集合的基本运算教案

合集下载

集合的基本运算一 必修一教案4

集合的基本运算一 必修一教案4

第 4 页 共 4 页
(二)例题讲解: 例 1. (课本例 5)设集合 A x 1 x 2 , B x 1 x 3 , 求 A∪B. 变式:A={x|-5≤x≤8}
例 2. (课本例 7)设平面内直线 l1 上点的集合为 L1, 直线 l2 上点的集合为 L2,试用集合的运算表示 l1 ,l2 的 位置关系。
第 1 页 共 4 页
教学难点
教学过程
1. 并集的定义: 一般地,由所有属于集合 A 或属于集合 B 的元素 所组成的集合,叫做集合 A 与集合 B 的并集(union set) 。记作:A∪B(读作: “ A 并 B” ) ,即
A B x x A, 或x B
用 Venn 图表示:
人教版高中数学必修 1 教案
授课时间: 备课时间: 年 年 月 月 日 日
课题:集合的基本运算㈠ (1)理解交集与并集的概念; (2)掌握交集与并集的区别与联系;
教学目标
(3)会求两个已知集合的交集和并集,并能正确应用它们解决一 些简单问题。
教学重点
交集与并集的概念,数形结合的思想。 理解交集与并集的概念、符号之间的区别与联系。 一、复习回顾: 1.已知 A={1,2,3},S={1,2,3,4,5},则 A S;{x|x∈S 且 x A}= 。 2.用适当符号填空: 0 {0}; 0 Φ; Φ {x|x 2 +1=0,x∈ R} {0} {x|x<3 且 x>5} ; {x|x>6} {x|x< - 2 或 x>5} ; {x|x>-3} {x>2} 二、新课教学 (一). 交集、并集概念及性质的教学: 思考 1.考察下列集合,说出集合 C 与集合 A,B 之 间的关系: (1) A {1,3,5} , B {2,4,6}, C 1,2,3,4,5,6 ; (2) A {x x是有理数} , B {x x是无理数}, C x x 是实数 ; 由学生通过观察得结论。

集合的基本运算教案

集合的基本运算教案

集合的根本运算教案高一数学——集合第三讲集合的根本运算【教学目的】:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

【重点难点】:1.重点:集合的交集与并集、补集的概念2.难点: 集合的交集与并集、补集“是什么”,“为什么”,“如何样做”【教学过程】:器具:一、复习1、集合间的根本关系:子集、真子集、相等、空集2、作业讲评二、新授(1)知识导向或者情景引入我们两个实数除了可以比较大小外,还可以进展加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?(2)并集1、观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?2、调查集合A={1,2,3},B={2,3,4}与集合C={1,2,3,4}之间的关系在上述两个例子中,集合A,B与集合C之间都具有如此的一种关系:集合C是由所有属于集合A或属于集合B的元素组成的。

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union),记作:A∪B ,读作:“A并B”,即:A∪B={x|x∈A,或x∈B}Venn图表示如上图。

说明:两个集合求并集,结果仍然一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题1:{1,2,3,6}∪{1,2,5,10}={1,2,3,5,6,10}.例题2:A={a,b,c,d,e},B={c,d,e,f}.那么A∪B={a,b,c,d,e,f}例题3:教材例5(3)交集征询题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(V enn图中两个集合相交的部分)还应是我们所关心的,征询题1、观察下面两个图的阴影部分,它们同集合A、集合B有什么关系?A B征询题2、调查集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系.上面两个征询题中,集合C是由那些既属于集合A且又属于集合B的所有元素组成的。

