勾股定理小结
勾股定理

第1讲勾股定理第一部分知识梳理1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。
2.勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。
3.满足a²+b²=c²的三个正整数,称为勾股数。
若a,b,c是一组勾股数,则ak,bk,ck(k为正整数)也必然是一组勾股数。
常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。
4.勾股定理的应用:①圆柱形物体表面上的两点间的最短距离;②长方体或正方体表面上两点间的最短距离问题。
5.直角三角形的判别:①定义,判断一个三角形中有一个角是直角;②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。
6.勾股定理中的方程思想:勾股定理三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.对于一些几何问题,往往借助于勾股定理,利用代数方法来解决.把一条边的长设为未知数,根据勾股定理列出方程,解方程求出未知数的值,即使有时出现了二次方程,大多可通过抵消而去掉二次项。
7.勾股定理中的转化思想:在利用勾股定理计算时,常先利用转化的数学思想构造出直角三角形,比如立体图形上两点之间的最短距离的求解,解答时先把立体图形转化为平面图形,在平面图形中构造直角三角形求解。
8.拓展:特殊角的直角三角形相关性质定理。
第二部分精讲点拨考点1. 勾股定理【例1】在Rt△ABC中,已知两边长为3、4,则第三边的长为变式1 等腰三角形的两边长为10和12,则周长为______,底边上的高是________,面积是_________。
变式2 等边三角形的边长为6,则它的高是________变式3 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边,(1)已知c=4,b=3,求a;(2)若a:b=3:4,c=10cm,求a、b。
第十七章 勾股定理知识点与常见题型总结

《勾股定理》小结与复习资料一.知识点:1. 勾股定理及逆定理①勾股定理:如果直角三角形的两直角边长分别为 ,斜边为 ,那么 __ 。
直角三角形2+b 2=c 2 (数)(形)公式的变形:(1)c 2= , c= ;(2)a 2= , a= ;(3)b 2= , b= ; ②勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足 ___ ,那么这个三角形是 __ .a 2+b 2=c 2 (数直角三角形 注:(1依据;(2)勾股定理的逆定理主要的应用是把数转化为形,通过计算三角形三边之间的关系来判断一个三角形是否是直角三角形,它可作为直角三角形的判定依据.利用勾股定理逆定理证明三角形是否是直角三角形的步骤:①先判断哪条边最大;②分别用代数法计算 a 2+b 2 和c 2 的值;③判断a 2+b 2和 c 2 是否相等。
若相等,则是直角三角形;若不相等,则不是直角三角形。
2、勾股数满足a 2 + b 2= c 2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数如下:3、互逆命题和互逆定理互逆命题:两个命题中,如果第一个命题的 恰为第二个命题的 ,而第一个命题的 恰为第二个命题的 ,像这样的两个命题叫做 .如果把其中一个叫做原命题,那么另一个叫做它的 .互逆定理:一般的,如果一个定理的逆命题经过证明是 ,那么它也是一个 ,称这两个定理互为 ,其中一个叫做另一个的逆定理.4、勾股定理的应用(最短路线、梯子下滑、船在水中航行等)5、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222=529232=; 576242=; 625252=; 676262=;729272=《勾股定理题型分类》题型一:直接考查勾股定理:直角三角形中,若a, b 分别为直角边,c 为斜边,那么直角三角形三边的关系为 a 2 +b 2 =c 2注意:直角三角形中,最长的边为斜边,较短的两边为直角边1、如图1中,64、400分别为所在正方形的面积,则图中A 字母所代表的正方形面积是2、 如图4,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
中考勾股数知识点总结

