高中数学圆锥曲线综合--求轨迹方程

合集下载

圆锥曲线题型训练-轨迹方程的求法

圆锥曲线题型训练-轨迹方程的求法

圆锥曲线题型训练轨迹方程的求法总论 (2)1 直接法 (3)练习1 (4)2 定义法 (5)练习2 (7)3 代入法 (9)练习3 (11)4、交轨法 (11)练习4 (13)5参数法 (14)练习5 (18)6、练习题答案 (20)练习1答案 (20)练习2答案 (23)练习3答案 (28)练习4答案 (29)练习5答案 (34)总论轨迹:是指一个动点按某种特点来运动,运动构成的曲线,可以是,直线,线段,圆,或椭圆,双曲线等等,我们这里把“曲线”也叫做“轨迹”;求动点轨迹方程:即已知动点的运动规律,我们来求满足此条件的动点的坐标),(y x 满足的方程(即等式)0),( y x f ;这个过程要求我们善于将几何图形中点、线之间的关系转化为代数形式,比如,长度,距离,向量的关系式等等,将条件坐标化,注意分析运动过程中不变的等量关系,将“不变的关系”化为“等式”,即达到了求轨迹方程的目的。

可能用到的公式: 两点间距离: 点到直线的距离: 两条平行新间的距离: 平面向量的数量积的坐标形式: 平面向量数乘的坐标形式:1 直接法本着“求谁设谁”的原则,将所求轨迹的动点的坐标设为),(y x ,根据其运动特点列等式,利用解析几何有关公式(两点距离公式、点到直线距离公式等)进行整理、化简,把运动特点“翻译”成含,x y 的等式就得到曲线的轨迹方程0),(=y x f 。

例 一条线段AB 的长等于2a ,两个端点,A B 分别在x 轴和y 轴上滑动,求AB 中点M 的轨迹方程?解:设),(y x M ,则)0,2(),2,0(x B y A ,由a AB 2||=得a y x 24422=+,化简得222a y x =+变式:若21=MABM,则点M 的轨迹方程是什么? 例 已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,求动点P 的轨迹方程 解:因为2222||(3),||(3)PA x y PB x y =++=-+代入||2||PA PB =,得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++化简得22(5)16x y -+=,说明轨迹是以(5,0)为圆心,4为半径的圆. 说明:由此题可以得到一个推论:已知平面上两点A 、B ,则所有满足(1)PAk k PB=≠的点P 的轨迹是一个圆(阿氏圆) 例2 (2009海南20)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (Ⅰ)求椭圆C 的方程;(Ⅱ)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,OPOM=λ,求点M 的轨迹方程,并说明轨迹是什么曲线。