集合间的基本运算教案

集合间的基本运算教案

集合间的基本运算教案一、教学目标1.理解集合间的基本运算概念,掌握集合间的基本运算方法。

2.学会运用集合间的基本运算解决实际问题。

3.培养学生对数学的兴趣和解决问题的能力。

二、教学重点和难点1.重点:集合间的基本运算方法、规则和技巧。

2.难点:如何运用集合间的基本运算解决实际问题。

三、教学过程1.课程导入:通过实例引入集合间的运算概念,如两个集合的并集、交集、补集等,并简要介绍这些运算的意义和用途。

2.知识点讲解:详细阐述集合间的基本运算方法,包括并集、交集、补集、差集等,讲解它们的定义、性质和计算方法。

通过实例分析,让学生更好地理解这些运算的应用。

3.解题思路:举例说明如何解决集合间的应用题。

通过分析问题、建立数学模型、执行计算和整合答案等步骤,让学生掌握解决集合间应用题的方法。

4.注意事项:提醒学生在学习过程中需要注意哪些问题,如准确理解集合间的基本运算概念、熟练掌握基本运算方法、正确运用解决实际问题等。

5.课堂练习:布置相关练习题,让学生现场计算并集体讨论,及时纠正错误和理解不到位的地方。

6.作业与评价方式:布置课后作业,要求学生在规定时间内完成,并提交电子版练习题。

根据学生的练习情况和作业完成质量,进行评价和反馈,针对存在的问题进行纠错和指导。

四、教学方法和手段1.示范+讲解:教师通过讲解、示范、引导等方式帮助学生理解集合间的基本运算方法。

在知识点讲解和解题思路部分,注重示范和举例说明,帮助学生掌握基本概念和方法。

2.实例分析:教师通过分析实例,让学生更好地理解集合间基本运算的应用。

通过选取具有代表性的例题,引导学生分析问题、建立数学模型并解决问题,培养学生的解题能力和应用能力。

3.课堂互动:在教学过程中,注重与学生互动,鼓励学生提问和发表自己的观点。

通过组织小组讨论和集体评价等方式,激发学生的学习兴趣和参与度。

五、辅助教学资源与工具1.多媒体课件:使用多媒体课件展示教学重点和难点,帮助学生更好地理解集合间的基本运算方法和技巧。

集合及基本运算教案

集合及基本运算教案

集合及基本运算教案第一章:集合的概念1.1 集合的定义引入集合的概念,讲解集合的定义和性质。

举例说明集合的表示方法,如列举法和描述法。

1.2 集合的元素讲解集合中元素的特征,强调元素的唯一性和不可度量性。

通过实例解释集合中元素的关系,如属于和不属于。

1.3 集合的类型介绍常用集合的类型,如自然数集、整数集、实数集等。

讲解集合的分类方法,如无限集和有限集。

第二章:集合的运算2.1 集合的并集讲解集合的并集概念,即两个集合中所有元素的集合。

举例说明并集的表示方法和运算规则。

2.2 集合的交集讲解集合的交集概念,即两个集合中共有元素的集合。

举例说明交集的表示方法和运算规则。

2.3 集合的差集讲解集合的差集概念,即属于第一个集合但不属于第二个集合的元素的集合。

举例说明差集的表示方法和运算规则。

2.4 集合的补集讲解集合的补集概念,即在全集之外不属于给定集合的元素的集合。

举例说明补集的表示方法和运算规则。

第三章:集合的性质和运算规律3.1 集合的子集讲解集合的子集概念,即一个集合的所有元素都是另一个集合的元素。

举例说明子集的表示方法和运算规则。

3.2 集合的幂集讲解集合的幂集概念,即一个集合的所有可能的子集的集合。

举例说明幂集的表示方法和运算规则。

3.3 集合的德摩根定律讲解德摩根定律,包括德摩根第一定律和德摩根第二定律。

通过实例解释德摩根定律的应用和运算规律。

第四章:集合的排列和组合4.1 排列的概念讲解排列的概念,即从一组不同元素中取出几个元素按照一定的顺序排成一列。

举例说明排列的表示方法和运算规则。

4.2 组合的概念讲解组合的概念,即从一组不同元素中取出几个元素组成一个集合,不考虑元素的顺序。

举例说明组合的表示方法和运算规则。

4.3 排列和组合的公式讲解排列和组合的公式,如排列数公式和组合数公式。

通过实例解释排列和组合公式的应用和运算规律。

第五章:集合的应用5.1 集合在数学中的应用讲解集合在数学中的应用,如在代数、几何和概率论中的使用。

示范教案(集合的基本运算并集、交集)

示范教案(集合的基本运算并集、交集)