中考勾股数知识点总结一、勾股定理在讨论勾股数之前,首先需要了解勾股定理。
勾股定理是古希腊数学家毕达哥拉斯在公元前6世纪提出的一个重要定理,它表明在直角三角形中,直角三角形的斜边的平方等于两条直角边的平方之和,即a² + b² = c²。
这个定理对于解决数学和几何问题都有很大的帮助,也为勾股数的研究奠定了基础。
二、勾股数的性质1. 勾股数的分类根据勾股定理,我们可以将勾股数分为两种情况:(1)素勾股数:如果a、b、c互质(即它们的最大公因数为1),则称这组勾股数为素勾股数。
(2)合成勾股数:如果a、b、c不互质(即它们的最大公因数大于1),则称这组勾股数为合成勾股数。
2. 勾股数的性质勾股数有着一些特殊的性质,这些性质对于中考数学的学习和解题都有一定的帮助:(1)勾股数的性质1:一个数的平方如果是勾股数,那么这个数一定是偶数。
这可以通过反证法来证明:假设一个数n的平方是勾股数,且n是奇数,那么n可以表示为2m+1,其中m是整数。
那么n的平方就可以表示为(2m+1)²=4m²+4m+1=2(2m²+2m)+1,这样n的平方就变成了奇数,与勾股数必为偶数的性质相矛盾。
所以一个数的平方如果是勾股数,那么这个数一定是偶数。
(2)勾股数的性质2:3、4、5是最小的一组勾股数。
根据勾股定理,3²+4²=5²,所以3、4、5就是最小的一组勾股数。
这也是勾股数的一个重要性质。
(3)勾股数的性质3:所有的勾股数都可以表示成m²-n²、2mn、m²+n²的形式。
这是勾股数的三角形形式,通过这个公式,我们可以求得无数个勾股数。
三、勾股数的判定方法判定一个数是否是勾股数是中考数学的重要考点之一,下面将介绍几种判定勾股数的方法:1. 枚举法:对于一个较小的数,可以通过暴力枚举的方法判断它是否是勾股数。
第3章 勾股定理(小结与思考)(复习课件)八年级数学上册(苏科版)

解:∵第一代勾股树中正方形有1+2=3(个),
第二代勾股树中正方形有1+2+22=7(个),第
三代勾股树中正方形有1+2+22+23=15(个),
......∴第六代勾股树中正方形有
1+2+22+23+24+25+26=127(个).
巩固练习
4.(2021·四川)如图是“弦图”的示意图,“弦图”最早是由三国时期的
2
∵ S四边形ADCB=S△ACD+S△ABC= b + ab,
2
S四边形ADCB=S△ADB+S△DCB= c + a(b-a),
2
b + ab= c2+ a(b-a).
∴
∴ a2+b2=c2.
请参照上述证法,利用图②完成下面的证明:
将两个全等的直角三角形按图②所示摆放,
勾股定理的简单应用
解决简单的实际问题
求几何体表面上两点间的最短距离
考点分析
考点一
勾股定理的验证
例1 如图,以Rt△ABC的三条边为直径的半圆的面积分别为S1、S2、S3,
已知S1=9,S3=25,求S2.
解:由图形可得
2
2
S1= π( ) =
,S2= π( ) =
c
a
b
a
c b
a
b
b
c
a
c
4个小直角三角形的面积=4× ab=2ab,
∵大正方形的面积=小正方形的面积+4个直角三角形的面积,
北师大版八年级数学上册第一章勾股定理复习与小结课件

P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
勾股定理小结与复习初中数学原创课件

二、勾股定理的逆定理
1.勾股定理的逆定理
A
c
如果三角形的三边长a,b,c满足 b
a2 +b2=c2 ,那么这个三角形是直角三角形. C a B
2.勾股数 满足a2 +b2=c2的三个正整数,称为勾股数.
3.原命题与逆命题 如果两个命题的题设、结论正好相反,那么把其中 一个叫做原命题,另一个叫做它的逆命题.
考点二 勾股定理的逆定理及其应用
例4 已知在△ABC中,∠A,∠B,∠C的对边分别是a,b, c,a=n2-1,b=2n,c=n2+1(n>1),判断△ABC是否为 直角三角形. 【解析】要证∠C=90°,只要证△ABC是直角三角形,并且 c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.
解:如图,过半圆直径的中点O,作直径的垂线交下底边 于点D,取点C,使CD=1.4米,过C作OD的平行线交半圆直 径于B点,交半圆于A点. 在Rt△ABO中,由题意知OA=2米,DC=OB=1.4米, 所以AB2=22-1.42=2.04. 因为4-2.6=1.4,1.42=1.96, 2.04>1.96, 所以卡车可以通过. 答:卡车可以通过,但要小心.
∴AC= AB2 BC2 =24米,
已知AD=4米,则CD=24-4=20(米), ∵在直角△CDE中,CE为直角边,
∴CE= DE2 CD2 =15(米),
BE=15-7=8(米).故选C.
针对训练
3.如图,某住宅社区在相邻两楼之间修建一个上方是一个 半圆,下方是长方形的仿古通道,现有一辆卡车装满家 具后,高4米,宽2.8米,请问这辆送家具的卡车能否通 过这个通道?
第十七章 勾股定理
要点梳理
一、勾股定理
1.如果直角三角形两直角边分别为a,b,斜边为c,
勾股定理长方体最短路径问题解题步骤小结

