的长为()A.5B.6C.7D.12【分析】依据角平分线的性质即可得到DC=DE,再判定Rt△ACD≌Rt△AED,即可得到AC=AE,进而得出BE的长与AC的长相等.【解答】解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AE,∴DC=DE,∠C=∠AED=90°,又∵AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵ED是线段AB的垂直平分线,∴AE=BE,∴AC=AE=BE=6,故选:B.【点评】本题主要考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.10.(3分)如图,在长方形ABCD中,AD=16,AB=8,点M、N分别在AD、BC上,将长方形ABCD沿MN折叠,使点A,B分别落在长方形ABCD外部的点A′,B′处,则阴影部分的图形的周长为()A.12B.24C.48D.56【分析】根据折叠的性质,得A'M=AM,A'B'=AB,B'N=BN,即可得出阴影部分的周长等于矩形的周长.【解答】解:根据折叠的性质,得A'M=AM,A'B'=AB,B'N=BN,∴阴影部分图形的周长=A'B'+B'N+NC+A'M+MD+CD=AB+(BN+NC)+(AM+MD)+CD=AB+BC+AD+CD=2AD+2AB=2(16+8)=48.故选:C.【点评】此题主要考查了翻折变换以及矩形的性质,关键是要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.二、填空题(每小题3分,共15分)11.(3分)已知∠a=35°,则∠a的余角是55°.【分析】根据余角的概念计算,得到答案.【解答】解:90°﹣∠a=90°﹣35°=55°,则∠a的余角是55°,故答案为:55°.【点评】本题考查的是余角的概念,如果两个角的和等于90°,就说这两个角互为余角.12.(3分)若m=20,按下列程序计算,最后得出的结果是21.【分析】根据数值转换机列代数式,再代入计算即可求解.【解答】解:由题意得,当m=20时,原式=.故答案为21.【点评】本题主要考查代数式求值,列代数式是解题的关键.13.(3分)某镇要修建一条灌溉水渠,如图所示,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,为了保持水渠CE与AB方向一致,则∠BCE为90度.【分析】利用平行线的性质得出CE∥BD,可得∠NCE=25°+65°=90°,进而得出∠BCE的度数即可得出答案.【解答】解:如图所示:由题意可得:∠1=65°,当CE保持与AB的方向一致,则CE∥BD,可得∠NCE=25°+∠1=25°+65°=90°,故∠BCE=180°﹣∠NCE=90°,故答案为:90.【点评】此题主要考查了方向角以及平行线的性质,得出∠FCE的度数是解题关键.14.(3分)如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为200π.(结果保留π)【分析】根据圆柱体的体积和球的体积的计算公式即可得到结果.【解答】解:设球的半径为r,根据题意得:三个球的体积之和=3×πr3=4πr3,圆柱体盒子容积=πr2•6r=6πr3,=,300π×=200π.答:三个球的体积之和是200π.故答案为:200π.【点评】本题考查了圆柱体的体积,球的体积的计算,整式的混合运算,熟记圆柱体的体积和球的体积的计算公式是解题的关键.15.(3分)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为18或70.【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x(x+4y),其中x=1,y=﹣1.【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2+2xy+y2+x2﹣y2﹣2x2﹣8xy=﹣6xy,当x=1,y=﹣1时,原式=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.17.(10分)计算(1)(x3y3+4x2y2﹣3xy)÷(﹣3xy);(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2.【分析】(1)直接利用整式的除法运算法则计算得出答案;(2)直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:(1))(x3y3+4x2y2﹣3xy)÷(﹣3xy)=x3y3÷(﹣3xy)+4x2y2÷(﹣3xy)﹣3xy÷(﹣3xy)=﹣x2y2﹣xy+1;(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2=﹣1+1﹣9=﹣9.【点评】此题主要考查了整式的除法运算以及实数运算,正确掌握相关运算法则是解题关键.18.(9分)如图,在正方形网格中,每个小正方形的边长都是1,网格中有一条直线l,△ABC的三个顶点A、B、C均在格点处.(1)画出△ABC关于直线l的对称图形△A'B'C';(2)求△A'B'C'的面积.