示范教案(集合的基本运算-并集、交集)第一章:集合的基本概念1.1 集合的定义与表示方法引入集合的概念,讲解集合的定义介绍集合的表示方法,如列举法、描述法等举例说明集合的表示方法及其应用1.2 集合的基本运算介绍集合的基本运算,包括并集、交集、补集等讲解并集的定义及其运算规则讲解交集的定义及其运算规则第二章:集合的并集运算2.1 并集的定义与性质讲解并集的定义及其表示方法介绍并集的性质,如交换律、结合律等举例说明并集的性质及其应用2.2 并集的运算规则讲解并集的运算规则,如两个集合的并集等于它们的交集的补集等举例说明并集的运算规则及其应用2.3 并集的计算方法介绍并集的计算方法,如列举法、Venn图法等讲解并集计算方法的步骤及其应用第三章:集合的交集运算3.1 交集的定义与性质讲解交集的定义及其表示方法介绍交集的性质,如交换律、结合律等举例说明交集的性质及其应用3.2 交集的运算规则讲解交集的运算规则,如两个集合的交集等于它们的并集的补集等举例说明交集的运算规则及其应用3.3 交集的计算方法介绍交集的计算方法,如列举法、Venn图法等讲解交集计算方法的步骤及其应用第四章:集合的混合运算4.1 混合运算的定义与性质讲解混合运算的定义及其表示方法介绍混合运算的性质,如分配律等举例说明混合运算的性质及其应用4.2 混合运算的运算规则讲解混合运算的运算规则,如并集与交集的运算规则等举例说明混合运算的运算规则及其应用4.3 混合运算的计算方法介绍混合运算的计算方法,如列举法、Venn图法等讲解混合运算计算方法的步骤及其应用第五章:集合的应用举例5.1 集合在实际问题中的应用举例说明集合在实际问题中的应用,如统计数据处理、网络管理等讲解集合运算在实际问题中的重要性5.2 集合运算的综合应用举例说明集合运算在实际问题中的综合应用,如数据挖掘、图论等讲解集合运算的综合应用的方法及其步骤5.3 集合运算的拓展与应用介绍集合运算的拓展与应用,如模糊集合、多集等讲解集合运算的拓展与应用的方法及其步骤第六章:集合运算的练习题与解答6.1 集合运算的基础练习提供一些基础的集合运算练习题,如并集、交集的计算等引导学生通过列举法、Venn图法等方法解答练习题6.2 集合运算的进阶练习提供一些进阶的集合运算练习题,如混合运算、集合的应用等引导学生通过列举法、Venn图法等方法解答练习题6.3 集合运算练习题的解答与解析对练习题进行解答,解释解题思路和方法分析练习题的难度和考察点,帮助学生掌握集合运算的知识点第七章:集合运算的常见错误与注意事项7.1 集合运算的常见错误分析学生在集合运算中常见的错误,如概念混淆、运算规则错误等举例说明这些错误的产生原因和解题方法7.2 集合运算的注意事项提醒学生在进行集合运算时需要注意的事项,如符号使用、运算顺序等讲解注意事项的重要性及其在解题中的应用7.3 集合运算的解题技巧与策略介绍学生在解题时可以采用的集合运算技巧与策略,如化简、分解等讲解技巧与策略的运用方法和适用场景第八章:集合运算在实际问题中的应用案例分析8.1 集合运算在图论中的应用介绍集合运算在图论中的应用,如图的连通性、网络流等分析实际案例,讲解集合运算在图论问题中的作用和意义8.2 集合运算在数据挖掘中的应用介绍集合运算在数据挖掘中的应用,如数据预处理、特征选择等分析实际案例,讲解集合运算在数据挖掘问题中的作用和意义8.3 集合运算在其他领域的应用介绍集合运算在其他领域的应用,如计算机科学、经济学等分析实际案例,讲解集合运算在其他问题中的作用和意义第九章:集合运算的拓展与研究动态9.1 集合运算的拓展介绍集合运算的拓展方向,如模糊集合、多集、粗糙集等讲解拓展领域的研究动态和应用前景9.2 集合运算的研究方法与技术介绍集合运算的研究方法,如逻辑推理、数学建模等讲解研究技术在集合运算中的应用方法和实例9.3 集合运算的学术交流与资源共享介绍集合运算领域的学术交流与资源共享平台,如学术会议、期刊等鼓励学生积极参与学术交流,分享研究成果和经验第十章:总结与展望10.1 集合运算的教学总结总结本课程的教学内容和目标,强调集合运算的重要性和应用价值回顾学生在学习过程中的收获和不足,提出改进教学方法的建议10.2 集合运算的学习展望鼓励学生继续深入学习集合运算及相关领域知识,提高解决问题的能力展望集合运算在未来的发展趋势和应用前景,激发学生的学习兴趣和动力重点和难点解析1. 第一章至第五章的章节内容,主要涉及集合的基本概念、基本运算以及应用举例。

集合的基本运算的教案

集合的基本运算的教案

集合的基本运算的教案这是集合的基本运算的教案,是优秀的数学教案文章,供老师家长们参考学习。

集合的基本运算的教案第1篇课型:新授课课时:1个课时。

教学目标:1、知识与技能:能理解两个集合并集与交集的含义,会求两个简单集合并集与交集,弄清“或”、“且”的含义,能理解子集的补集的含义,会求给定子集的补集,了解全集的含义、集合A与全集U的关系。

2、过程与方法:能用Venn图表示集合间的运算,体会直观图对理解抽象概念的作用、补集的思想也尤为重要。

3、情感态度与价值观:通过使用符号表示、集合表示、图形表示集合间的关系与运算,引导学生感受集合语言在描述客观现实和数学问题中的意义教学重、难点教学重点:并集、交集、补集的含义,利用维恩图与数轴进行交并补的运算。

教学难点:弄清并集、交集、补集的概念,符号之间的区别与联系。

教学方法教法:启发式教学探究式教学学法:自主探究合作交流教具准备彩色粉笔、幻灯片、投影仪教学过程(一)创设问题情境引入新课1、问题情境学校举行运动会,参加足球比赛的有100人,参加跳高比赛的有80人,那么总的参赛人数是多少?能否说是180人?这里把参加足球比赛的看作集合A,把参加跳高比赛的看作集合B,那么这两个集合会有哪些关系呢?请看下面5个图示:(用几何画板作图)2、学生根据已有的生活经验和数学知识独立探究,教师巡视、指导;3、合作讨论、交流探究的结果(请一位同学将结果写到黑板上)图(1)给出了两个集合A、B;图(2)阴影部分是A与B公共部分;图(3)阴影部分是由A、B组成;图(4)集合A是集合B的真子集;图(5)集合B是集合A的真子集;4、引导学生观察、比较、概括出引例中阴影所表示的含义,抽象得出交集、并集的概念,引入新课揭示课题:集合的基本运算(板书课题)(二)新课探究1、概念并集:一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记作:A∪B ,读作:“A并B”,即:A∪B={x|x∈A,或x∈B}Venn图表示:交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B ,读作:“A交B”,即:A∩B={x|∈A,且x∈B}交集的Venn图表示【问题】根据定义及维恩图能总结出它们各自的性质吗?结论是:由图(4)有A B,则A∩B=A ,由图(5)有B A,则A∪B=A2、基本练习,加深对定义的理解拓展:求下列集合A与B的并集与交集(用几何画板展示图片)3、例题讲解【例4】设A={4,5,6,8},B={3,5,7,8},求A∪B。