勾股定理长方体最短路径问题解题步骤小结嘿,咱今儿个就来讲讲勾股定理长方体最短路径问题的解题步骤哈!
你想想看,那长方体就像个大盒子,里面藏着好多秘密呢!要找到
最短路径,那可得有点小窍门。
首先呢,咱得认清这个长方体的各个面和棱。
就好比认识一个新朋友,得先知道他长啥样,有啥特点不是?然后呢,在脑海里构想出各
种可能的路径。
比如说,从一个顶点到另一个顶点,那可以直直地沿着棱走过去,
可这往往不是最短的哟!这时候就得发挥咱的想象力啦。
咱可以把长方体展开呀,就像把一个盒子打开一样。
展开之后,原
来在长方体里弯弯绕绕的路径就变得一目了然啦!然后再根据勾股定理,找到直角三角形的两条边,一计算,最短路径不就出来啦?
你可别小看这勾股定理,它就像一把神奇的钥匙,能帮咱打开最短
路径的大门呢!这不就跟咱出门找路一样嘛,得找条最近最方便的道
儿呀。
再举个例子哈,就像你要从家去个啥地方,你肯定得找最近的路走呀,总不能绕一大圈吧?那多浪费时间和精力呀!
在解这题的时候,一定要仔细认真,可别马马虎虎的。
要是算错一步,那可就前功尽弃啦!就好像你走在路上看错了方向,那不就走冤
枉路啦?
所以呀,对待这个勾股定理长方体最短路径问题,咱可得像对待宝
贝一样,小心翼翼地去解开它的秘密。
咱得不断地练习,多做几道题,这样才能熟能生巧呀!等你熟练了,再遇到这种题,那不就跟玩儿似的,轻松就解决啦!
总之呢,解勾股定理长方体最短路径问题,就得有耐心、有细心,
还得有想象力。
只要咱掌握了方法,那都不是事儿!加油吧,朋友们,相信你们一定能行!。
人教版八年级数学下册第17章勾股定理小结和复习优秀教学案例