圆锥曲线中动点的轨迹方程的求法

圆锥曲线中动点的轨迹方程的求法

知识导航有关圆锥曲线的题型较多,有求圆锥曲线的离心率、轨迹方程、判定两图形的位置关系、求弦长等,其中,求动点的轨迹方程比较常见.本文总结了求圆锥曲线中动点的轨迹方程的三种方法,供大家参考.一、直接法直接法主要应用于解答题目中所给的有关动点的几何条件较为明显的问题.运用直接法求动点的轨迹方程的主要步骤是:(1)建立合适的直角坐标系,设出所求动点的坐标;(2)根据题意,列出相关关系式;(3)将相关的点代入,化简并整理关系式即可得到动点的轨迹方程.例1.已知点Q (2,0)在圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程并说明它是什么曲线.分析:通过分析可知,动点M 到圆C 的切线长与|MQ |的比等于常数λ,所以可以考虑运用直接法求解.设出动点M 的坐标,根据题设建立关系式,化简便可得到动点的轨迹方程.解:设M (x ,y ),由直线MN 切圆于N ,MN|MQ |=λ,可得22=λ,整理得则(λ1)x 2+(λ2-1)y 2-4λ2x +(1+4λ2)=0,若λ=1,方程可化为x =54,它代表过点(54,0),与x 轴垂直的一条直线;若λ≠1,方程可化为æèçöø÷x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2,它代表以æèçöø÷2λ2λ2-1,0为半径的圆.二、代入法若动点M 依赖已知曲线上的另一动点N 而运动,就可以运用代入法来求动点的轨迹方程.首先设出两动点的坐标,建立两动点的关系式,然后将转化后的动点N 的坐标代入已知曲线的方程或条件中,从而得到动点M 的轨迹方程.例2.已知点B 是椭圆x 2a 2+y 2b2=1上的动点,A (2a ,Q )为定点,求线段AB 的中点M 的轨迹方程.分析:动点M 是线段AB 的中点,M 随着动点B 而运动,本题需采用代入法来求解.解:设动点M 的坐标为(x ,y ),B 点坐标为(x 0,y 0),由M 为线段AB 的中点,可得ìíîïïïïx 0+2a2=x ,y 0+02=y ,则点B 的坐标为(2x -2a ,2y ),则(2x -2a )2a 2+(2y )2b2=1,故动点M 的轨迹方程为4(x -a )2a 2+4y 2b2=1.三、参数法参数法是指通过引入一些新变量(参数)为媒介来解答问题的方法.运用参数法求圆锥曲线中动点的轨迹方程的基本思路是,设出合适的参数,根据题意列出参数方程,通过消参将方程化为普通方程即可解题.但在解题的过程中需注意参数的取值范围.例3.如图,过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB的中点M 的轨迹方程.解:设M (x ,y ),直线l 1的方程为y -4=k (x -2),(k ≠0),由l 1⊥l 2,得直线l 2的方程为y -4=-1k(x -2),∴l 1与x 轴焦点A 的坐标为(2-4k,0),l 2与y 轴焦点B 的坐标为(0,4+2k),∵M 为AB 的中点,∴ìíîïïïïx =2-4k 2=1-2k ,y =4+2k 2=2+1k ,消去k ,得到x +2y -5=0,当k =0时,AB 的中点为M (1,2),满足上述方程,当k 不存在时,AB 的中点为M (1,2),也满足上述方程,综上所述,M 的轨迹方程为x +2y -5=0.这里通过引入参数k ,得到两条直线的方程,然后结合题意建立关于k 的关系式,通过消参得到动点的轨迹方程.相比较而言,直接法较为简单,是最常用也是适用范围最广的方法;代入法的适用范围较窄,只适用于两个动点相关的题型;运用参数法解题的运算量较大.无论采用什么方法求动点的轨迹方程,都要关注轨迹方程中变量的取值范围.(作者单位:江苏省南通市海门四甲中学)蒋秋霞39Copyright©博看网 . All Rights Reserved.。

圆锥曲线求轨迹方程总结

圆锥曲线求轨迹方程总结

求轨迹方程曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程(x,y)0f =的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线。

一、 直接法求动点的轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点的M 的坐标(2)写出适合条件P 的点M 的集合{M (M)}P P =(3)用坐标表示条件P(M),列出方程(x,y)0f =(4)化简该方程到最简(5)说明以化简后的方程的解为坐标的点都在曲线上(扣点,看看是否所有解都取)例:已知点(2,0),B(3,0)A --,动点(x,y)P 满足21PA PB x •=+,则点P 的轨迹方程是 。

练习:在平面直角坐标系中,点B与点(1,1)A-关于原点O对称,P是动点,且直线AP与BP 的斜率之积等于1-。

3(1)求动点P的轨迹方程;(2)设直线AP和BP分别与直线3x=交于点M,N。

问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。

二、定义法求轨迹方程定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。

这种求曲线方程的方法是定义法。

例:与圆2240+-=外切,且与y轴相切的动圆圆心的轨迹方程x y x是。

练习1:已知圆的圆心为22(x 4)25y ++=的圆心为1M ,圆22(x 4)1y -+=的圆心为2M ,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