集合的基本运算(教案)

集合的基本运算(教案)

§1.1.3 集合的基本运算(教案)一、并集(重点)定义:一般地,由所有属于集合A 或属于集合B 的所有元素所组成的集合,称为集合A 与集合B 的并集(union set ),记作A B (读作“A 并B ”), 其数学语言表示形式为:{|AB x x A =∈,或}.x B ∈注意1:两个集合求并集,实际上也是一种运算,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。

例子:{3,5,6,8},{4,5,7,8}A B ==,则{3,4,5,6,7,8}A B =,而不是{3,5,6,8,4,5,7,8}.A B = 用Venn 图表示两个集合间的“并”运算(求并集):与子集的联系:A AB ⊆,B A B ⊆性质:由并集的定义及韦氏图不难看出,并集具有以下性质: ○1A A A =(吸收律); ○2A ∅=A ; ○3A B B A =(交换律); ○4()()A B C A B C =(结合律)..例1、(1)设集合{1,2,3},{2,3,4,5}A B ==,求AB ; {1,2,3,4,5}(2)设集合{|35}A x x =-<≤,{26}B x =<≤,求AB . {|36}.x x -<≤二、交集(重点)、定义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集(intersection set ),记作A B (读作“A 交B ”), 其数学语言表示形式为:{|,AB x x A =∈且}.x B ∈注意2:正如并集一样,两个集合的交集仍然是一个集合,所不同的是交集是由两个集合中的共同元素所组成的集合.也就是说,交集是由那些既属于集合A 又属于集合B 的所有元素组成的. 例子:{1,2,3,4,5},{2,4,5,8,9}A B ==,{2,4,5}.AB =用Venn 图表示两个集合间的“交”运算(求交集):A ∪B与子集的联系:AB A ⊆,A B B ⊆性质:由交集的定义及韦氏图不难看出,交集具有以下性质: ○1A A A =(吸收律); ○2A ∅=∅; ○3A B B A =(交换律); ○4()()A B C A B C =(结合律). 随堂练习1: 把例1中的“求AB ”改为“求A B ”重做{2,3};{|25}.x x <≤例2、(1)集合A={x|x 2+5x -6≤0},B={x|x 2+3x>0},求A ∪B 和A∩B . (2)集合A={x |x 是等腰三角形}, B={x |x 是直角三角形}, 求A ∩B, A ⋃B解:(1)∵A={x|x 2+5x -6≤0}={x|-6≤x≤1}, B={x|x 2+3x>0}={x|x<-3或x>0}.A ∪B=R .AB {|63x x=-≤<-或01}.x <≤(2)A ∩B={x |x 是等腰三角形}∩{x |x 是直角三角形}={x |x 是等腰直角三角形},A ∪B={x |x 是等腰三角形}∪{x |x 是直角三角形}={x |x 是等腰三角形或直角三角形} 三、补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(universe set),通常记作.U补集:对于一个集合A,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementanry set),简称为集合A 的补集,记作U A ð,读作全集U 中集合A 的补集. 其数学语言表示形式为:{|,U A x x U =∈ð且}x A ∉,例子:历史老师? 注意3:(1)全集并不是一成不变的,它是依据所研究问题的来加以选择的。