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A'B'C'即为所求.(2)S△A′B′C′=3×4﹣×1×4﹣×2×2﹣×2×3=12﹣2﹣2﹣3=5.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)桌子上放有两张卡片,正面分别写有4cm,5cm;小明手里有四张卡片,正面分别写有1cm,3cm,4cm 和5cm.将卡片正面向下,小亮随机从小明手里抽取一张,与桌子上的卡片放在一起,以卡片上的数量分别作为三条线段的长度,请回答下列问题:(1)求这三条线段能构成三角形的概率;(2)求这三条线段能构成等腰三角形的概率.【分析】先利用列举法展示所有5种可能的结果数,再分别根据三角形三边的关系、等腰三角形的判定找出两个事件的结果数,然后根据概率公式计算即可.【解答】解:(1)共有5种可能的结果数,它们是:1、4、5;3、4、5;4、4、5;5、4、5;其中这三条线段能构成三角形的有3、4、5;4、4、5;5、4、5这3种结果,∴这三条线段能构成三角形的概率为;(2)这三条线段能构成等腰三角形的有2种结果,所以这三条线段能构成等腰三角形的概率为=.【点评】本题考查概率公式、三角形的三边关系、等腰三角形的判定,解题的关键是明确题意,可以写出所有的可能性,求出相应的概率.20.(9分)如图,在△ABC和△BDE中,BA=BC,BE=BD,∠ABC=∠DBE=90°,连接AE、DC,试说明:△ABE≌△CBD.【分析】由“SAS”可证△ABE≌△CBD.【解答】证明:∵∠ABC=∠DBE=90°,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS).【点评】本题考查了全等三角形的判定,掌握全等三角形的判定是本题的关键.21.(9分)直线AB、CD交于点O,OE为∠BOD的平分线,OF⊥OE,CG∥OE,且∠C=30°.(1)求∠AOE为多少度;(2)判断∠FOA与∠FOD的大小关系,并说明理由.【分析】(1)利用平行线的性质可得∠DOE=∠C,再结合角平分线定义可得∠BOE=∠DOE=30°,根据邻补角互补可得答案;(2)利用垂线定义,邻补角的性质分别计算出∠FOA与∠FOD的度数即可.【解答】解:(1)∵CG∥OE,∴∠DOE=∠C=30°,∵OE为∠BOD的平分线,∴∠BOE=∠DOE=30°,∴∠AOE=180°﹣30°=150°;(2)∠AOF=∠DOF,理由:∵∠BOE=∠DOE=30°,∴∠AOD=120°,∵OF⊥OE,∴∠EOF=90°,∴∠DOF=60°,∴∠AOF=60°,∴∠AOF=∠DOF.【点评】此题主要考查了平行线的性质,以及角平分线的定义,关键是理清图中角之间的关系.22.(10分)(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是a2﹣b2.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是(a+b)(a﹣b).(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:(a﹣b)(a+b)=a2﹣b2.(4)应用公式计算:(1﹣)(1﹣)(1﹣).【分析】(1)根据面积的和差,可得答案;(2)根据矩形的面积公式,可得答案;(3)根据图形割补法,面积不变,可得答案;(4)根据平方差公式计算即可.【解答】解:(1)如图①所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知(a﹣b)(a+b)=a2﹣b2,故答案为:(a﹣b)(a+b)=a2﹣b2;(4)(1﹣)(1﹣)(1﹣)====.【点评】本题考查的是平方差公式的推导和运用,灵活运用平方差公式、掌握数形结合思想是解题的关键.23.(11分)在一次劳动技能竞赛中,甲、乙两名工人同时生产相同数量的一种口罩,他们生产的口罩数y(个)与生产所用时间t(时)之间的关系如图所示.(1)在甲生产的过程中,自变量是t,因变量是y;(2)甲、乙两人中,乙先完成生产任务;(3)当甲、乙所生产的口罩个数相等时,求t的值.【分析】(1)根据自变量与因变量的含义得到时间是自变量,口罩数是因变量;(2)观察图象可得甲、乙两人中,乙先完成生产任务;(3)观察图象可得,当甲、乙所生产的口罩个数相等时,t的值有两个,其中一个值是3,另一个值可列方程解答.【解答】解:(1)函数图象反映口罩数随时间变化的图象,则t是自变量,y为因变量;故答案为:t;y;(2)观察图象可知,乙先完成生产任务;故答案为:乙;(3)当甲、乙所生产的口罩个数相等时,t的值有两个,其中一个是3,甲后来的速度为:(4000﹣400)÷(8﹣2)=600(个/小时),乙后来的速度为:(4000﹣1000)÷(7﹣5)=1500(个/小时),则:400+600(t﹣2)=1500(t﹣5),解得t=,即当甲、乙所生产的口罩个数相等时,t=3或.【点评】本题主要考查了函数的图象,从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第二学期期末调研考试七年级数学试卷一、选择题(本大题有16个小题,共42分。