练习2:已知两个定圆1O 和2O ,它们的半径分别是1和2,且124OO =。

动圆M 与圆1O 内切,又与圆2O 外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线。

练习3:已知ABC 的顶点A ,B 的坐标分别为(4,0),(4,0)-,C 为动点,且满足5sin sin sin 4B AC +=,求点C 的轨迹。

圆锥曲线中轨迹方程问题的求法

圆锥曲线中轨迹方程问题的求法

第3讲 圆锥曲线中轨迹方程问题的求法一、考情分析 求曲线的轨迹方程是解析几何的两个基本问题之一。

求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 。

二、经验分享求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将圆锥曲线中动点满足的几何关系或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求;(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程;(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程;求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念三、题型分析(一) 直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程 当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常 数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【变式训练】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =。

圆锥曲线之动点轨迹方程

圆锥曲线之动点轨迹方程

圆锥曲线之动点轨迹方程:(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;(2)求轨迹方程的常用方法:①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =;已知动点P 到定点F(1,0)和直线3=x 的距离之和等于4,求P 的轨迹方程。

②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。

线段AB 过x 轴正半轴上一点M (m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为 。

③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(1) 由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为 。

(2)点M 与点F(4,0)的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是 。

(3) 一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为 。

④代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程;动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分−→−PA 所成的比为2,则M 的轨迹方程为 。

⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。

(1)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹。

最全的圆锥曲线轨迹方程求法(知识借鉴)

最全的圆锥曲线轨迹方程求法(知识借鉴)

圆锥曲线轨迹方程的解法目录一题多解 (2)一.直接法 (4)二. 相关点法 (7)三. 几何法 (11)四. 参数法 (13)五. 交轨法 (15)六. 定义法 (17)一题多解设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ ,求所对弦的中点P 的轨迹方程。

一.直接法设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0,设OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=41(x ≠0),即点P 的轨迹方程是(x -21)2+y 2=41(0<x ≤1)。

二.定义法∵∠OPC =90°,∴动点P 在以M (0,21)为圆心,OC 为直径的圆(除去原点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=41(0<x ≤1)三.相关点法设P (x,y ),Q (x 1,y 1),其中x 1≠0,∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ∴(2x -1)2+2y 2=1,又x 1≠0,∴x ≠0,即(x -21)2+y 2=41(0<x ≤1)四.参数法①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1,即(1+k 2)x 2-2x =0,∴.12221k x x +=+ 设点P (x,y ),则22211],1,0(112kkkx y k x x x +==∈+=+= 消去k 得(x -21)2+y 2=41(0<x ≤1)②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ),则,2sin ],1,0(2cos 1θθ=∈+=y x 消去θ得(x -21)2+y 2=41(0<x ≤1)一.直接法课本中主要介绍的方法。

若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标),(y x 后,就可根据命题中的已知条件研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x 、y 的关系式。