1.3集合的基本运算教案

1.3集合的基本运算教案

1.3集合的基本运算教案一、内容和内容解析1.内容并集和交集的含义及并、交的基本运算.2.内容解析教科书类比数的研究,采用了“集合的含义与表示—集合的关系—集合的运算”的研究路径学习和研究集合的,共安排了三节内容.本节是第三节内容,主要研究集合的基本运算.作为数学运算的新内容、新形式,集合的运算是学生进入高中学习的第一种运算.无论是在知识上,还是在方法上,不仅对后面的学习有直接的影响,而且也是对前面所学的知识的巩固;不仅体现了数学运算素养,也蕴含着逻辑推理的基本成分,既是学生既往逻辑思维的抽象表达,也是学生进一步学习逻辑思维的基础和前提.本节内容共需要两个课时.本节课是第一课时,重点研究集合的并集和交集.在上节类比实数之间关系研究集合间关系的基础上,教科书继续类比实数运算,联想集合的运算,类比实数的加法运算研究集合的“并”运算.教材首先从学生熟悉的集合出发,结合实例,抽象概括出集合的“并”运算和“交”运算,在此基础上,从自然语言、符号语言以及图形语言三种语言的角度帮助学生理解并集和交集的含义,在渗透类比思想、数形结合思想和化归转化思想的同时,提升学生的数学抽象素养和数学运算素养.元素与集合的关系是研究集合的“并”运算和“交”运算的基础,当我们研究两个集合的运算的时候,其实质依然是回归到了元素与集合的关系.因此,集合的并集和交集也都是从元素与集合之间的关系来定义的.如明确这一点,将有助于学生理解并集与交集的含义及其符号表示.结合以上分析,确定本节课的教学重点:并集与交集的含义,用集合语言表达数学对象或数学内容.二、目标和目标解析1.目标(1)理解两个集合的并集与交集的含义,能求两个集合的并集与交集;(2)能使用Venn图表达集合的并集与交集,体会图形对理解抽象概念的作用,渗透数形结合思想,提升直观想象素养;(3)能用集合语言表达数学对象或数学内容,并能进行自然语言、图形语言、符号语言间的转换,提升数学抽象素养.2.目标解析达成上述目标的标志是:(1)能结合简单的问题和情境解释并集与交集的含义,能求两个给定集合的并集与交集.(2)对于给定的问题和情境,能使用Venn图表达集合的“交”运算和“并”运算,从中体会图形对理解抽象概念的作用.(3)在具体问题情景中,能根据需求进行自然语言、符号语言和图形语言的转换,熟悉符号语言和图形语言的表述方式,并能使用符号语言表述数学对象,积累数学抽象经验.三、教学问题诊断分析集合的运算是学生进入高中学习的第一种运算,较初中学习的数式的运算更抽象,元素与集合的关系是其研究的基础.由于之前学生已学习了集合的概念和基本关系,同时学生已有类比实数大小关系研究集合间的关系的体验,在此类比实数加法运算研究集合的“并”运算,学生在心理上会觉得比较自然,不会感到困难.但是,由于符号语言的简约、精炼和抽象,学生在把抽象出来的并集和交集概念的自然语言表述转化为符号语言时会有困难.同时,由于受生活语言负迁移的影响,学生会对并集概念中的关键词“或”的理解存在困难.交集概念中的“且”字,由于它与生活语言中的“且”字意义差别不大,学生理解起来要比较容易.结合以上分析,确定本节课的教学难点:集合并集与交集的符号表示及识别,以及对并集概念中的关键词“或”的理解.为突破这一难点,教学中要让学生熟练掌握有关集合的术语和符号,并会正确地表示一些简单的集合.要让学生体会到符号语言和图形语言的优势,加强学生的使用频率,逐渐提高学生自然语言、符号语言和图形语言的转换能力.并集里的“”包含三种情况:而生活中的“或”常常是二选一、非此即彼的意思,教学中要根据自己的生活经验结合具体实例讲清两者的区别.还可以借助代数运算帮助学生理解“或”“且”的含义,比如求方程组的解集是求各个方程的解集的交集,求方程(x+2)(x+1)=0的解集,则是求方程x+2=0和x+1=0的解集的并集.教学中还要从分析元素与集合的关系入手,借助韦恩图表示并集概念中的“或”所代表的三层含义,深化学生对并集概念的理解.四、教学过程设计(一)复习引入问题1:(1)上节课我们类比实数之间的大小关系,从元素与集合之间的关系入手研究了集合间的基本关系,两个集合间的基本关系有哪些?如何判断两个集合间的关系?(2)前面我们先后研究了集合的概念和表示方法、集合间的基本关系,接下来我们还要研究什么问题?用什么方法研究?师生活动:对于(1),教师提问后学生回答问题,教师根据学生回答的情况补充、完善.对于(2),学生独立思考后交流讨论、回答问题.学生已有类比实数大小关系研究集合间基本关系的经验,所以很容易联想到类比实数加、减、乘、除等运算来研究集合的运算.设计意图:通过引导学生回顾前面所学知识和研究方法,引导学生通过类比实数运算,联想集合运算,提出要研究的问题:集合的基本运算.进一步提高类比推理的思维能力和发现问题、提出问题的能力,提升逻辑推理素养.同时,对于集合的研究,学生也经历了通过类比数的研究,从抽象新的数学对象(概念)到研究数学对象(特性、表示方法、基本关系和基本运算)的过程.这是一个完整的数学思考过程,作为一个范例,它向学生完整展示了研究数学问题的“基本套路”,这将为后续的教学提供思维方式的示范以及学习方法的引领.(二)并集1.概念的引入问题2:阅读教科书第10页“观察”,类比实数的加法运算,集合之间可以“相加”吗?师生活动:学生独立观察,充分思考,交流探讨.通过类比和交流,得出结论,即集合也可以运算.