1~10小题,各3分;11~16小题,各2分。

在每题给出的四个选项中,只有一项符合题目要求。

请将正确选项的代号填写在下面的表格中)1.下列实数是负数的是()A. B.36 C.0 D.﹣102π、0、 0.101001中,无理数有()个A.1 B.2 C.3 D.43.如右图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同旁内角互补,两直线平行B. 内错角相等,两直线平行C. 同位角相等,两直线平行D. 两直线平行,同位角相等4.如右图,数轴上点P 表示的数可能是()A B. C5.下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④ 19的平方根是,其中正确的有( )A. 个B. 个C. 个D. 个6.若a<b,则下列结论中,不成立...的是( )A. a+3<b+3B. a-2>b-2C. -2a>-2bD.12a<12b-1 0 2 43P7.用加减法解方程组32104150x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( )A. ①×4﹣②消去x B .①×4+②×3消去x C.②×2+①消去y D.②×2﹣①消去y8.如右图,点A (﹣2,1)到X 轴的距离为( )A .﹣2B .1C .2D .9.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重。

就这个问题来说,下面说法正确的是( )A.1500名学生的体重是总体B.1500名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本 10.如右图,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠B=∠ACBC .∠A=∠ECD D .∠A=∠ACE11.如果点P (2x+6,x ﹣4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上的简图可表示为( )12.若|3|0a -,则a b +的值是( )A .9-B .3-C .3D .913. 如右图,直线AC∥BD,AO 、BO 分别是∠BAC、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( ) A .互余 B .互补 C .相等 D .不等 14. 如右图所示正方形格中,连接AB AC AD 、、,观测1+2+3∠∠∠=( )A .120° B. 125° C.130° D. 135° 15. 某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( ) A .9折B .8折C .7折D .6折16. 《孙子算经》中有一道题,原文是:“今有木,不知长短。

引绳度之,余绳四尺五寸;屈绳量之,不足一尺。

木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( )A. ⎪⎩⎪⎨⎧+=+=1215.4x y x yB. ⎪⎩⎪⎨⎧+=-=1215.4x y x yC. ⎪⎩⎪⎨⎧-=+=1215.4x y x yD. ⎪⎩⎪⎨⎧-=-=1215.4x y x y二、填空题(本大题共4个小题,每小题3分,共12分。

把答案写在题中横线上)17. 不等式3x ﹣4≥4+2(x ﹣2)的最小整数解是 18. 16的平方根是__________19. 如图,有一条平直的等宽纸带按图折叠时,则图中∠α=20. 如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P 的坐标是___________.三、解答题(本大题共6小题,总共66分。

解答应写出文字说明、证明过程或演算步骤)21、(本小题10分)计算题(1)2+(-3)(2) 3|-6|+(-2)22、(本小题10分)解方程组或不等式组①3236x yx y-=⎧⎨+=⎩②338213(1)8xx x-⎧-≥⎪⎨⎪--<+⎩23、(本小题10分) 如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点A (2,-1),C (6,2)。

点M 为y 轴上一点,△MAB 的面积为6,且MD <MA 。

请解答下列问题:(1)顶点B 的坐标为 ;(2)将长方形ABCD 平移后得到1111A B C D ,若1A (-1,-5),则1C 的坐标为 ;(3)求点M 的坐标。

24.(本小题满分12分)课上教师呈现一个问题:甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如下图:甲同学辅助线的做法和分析思路如下: 甲234M N CA EO FB D PG1N A CE O FPG1D B 丙乙NCA EO FPGD B 1(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:_____________________________分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.25、(本小题12分)某校七年级1班体育委员统计了全班同学60秒跳绳的次数,并绘制出如下频数分布表和频数分布直方图:结合图表完成下列问题:(1)a= ;(2)补全频数分布直方图;(3)写出全班人数是___________,并求出第三组“120≤x <140”的频率(精确到0.01)(4)若跳绳次数不少于140的学生成绩为优秀,则优秀学生人数占全班总人数的百分之几?26、(本小题12分)某超市销售每台进价分别为160元、120元的A、B两种型号的电器,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电器的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电器共50台,求A种型号的电器最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2017—2018学年度第二学期期末调研考试七年级数学参考答案注意:本答案,仅供参考,具体问题请阅卷组商议。