word完整版圆锥曲线求轨迹方程汇总推荐文档

word完整版圆锥曲线求轨迹方程汇总推荐文档

专题圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1) 直接法:直接利用条件建立x, y之间的关系或F(x, y) = 0;(2) 定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3) 代入转移法(相关点法):动点P(x,y)依赖于另一动点Q(x o, y o)的变化而变化,并且Q(x o,y o)又在某已知曲线上,贝U可先用x,y的代数式表示x o,y o,再将x o,y o代入已知曲线得要求的轨迹方程.1. 一个区别一一“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的.前者只须求出轨迹的方程,标出变量x,y 的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据.2. 双向检验一一求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.考向一直接法求轨迹方程【例1】已知动点P(x, y)与两定点M(—1,0), N(1,o)连线的斜率之积等于常数g0).(1) 求动点P的轨迹C的方程;(2) 试根据入的取值情况讨论轨迹C的形状.[解](1)由题意可知,直线PM与PN的斜率均存在且均不为零, 所以k PM k PNy . y x+1 x—1考向三 代入法(相关点法)求轨迹方程【例3】如图8-8-2所示,设P 是圆x 2 + y 2= 25上的动点,4点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD|= 5(1)当P 在圆上运动时,求点M 的轨迹C 的方程;当 心0且 存1时,是椭圆的轨迹方程; 当 X 0时,是双曲线的轨迹方程; 当 A 0时,是直线的轨迹方程. 综上,方程不表示抛物线的方程. 【答案】 C 考向二定义法求轨迹方程 【例2】已知两个定圆01和02,它们的半径分别是1和2,且|0102匸4.动圆M 与圆01内切, 又与圆02外切,建立适当的坐标系,求动圆圆心 M 的轨迹方程,并说明轨迹是何种曲线. 【解】 如图所示,以0102的中点0为原点,0102所在直线为x 轴建立平面直角坐标系. 由 0102匸4,得 01( — 2,0), 02(2,0). 设动圆M 的半径为r ,则由动圆M 与圆01内切,有|M01|= r — 由动圆 M 与圆 02外切,有 |M02|= r + 2./.|M02—|M01|= 3. •••点M 的轨迹是以01, 02为焦点,实轴长为3的双曲线的左支. 3 2 2 ・£ = 2, c = 2,「・b =_c —a ~9 —'•••点M 的轨迹方程为 1X W-3 7 —1 2 . 2=7.1;64【对点练习2】如图8-8-1所示,已知圆A : (x + 2)2+ — 1与点B(2,0) 分别求出满足下列条件的动点 P 的轨迹方程. ("△ PAB 的周长为10; (2) 圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3) 圆P 与圆A 外切,且与直线x = 1相切(P 为动圆圆心). y【解】 ⑴根据题意,知 |FA|+ |PB|+ |AB| = 10,即 |PA|+|PB 匸 6> 4= |AB|, 故P 点轨迹是椭圆,且 2a =6,2c = 4,即a = 3,c = 2,b = ,5. X 2 y 2因此其轨迹方程为9 + y = 1(尸0). (2)设圆 P 的半径为 r ,则 |FA|= r + 1,|PB|= r ,因此 |PA|-|PB|= 1. 图 8-8-1由双曲线的定义知, 1a = 2,c = 2,b =因此其轨迹方程为 ⑶依题意,知动点 开口向左,p = 4.因此其轨迹方程为yP 点的轨迹为双曲线的右支,且2a = 1,2c = 4,即 2 4 2 1 4x -神二 1 x > 2. P 到定点A 的距离等于到定直线x = 2的距离,故其轨迹为抛物线,且2=- 8x.4(2)求过点(3,0)且斜率为4的直线被C 所截线段的长度.【解】(1)设M 的坐标为(x , y ), P 的坐标为(X P , y r ),由已知得'■'P 在圆上,••• x 2+ 4$ 2= 25,即 C 的方程为 25+16=1.44(2)过点(3,0)且斜率为5的直线方程为y = 5(x - 3),设直线与3—何 3 +回 • .x 1 2 , x 2 2y 2),将直线方程y =詼―3)代入C 的方程,得£+x - 3 2 25即 x 2— 3x — 8=0.X P = x ,5 y p =4y.C 的交点为 A(x i , y i ), B(X 2,•线段 AB 的长度为 |AB|=" : x 1 — X 22+ y 1 — y 2 2=1+ 26 X 1— X 22 =2541 41 25X 41=寸【对点练习2】(2014合肥模拟)如图8-8-5所示,以原点O 为圆心的两个 同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于 点Q , P 在y 轴上的射影为 M.动点N 满足PM = ?PN 且PM QN = 0.(1)求点N 的轨迹方程;⑵过点A (0,3)作斜率分别为k 1, k 2的直线|1, |2与点N 的轨迹分别 交于E , F 两点,k 1 k 2= — 9.求证:直线EF 过定点.【解】(1 )由PM = ?PN 且PM (QN = 0可知N , P , M 三点共线且PMQN.过点Q 作QN 丄PM ,垂足为N ,设N(x , y), v|OP|= 3, |OQ|= 1,由相似可知P(3x , y).2 2••P 在圆 x 2 + y 2 = 9 上, (3x)2 + y 2 = 9,即£ + x 2= 1.所以点 N 的轨迹方程为 £+ x 2= 1.y = k 1x + 3,(2)证明:设 E(X E , y E ), F(X F , y F ),依题意,由y 29+ x= 1 (k 1 + 9)x 2 + 6k 1x = 0,①解得x = 0或x = —6k 1 k 2+ 9所以X E = —6k 1 k 1+ 9,6k 127— 3k 1yE=k1-k ?+9+ 3=2+9,6k 1 27 - 3k1 Ek 1+ 9, k 1 + 999vk1k 2=- 9,Ak 2=- ■.用 k 2=-话替代①中的 k 1,同理可得F6k 1k 1+ 9, 3k 2- 27k 2+ 9显然E , F 关于原点对称,•直线EF 必过原点O.一、选择题1.若M , N 为两个定点,【达标训练】且|MN|= 6,动点P满足PM PN = 0,则P点的轨迹是(A •圆B •椭圆C .双曲线D •抛物线1 12. 已知点F 4,0,直线I : x = — 4,点B 是I 上的动点•若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是()A .双曲线B .椭圆C .圆D .抛物线3.(2014天津模拟)平面直角坐标系中,已知两点A(3,1), B( —1,3),若点C 满足OC = 2iOA +來金(0为原点),其中21,位€ R ,且刀+龙=1,则点C 的轨迹是()A .直线B .椭圆C .圆D .双曲线4.(2014合肥模拟)如图8-8-4所示,A 是圆0内一定点,B 是圆周上 一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是()A .圆B .椭圆C .双曲线D .抛物线5. 设过点P(x , y)的直线分别与x 轴的正半轴和y 轴的正半轴交于 A , B 两点,点Q 与点P 关于y 轴对称, 且OQ AB = 1,则点P 的轨迹方程是(A.3x 2 +1(x >0, y >0)C . 3x 2 — 2v 2= 1(x >0, y >0)6•已知动点P 在曲线2x 2 — y = 0上移动,则点A(0, — 1)与点P 连线中点的轨迹方程是()7. 平面上有三个点 A( — 2, y), B 0, 2 , C(x , y),若AB 丄BC ,则动点C 的轨迹方程是8. 动圆与。