根据学生交流讨论的情况,教师可以适时地选择以下问题进行追问.追问1:你能说出集合C 与集合A,B 之间的关系吗?师生活动:学生回忆并口答两个集合间的基本关系.通过三者关系的判断复习集合间的关系.追问2:从元素与集合之间关系的角度出发,你能发现两个问题中集合C与集合A,B之间的关系吗?你能分别用自然语言、符号语言和Venn图来叙述或表示集合 C 与集合A,B 之间的这种关系吗?师生活动:学生观察、分析、讨论交流,并尝试用三种语言表示这种关系,在学生交流的基础上教师补充、总结.从元素与集合之间关系的角度出发,学生很容易发现集合C 是由A,B 这两个集合的所有元素构成的,即集合C 是由所有属于A或属于B的元素组成的,并尝试用符号语言和图形语言表示.学生可能会在用符号语言表示时遇到困难,教师要引导学生回顾描述法,分析集合C 中的元素与A,B 两个集合元素的关系,在此基础上用符号语言表示.教师要向学生强调这里的“或”所连接的并列成分之间至少要满足一个,要与生活语言中的“或”区分开,生活中的“或”常常是二选一、非此即彼的意思.追问3:类比实数加法,你能尝试归纳概括出两个集合A 与B 的并集的定义吗?师生活动:学生在前面观察、讨论、分析的基础上,由特殊到一般,经过归纳—补充或修正—完善—得出并集的定义,教师引导和补充,并给出记号和读法:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B的并集(union set),记作A∪B,读作“A并B ”.设计意图:通过实数的加法运算让学生类比集合是否也可以“相加”,增强学生由旧知探究新知的兴趣和能力.借助具体而又简单的集合实例,让学生观察、比较与分析,启发引导学生用文字语言给出并集的定义,帮助学生更深刻地理解集合的并集的运算,也有利于培养自主探究能力、分析归纳能力、分析问题和解决问题的能力.2.概念的理解问题3:你能用符号语言和Venn图表示并集的概念吗?师生活动:教师引导学生把文字语言转换成符号语言和图形语言符号语言:图形语言:图1设计意图:在用文字语言表示定义的基础上,用符号语言和图形语言表示并集的定义,有助于学生更好地理解并集的概念和运算实质.用符号语言表示并集定义,强调数学符号的准确性,学生可从中体会数学符号的简洁性和严谨性.利用多种形态的Venn图表达集合的并集运算,学生可从中体会直观图示对理解抽象概念的作用,有助于提升数学抽象素养和直观想象素养.追问:定义中的关键词有哪些?如何理解它们?师生活动:教师引导学生分析,并结合Venn图强化对“或”的理解,如图2.所有:表示集合A与集合B的元素一个都不能少;或:所连接的并列成分之间至少要满足一个,即有三种情况;集合:两个集合求并集,结果还是一个集合.设计意图:引出定义之后,及时让学生分析定义,抓住定义的重点,比如“所有”、“或”、“集合”等关键词,帮助学生更深刻地理解集合的并集的概念及其运算实质.3.概念的巩固应用例1 设A={4,5,6,8}, B={3,5,7,8}, 求A∪B.师生活动:本题难度较小,学生自己独立完成后交流答案,查找错误原因,教师检查、反馈.追问:为什么相同的元素5和8只出现一次?请用Venn 图表示结果.(集合元素的互异性)设计意图:巩固元素个数为有限个的集合间的并集运算,注意运算过程中元素要不重不漏,公共元素在并集中只能出现一次.用Venn图表示结果,在加强直观性的同时,也为后面学习两个集合的交集做准备.例 2 设集合A= {x|-1< x < 2}, 集合B= {x| 1< x <3 },求A∪B.师生活动:学生独立思考后交流、讨论.如果学生思维遇到障碍,教师再引导学生回顾初中用数轴表示不等式解集的方法.在此基础上,引导学生利用数轴将集合A与集合B分别表示出来并进行求解.设计意图:是针对例1的一个提高,集合中元素的个数由有限个到无限个,学生的思维产生冲突,在寻求发现新的解决方法的过程中,引出“数轴”这一辅助工具,直观表现集合的并运算过程,渗透数形结合的思想方法,培养学生类比、分析问题和解决问题的能力.教学中要注意数轴上的空心点.通过该问题的解决,使学生意识到用描述法表示的连续型元素的数的集合,运算时常借助数轴来计算结果.4.性质问题4:下列关系式成立吗?师生活动:学生独立思考、交流讨论,教师引导学生根据并集运算的定义对性质进行合理解释.设计意图:巩固、加深对集合的并集运算和集合元素“互异性”的理解,进一步体会空集的意义,关注集合运算的特殊性,提升学生的逻辑推理能力.(三)交集过渡语:前面我们研究了集合的并运算,我们首先由特殊到一般,通过观察、归纳、抽象出并集的定义,并用符号语言和图形语言表示定义,接着对定义中的关键词进行了分析,最后又依据定义研究了并运算的两个性质.由例1和例2(引导学生看例1中的Venn图和例2中的数轴)可知,这里还有一个特殊的集合,这个集合的元素是由两个集合的公共元素组成的,类比“并集”的研究过程,请你对这种集合运算进行研究.问题5:由两个集合所有元素合并可得两集合的并集,而由两个集合的公共元素组成的集合又会是两集合的一种怎样的运算?阅读教科书第11页上的第二个思考,请类比“并集”的研究过程对这种运算进行研究.师生活动:类比“并集”的研究过程探究“交集”运算,学生独立思考后再交流,教师引导启发学生完成相关学习内容.设计意图:探究交集运算,培养学生的自学能力以及发现问题、提出问题、分析和解决问题的能力,为终身发展培养基本素质.