在教学评价方面,我将以学生的课堂表现、作业完成情况和课后实践成果为主要评价依据,全面评价学生对勾股定理的掌握程度。通过这一系列的教学设计,我相信学生们在复习和巩固勾股定理的过程中,能够提高自己的数学素养,为后续学习奠定坚实的基础。
3. 对学生的作业和实践活动进行评价,反馈学生学习情况,及时调整教学策略。
作业小结环节是课堂教学的延伸和巩固。我布置具有针对性、多样性的作业,巩固学生对勾股定理的理解和应用。设置课后实践任务,让学生将所学知识应用于实际问题,提高学生的数学应用能力。同时,我还对学生的作业和实践活动进行评价,反馈学生学习情况,及时调整教学策略,以保证教学效果的最大化。通过这一系列的教学内容与过程,我相信学生能够更好地理解和掌握勾股定理,提高自己的数学素养和问题解决能力。
(二)过程与方法
1. 通过自主探究、合作交流的方式,培养学生主动学习和团队协作的能力。
2. 引导学生运用多媒体教学资源,提高信息技术与数学学科的整合能力。
3. 培养学生关注生活中的数学问题,提高数学应用能力。
在过程与方法目标部分,我注重引导学生积极参与课堂活动,通过自主探究、合作交流等方式,培养学生主动学习和团队协作的能力。同时,我还充分利用多媒体教学资源,将信息技术与数学学科相结合,提高学生的学习兴趣和效果。此外,我还注重培养学生的数学应用能力,使学生能够将所学知识运用到实际生活中。
(四)总结归纳
引导学生对所学知识进行总结,巩固学习成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:勾股定理小结
(这个问题可让学生在小组内交流讨论,实例已由学生事先准备好,然后每组推荐一个最好的实例,展示给全班同学.在全班进行交流)
生:例如:台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.如下图,据气象观测,距沿海城市A•的正南方向260千米B处有一台风中心,沿BC的方向以15千米/时的速度向D移动,已知AD•是城市A距台风中心的距离最短,且AD=100千米,求台风中心经过多长时间从B点移到D点?
解:根据题意可知AD⊥BC.
在Rt△ABD中,AB=260千米,AD=100千米,AB2=AD2+BD2,所以BD2=AB2-AD2=2602-1002=2402,BD=240千米.则台风中心经过240千米÷15千米/时=16(小时)从B点移到D点.
生:例如:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8米,梯子的顶端下滑2米后,底端将水平滑动2米吗?试说明理由.
解:根据题意,可知:下图中AB=DE=10米,AC=8米,AD=2米,所以DC=8-2=6米.
在Rt△ABC中,BC=AB-AC=10-8=36,BC=6米,在Rt△CDE中,CE2=DE2-CD2=102-62=82,•CE=8米,则BE=CE-CB=8-6=2米.
所以顶端向下滑动2米,底端也水平滑动2米.
……
师:我们从学习这一章开始,就让同学们通过各种渠道收集勾股定理史料.现在我们就来介绍一下你们收集到的有关勾股定理的史料吧.
问题4:你了解勾股定理的史料吗?
生:在上古时代,人类虽然“愚昧无知”,但是,当他们仰望苍穹时,也会引起无穷无尽的遐想,经常有人提出这样的问题:天有多高?
三、课时小结
通过回顾与思考中的问题的交流.由同学们自己建立本章的知识结构图.
直角三角形
--→
⎧
⎨
→
⎩
三边关系勾股定理历史,应用直角三角形的判别
板书设计
本章小结
1.回顾与思考
问题1:直角三角形的边、角之间分别存在什么关系?
在Rt△ABC中,∠C=90°,则有∠A+∠B=90°,a2+b2=c2.
问题2:举例说明,如何判断一个三角形是直角三角形?
在△ABC中.①如果∠A+∠B=90°,则△ABC是直角三角形.②如果a2+b2=c2,则△ABC是直角三角形.
问题3:举生活实例,用勾股定理解决它.
例1.台风问题
例2.梯子问题
问题4:勾股定理史料
2.本章知识结构图
直角三角形
--→
⎧
⎨
→
⎩
三边关系勾股定理历史,应用直角三角形的判别
活动与探究
如下图,折叠长方形(四个角都是直角,对边相等)的一边AD,点D落在BC•边的点F处,已知AB=8cm,BC=10cm,求EC的长.
过程:“折叠”问题是数学中常见问题之一.由折叠的过程可知.•△AFE•≌△ADE,AD=AF,DE=EF,
在Rt △ABF 中,AB=8cm ,AF=10cm ,BF 2=AF 2-AB 2=102-82=62,BF=6,•FC=BC-BF=10-6=4cm ,如果设CE=xcm ,DE=(8-x )cm ,所以EF=(8-x )cm .
在Rt △CEF 中,EF 2=CF 2+CE 2,用这个关系就可建立关于x 的方程.解出x 便求得CE .
结果:解:根据题意,得
(8-x )2=42+x 2
所以x=3,即CE 的长为3cm .
习题详解
复习题18
1.解:两人从同一地点同时出发10分后,一人向北直行200米,•一人向东直行300米,此时,他
们相距22200300+=10013米.
2.解:根据题意AC=222213477AB BC -=-=110mm .所以两孔中心的垂直距离110mm .
3.解:覆盖在顶上的塑料薄膜需
22223 1.5a b d +=+×10≈33.5m 2.
4.解:根据题意,设三角形的三边分别为k ,3k ,2k ,(3k )2+k 2=(2k )2,所以这个三角形是直角三角形.
5.(1)逆命题:同位角相等,两条直线平行.此逆命题成立;
(2)逆命题:如果两个数的积是正数,那么这两个数是正数,此逆命题不成立;
(3)逆命题:锐角三角形是等边三角形,此逆命题不成立;
(4)逆命题:线段垂直平分线上的点到线段两个端点的距离相等.此逆命题成立.
6.解:(1)四边形ABCD 的面积为:
5×6-(12×2×4+12×1×5+12×2×1+12
×1×4+1×5)
=30-(4+
52+1+2+6) =30-13-52
=14.5.
四边形ABCD 的周长为:
2222222224121415+++++++
=25+5+17+26=35+17+26
(2)BC=25,CD=5,BD=5. (25)2+(5)2=25.
所以BC 2+CD 2=BD 2,即∠BCD 为直角.
7.解:设折断处离地面的高度是x 尺,根据题意,得
(10-x )2=x 2+32,解得x=9120
; 所以折断处离地面的高度是为
9120尺.
8.解:圆柱底面的周长为12πcm ,则
蚂蚁从A 点爬到B 点的最短路程=22(6)10π+≈14.6cm .
9.解:根据题意长方体的斜对角线的长度=222304050++≈70.7cm .
70cm<70.7cm .
所以一根70cm 长的木棒,可以放在长、宽、高分别是30cm 、40cm 、50cm •的长方体木箱中.。