圆锥曲线与轨迹方程求法

圆锥曲线与轨迹方程求法
答案 C
3.“神舟六号”载人航天飞船的运行轨道是以地 球中心为一个焦点的椭圆,设其近地点距地面n千米, 远地点距地面m千米,地球半径为R,那么这个椭圆的 焦距为________千米.
解析 设a、c分别是椭圆的长半轴长和半焦距, 则aa+ -cc= =mn++RR,,则2c=m-n.
答案 m-n
问题二:求轨迹方程的一般方法有哪些步 骤?
(5)交轨法:在求动点轨迹时,有时会出 现要求两动曲线交点的轨迹问题,这种问题通 常通过解方程组得出交点(含参数)的坐标, 再消去参数求得所求的轨迹方程(若能直接消 去两方程的参数,也可直接消去参数得到轨迹 方程),该法经常与参数法并用。
5、长度为 1 的线段 AB 在 x 轴上移动,点 P(0,1)与点 A 连成直线 PA,点 Q(1,2)与点 B 连成直线 QB,求直线 PA 与 直线 QB 交点的轨迹方程.
6.曲线的交点 设曲线C1:f1(x,y)=0,C2:f2(x,y)=0,P0(x0,y0)是C1与C2
的公共点⇔
f1(x0,y0)=0, f2(x0,y0)=0,
故求曲线交点即求方
程组ff12( (xx, ,yy) )= =00,的实数解.
1.下列各对方程中,表示相同曲线的一对方程是( ). A.y=x 与 y= x2 B.(x-1)2+(y+2)2=0 与(x-1)(y+2)=0 C.y=1x与 xy=1 D.y=lg x2 与 y=2lg x
(3)相关点法(代入法) 其基本思想:如果所求轨迹中的动点,随着另一动点的运 动而运动,而另一动点又在某一条已知曲线C:f(x,y)=0上运 动.此类问题常设法利用轨迹中的动点坐标(x,y),表示已知曲 线上的动点坐标(x1,y1),再将它代入已知曲线C的方程f(x,y) =0即可. (4)参数法 其基本思想:有时很难直接找出动点的坐标满足的关系, 可借助中间变量——参数,建立起动点坐标x、y之间的联系,然 后消去参数得到曲线方程.使用参数法求轨迹方程的关键是选 择恰当的参数和如何消去参数.解题的一般步骤为:引入参数— —建立参数方程——消去参数,得到一个等价的普通方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线综合--求轨迹方程
教学任务
教学流程说明
教学过程设计
圆锥曲线综合--求轨迹方程
求轨迹的常用方法:
(1)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; (2)代入求轨法(坐标平移法或转移法):若动点P(x,y)依赖于另一动点Q(x 1,y 1)的变化而变化,并且Q(x 1,y 1)
又在某已知曲线上,则可先用x 、y 的代数式表示x 1、y 1,再将x 1、y 1带入已知曲线得要求的轨迹方程;
(3)直接法:直接通过建立x 、y 之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;
(4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,
再由条件确定其待定系数,代回所列的方程即可
(5)参数法:当动点P (x,y )坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均
用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。