一、本大题共16小题,1-10题每3分,11-16题每2分.共42分二、本大题共4个小题;每小题3分,共12分17.4 18. ±4 19. 70° 20.(2011,2)三、解答题(本大题6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21、(本小题满分10分)(1)解:(﹣3)2+=9+3------4分(各式2分)=12--------5分(2)解:原式= 6 – 8----4分(各式2分)= -2 -------5分22、(本小题满分10分)每小题5分①解:由(2)-(1)×2得5y=0……………………………2分y=0……………………………3分把y=0代入(1)得x=3……………………………4分所以原方程组的解为3xy=⎧⎨=⎩---------5分②解:由(1)得……x≥25………………………2分由(2)得……x>-1………………………4分所以原不等式组的解是:x≥25…………5分23、解:(1)(6,-1)…………………………………………3分(2)(3,-2) ……………………………………………3分 (3)(0,2) ………………………………………………1分设△MAB 的高为h ,根据题意得:621=⋅⋅h AB 6421=⨯h 所以h=3……………2分 由于MD <MA 所以M (0,2)…………………………1分 24、(本小题满分12分)解:(1)辅助线:过点P 作PN ∥EF 交AB 于点N . ………………………………1分 分析思路:①欲求∠EFG 的度数,由辅助线作图可知,∠EFG =∠NPG ,因此,只需转化为求∠NPG 的度数;…………………………………………2分 ②欲求∠NPG 的度数,由图可知只需转化为求∠1和∠2的度数和 …………3分 ③又已知∠1的度数,所以只需求出∠2的度数;………………………………4分 ④由已知EF ⊥AB ,可得∠4=90°;………………………………………………5分 ⑤由PN ∥EF ,可推出∠3=∠4;AB ∥CD 可推出∠2=∠3,由此可推∠2=∠4, 所以可得∠2的度数; …………………6分 ⑥从而可以求出∠EFG 的度数. …………7-分 (注:请依据步骤酌情给分)(2)过点O 作ON ∥FG …………………………8分 ∵ON ∥FG∴∠EFG=∠EON ∠1=∠ONC=30° ………………………………………9分 ∵AB ∥CD∴∠ONC=∠BON=30° …………………………………………………………10分∵EF ⊥AB∴∠EOB=90° ……………………………………………………………………11分 ∴∠EFG=∠EON=∠EOB+∠BON=90°+30°=120° ……………………………12分乙NACO FE BDGP 124325、 (本小题满分12分)解:(1)a=2; ……………………………2分(2)正确补全频数分布直方图. …………………………………4分(3)全班人数=2+4+12+16+8+3=45人……………………………6分12÷45≈0.27 ………………………………………………8分(4)优秀学生人数=16+8+3=27人 …………………………10分2760%45=……………………………………………………11分答:优秀的学生人数占全班总人数的60%.………………………12分26、(本小题满分12分)解:(1)设A 、B 两种型号电器的销售单价分别为x 元、y 元,依题意得:341200,561900.x y x y +=⎧⎨+=⎩ …………………………………………………2分 解得:200,150.x y =⎧⎨=⎩ 答:A 、B 两种型号电器的销售单价分别为200元、150元. ………………4分(2)设采购A 种型号电器a 台,则采购B 种型号电器(50﹣a )台.依题意得:160a +120(50﹣a )≤7500, --------6分解得:a ≤1372. 答:超市最多采购A 种型号电器37台时,采购金额不多于7500元.………8分(3)依题意有:(200﹣160)a+(150﹣120)(50﹣a )>1850 …………………………………10分解得:a >35,∵a ≤1372,且a 应为整数 ∴a=36,37 ………………………………………………………………………11分∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A 种型号的电器36台,B 种型号的电器14台;当a=37时,采购A 种型号的电器37台,B 种型号的电器13台……………12分2017—2018学年度第二学期期末调研考试七年级数学参考答案注意:本答案,仅供参考,具体问题请阅卷组商议。

相关文档
最新文档