根据学生自主探究、交流情况,教师可以灵活选择以下问题进行追问.1.概念的引入追问1:阅读教科书第11页第二个“思考”,从元素与集合之间关系的角度出发,你能发现两个问题中集合C与集合A,B之间的关系吗?你能分别用自然语言、符号语言和Venn 图来叙述或表示集合C与集合A,B之间的关系吗?师生活动:类比“并集”的研究过程,学生观察、讨论、分析,发现集合C是由这A,B两个集合的公共元素或者说相同元素构成的,即集合C是由所有既属于集合A又属于集合B 的元素组成的,并用符号语言和图形语言表示集合C与集合A,B之间的关系.追问2:类比两个集合的并集,你能归纳概括出两个集合A与B的交集的定义吗?师生活动:类比“并集”概念建构的思维过程,学生在前面观察、讨论、分析的基础上,由特殊到一般,尝试给出交集的定义,教师引导、补充和完善,并给出记号和读法:一般地,由所有属于集合A且属于集合B的元素组成的集合,称为集合A与集合B的交集(intersection set),记作A ∩B,读作“ A交B ”.设计意图:类比“并集”概念建构的思维过程(观察—归纳—抽象),借助具体而又简单的集合实例,学生通过观察、比较与分析,归纳共同特征,由此引出集合的“交”运算,并类比并集,用文字语言给出交集的定义,帮助学生更深刻地理解集合的交运算,再次培养学生的自主探究能力、分析归纳能力、分析问题和解决问题的能力.这里用已形成的思维操作程式指导“交集”概念的建构,这样的思维过程所承载的思维训练指向是“合情推理”,而且思维活动的开展也易于学生操作.2.概念的理解问题6:你能用符号语言和Venn图表示交集的概念吗?师生活动:类比并集,学生独立思考,把文字语言转换成符号语言和图形语言.需要强调的是,当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.符号语言:;图形语言:图3.设计意图:再次让学生体会数学符号的简洁性、严谨性和直观图示对理解抽象概念的作用,帮助学生更好地理解交集的概念和运算实质,进一步培养数学抽象素养和直观想象素养.追问4:定义中的关键词有哪些?如何理解它们?师生活动:类比“并集”的研究过程,学生自己分析定义中的关键词.所有:表示集合A与集合B的公共元素一个都不能少;且:同时、公共之意,既属于集合A又属于集合B的元素;集合:两个集合求交集,结果还是一个集合.设计意图:引出定义之后,及时让学生分析定义,抓住定义的重点,比如“所有”、“且”、“集合”等关键词,帮助学生更深刻地理解集合的交集的概念及其运算实质.3.概念的巩固应用例3 立德中学开运动会,设A= {x|x是立德中学高一年级参加百米赛跑的同学} ,B= {x|x是立德中学高一年级参加跳高比赛的同学}, 求A∩B.师生活动:学生回顾集合的表示方法和交集的含义,独立解决问题,教师个别指导、反馈.教学中可利用教学班级这个实际模型对该问题进行改编.设计意图:巩固交集的定义,利用实际模型加深学生对交集的理解.例4 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.追问:平面内两条直线的关系有几种?(平行、相交或重合)如何用集合语言来表示它们之间的关系呢?师生活动:引导学生回顾平面内两条直线的位置关系及其特征.根据集合交集的含义,学生尝试用集合运算表示直线的位置关系,教师检查,作个别指导并进行反馈.设计意图:主要目的在于使用集合语言描述几何对象及其之间的关系,加深学生对集合的关系和运算的理解.4.性质问题7:下列关系式成立吗?师生活动:类比并集的性质,学生独立思考、分析,依据交集定义进行合理解释.设计意图:巩固、加深对集合的交运算和集合元素“互异性”的理解,进一步体会空集的意义,关注集合运算的特殊性.练习:教科书第12页练习第1,2题.师生活动:学生做练习,教师根据学生练习情况给予反馈.(四)归纳总结、布置作业教师引导学生回顾本节知识,并回答以下问题:(1)什么是并集?什么是交集?它们之间有什么联系与区别?请完成下列表格.(2)你是如何研究集合的并集和交集的?(3)如何求两个集合的并集和交集?设计意图:从知识内容、研究方法和蕴含的重要数学思想等方面对本节课进行小结,通过对知识方法的梳理和归纳,帮助学生构建知识网络.同时,利用表格通过对比,使学生能区分并集和交集的概念,认识到“并”“或”与记号“∪”之间的对应关系,以及“交”“且”与记号“∩”之间的对应关系,有助于学生正确识别相关符号表述.布置作业:教科书习题1.3第1,2,3题.五、目标检测设计1.设A= {a,b,d,e}, B= {b,c,e,f},求A∩B,A∪B.设计意图:考查学生对元素个数为有限个的集合间的并集运算和交集运算的理解和掌握程度.设计意图:考查学生对元素个数为无限个的集合间的并集运算和交集运算的理解和掌握程度.3.设A= {x|x是等腰三角形},B= {x|x是直角三角形}, 求A∩B,A∪B.设计意图:考查学生对集合间的并集运算和交集运算的理解和掌握程度.此题是在既往概念学习的基础上,要求学生从集合中元素的特征性质出发,经过逻辑推理得出两个集合并集和交集的运算结果,并用符号语言予以表达,需要学生具有一定的逻辑推理能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1集合的基本运算教案设计
一、教学目标
1、学生能理解两个集合并集与交集的含义,会求两个简单集合并集与交集,弄清“或”、“且”的含义。