1、(1)一动圆过定点)0,1(A 且与定圆16)1(2
2
=++y x 相切,求动圆圆心的轨迹方程; (2)又若定点)0,2(A 定圆为4)2(22
=++y x 呢?
2、△ABC 中,B (-3,8)、C (-1,-6),另一个顶点A 在抛物线y 2=4x 上移动,求此三角形重心G 的轨迹方程.
3、在平面直角坐标系中,若}2,{},2,{-=+=y x b y x a
8=+。

求动点),(y x M 的轨迹C 的方程;
一、填空:
1.平面内到点A (0,1)、B (1,0)距离之和为2的点的轨迹为
2.已知M (-2,0)、N (2,0),动点P 满足|PM |-|PN |=4,则动点P 的轨迹方程是____________ 3.已知lg(2),lg |2|,lg(16)x y x -成等差数列,则点(,)P x y 的轨迹方程 __
4.P 是椭圆15
92
2=+y x 上一点,过P 作其长轴垂线,M 是垂足,则PM 中点轨迹方程为______ 5.点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是
6.动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是 。

7、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。

8、倾斜角为
4
π
的直线交椭圆42
x +y 2=1于A 、B 两点,则线段AB 中点的轨迹方程是
9、理)两条直线ax+y+1=0和x -ay -1=0(a ≠±1)的交点的轨迹方程是
二、选择:
10、,a b 为任意实数,若(,)a b 在曲线(,)0f x y =上,则(,)b a 也在曲线(,)0f x y =上,那么曲线(,)0f x y =的几何特征是( )
(A )关于x 轴对(B )关于y 轴对称 (C )关于原点对称 (D )关于直线x -y =0对称 11、方程2
2
2
2
(1)0x x y ++-=的图象是( )
(A )y 轴或圆(B )两点(0,1)与(0,-1)(C )y 轴或直线y =1±(D )答案均不对 12、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆 三、解答
17、已知动点p 到定点F (1,0)和直线x=3的距离之和等于4,求p 点的轨迹方程。

18、抛物线y 2=x +1,定点A (3,1),B 是抛物线上任意一点,点P 在AB 上满足
BP :P A =1:2,当点B 在抛物线上运动时,求点P 的轨迹方程并指出轨迹是什么曲线?
19、理)过原点作直线l 和抛物线642
+-=x x y 交于A 、B 两点,求线段AB 中点M 的轨迹方程。

相关文档
最新文档