2、学生能用Venn图表示集合间的运算,体会直观图对理解抽象概念的作用。

3、学生通过使用符号表示、集合表示、图形表示集合间的关系与运算,引导学生感受集合语言在描述客观现实和数学问题中的意义。

二、教学重、难点
教学重点:并集、交集的含义,利用韦恩图与数轴进行交并的运算。

教学难点:弄清并集、交集的概念,符号之间的区别与联系。

三、教学方法
(一)教法:
启发式教学探究式教学
(二)学法
自主探究合作交流
(三)教具准备
彩色粉笔、幻灯片、投影仪
四、教学过程
(一)创设问题情境引入新课(预计5分钟)
温故知新:用适当符号填空.
(1)0__ {0} ; 0__ ∅ ; ∅ __{x|x²+1=0,x∈R} ;
{x|x>-3} {x|x>2};
(2)已知A={1,2,3}, S={1,2,3,4,5},则A S, {x|x∈S且x A}=____.
1、问题情境
学校举行运动会,参加足球比赛的有100人,参加跳高比赛的有80人,那么总的参赛人数是多少?能否说是180人?这里把参加足球比赛的看作集合A,把参加跳高比赛的看作集合B,那么这两个集合会有哪些关系呢?请看下面5个图示:
2、学生根据已有的生活经验和数学知识独立探究,教师巡视、指导;
3、合作讨论、交流探究的结果(请一位同学将结果写到黑板上)
图(1)给出了两个集合A、B;
图(2)阴影部分是A与B公共部分;
图(3)阴影部分是由A、B组成;
图(4)集合A是集合B的真子集;
图(5)集合B是集合A的真子集;
4、引导学生观察、比较、概括出引例中阴影所表示的含义,抽象得出交集、并
集的概念,引入新课
揭示课题:集合的基本运算(板书课题)
(二)新课探究(预计15分钟)
1、概念
并集:一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记作:A∪B ,读作:“A并B”,即: A∪B={x|x∈A,或x∈B} Venn图表示:
交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集,记作A∩B ,读作:“A交B”,即: A∩B={x|∈A,且x∈B}
交集的Venn图表示
【问题】根据定义及维恩图能总结出它们各自的性质吗?
结论是:由图(4)有A⊆B,则A∩B=A,由图(5)有B⊆A,则A∪B=A
2、基本练习,加深对定义的理解
拓展:求下列集合A与B的并集与交集(用几何画板展示图片)
3、例题讲解
【例1】A={x|-1<x<8},B={x|x >4或x<-5},求A∩B ,A∪B.
【变式】A={x|-5<x<8},B={x|x >4或x<-5},求A∩B ,A∪B.
【例2】新华中学开运动会,设A={x丨x是新华中学高一年级参加百米赛跑的同学},B={x丨x是新华中学高一年级参加跳高比赛的同学},求A∩B。

解:A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合,所以,A∩B={x丨x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}
【例3】学生独立练习,教师检查,作个别指导并进行反馈:平面内两条直线的位置关系有三种:平行、相交或重合。

那如何用数学符号语言来表示它们之间的关系呢?
(三)课堂训练,巩固新知(预计8分钟)
1、若集合M={-1,0,1},N={0,1,2},则M∩N等于()
A.{0,1}
B.{-1,0,1}
C.{0,1,2}
D.{-1,0,1,2}2<
A
<
、已知集合
>
{x
=则A∩B=
=
2},
|
-1
x
{x
B
x
1},
|
3、
4、
学生自主完成,然后小组讨论、交流
(四)性质小结(预计5分钟)
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A
A ⊆A ∪
B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A
若A ∩B=A ,则A ⊆B ,反之也成立
若A ∪B=B ,则A ⊆B ,反之也成立
若x ∈(A ∩B ),则x ∈A 且x ∈B
若x ∈(A ∪B ),则x ∈A ,或x ∈B
(五)课堂小结(预计2分钟)
1.掌握了借助Venn 图、数轴来表示集合的运算。

2.学会了利用交集、并集的性质来解决相关问题.
3.体会了利用等价转化和数形结合的思想来研究集合问题.
(六)布置作业
教材习题1-3A 组1、2、3题,B 组1题
五、板书设计
22{(,)|1},{(,)|}A x y x y x y B x y x y y x A B =+===已知集合、为实数,且、为实数,且,则的元
素个数为_______22{(,)|1},{(,)|1}A x y x y x y B x y x y y x A B =+==+=已知集合、为实数,且、为实数,且,则的元
素个数为_______。

相关文档
最新文档