最大吸收波长的计算
紫外光谱习题及答案

紫外光谱习题1. 下列化合物对近紫外光能产生那些电子跃迁在紫外光谱中有哪何种吸收带(1)CH 3CH 2CHCH 2Cl (2)CH 2CHOCH 3 (3)(4) (5)O(6)CH 3CCH 2COCH 2CH 3(7)ClCH 2CH2=CH CC 2H 5解:紫外吸收在200-400nm 区域,且有共轭结构(1)无共轭结构,无吸收锋(2)共轭结构,无吸收峰 (3)有*跃迁,产生K 带和B 带吸收(4)有*跃迁和n*跃迁,产生K 带、R 带和B 带吸收 (5)有*跃迁,产生K 带和B 带吸收(6)有n*跃迁,产生R 带,产生烯醇式互变异构体时,还有K 带吸收 (7)有*跃迁和n*跃迁,产生K 带和R 带吸收2、比较下列各组化合物的紫外吸收波长的大小(k 带)(1) a. CH 3(CH 2)5CH 3 b.(CH 3)2C=CH-CH 2 =C (CH 3)2 CH-CH=CH 2(2) c.(3)b. Oc.OOHNH 2OCH=CH 2O OOCH解:(1)有共轭结构时,紫外吸收波长增大;双键是助色基团,使紫外吸收波长增大,则:c> b> a (2)有共轭时结构时,环内共轭>环外共轭, 甲基可以增大紫外吸收波长,则:a> c>b(3)有共轭时结构时,环内共轭>环外共轭, 甲基可以增大紫外吸收波长,则:a> c>b3、用有关经验公式计算下列化合物的最大吸收波长 (1))+25(5个烷基取代)+5(1个环外双键)=283 nm(2) max=(基本值)+20(4个烷基取代)+10(2个环外双键)=244 nm (3)答:max=253(基本值)+20(4个烷基取代)=273 nm (4)答:max= 215(基本值)+10(1个烷基α取代)=225 nm(5)答:max=202(基本值)+10(1个烷基α取代)+24(2个烷基β取代)+10(2个环外双键=246nm(6)CH 2 =C C OC H 3 CH 3O CH 3答:max=215(基本值)+10(1个烷基α取代)+24(2个烷基β取代)=249 nm (7)答:max=215(基本值)+18(1个烷基γ取代)+36(2个烷基δ取代)+30(延长1个共轭双键)=299 nm答:无共轭结构,故无吸收(9)答:max=208(基本值)+60(1个N(CH 3)2取代)=268 nm(10)答:max=246(基本值)+7(1个邻位-OH 取代)+3(1个间位-CH 3取代)=256 nm (11)答:max=230(基本值)+25(1个对位-OH 取代)=255 nm4、能否用紫外光谱区分下列化合物如何区分 (1) a 、)+15(3个烷基取代)=232 nm b 、OO OHCH 3NCH 3 CH 33 OOHCH 3答:max=217(基本值)+20(4个烷基取代)+5(1个环外双键)=242 nm (2) a答:max=214(基本值)+25(5个烷基取代)+10(2个环外双键)+30(延长1个共轭双键)=287 nm b 、答:max=)+15(3个环外双键)+60(延长2个共轭双键)=353 nm (3) a 、答:max=215(基本值)+10(1个烷基α取代)+12(1个烷基β取代)=237 nm b 、max=基本值)+10(1个烷基α取代)+24(2个烷基β取代)+30(延长1个共轭双键)=249 nm(4) a 、答:max=217(基本值)+30(1个环外双键)+30(延长1个共轭双键)=247 nmC O CH3 O C O O CH 2 CH 3b 、答:基本值)+30(1个β双-OR 取代)=247 nm5、异丙叉丙酮在3种溶剂中的n*跃迁的吸收波长如下: 计算异丙叉丙酮在水中和乙醇中氢键强度。
波谱分析A复习题

山东理工大学成人高等教育波普分析复习题一、填空1.电子跃迁有种类型,其中跃迁所需的能量最高,而跃迁所需的能量最低。
跃迁与跃迁可在紫外及可见光谱中反应出来。
2.同类原子组成的化学键,折合质量相同,力常数越大,基本振动频率越。
3.共振频率与磁场强度的关系是。
4.原子核外的电子在外磁场的作用下产生感应磁场,感应磁场的方向与外磁场的方向,因而使核实际所受到的磁场强度于外磁场强度,这种效应称为作用。
当外磁场强度不变时,由于感应磁场抵消了部分外磁场,因此核的共振频率会降低。
5.核磁共振分析中所用的标准物为。
6.物质吸收电磁辐射需具备条件,一是能级跃迁所需要的能量应电磁辐射的能量,二是分子的发生变化。
7.紫外吸收光谱中,B 带和E 带是族化合物的特征吸收带。
8.分子的能级的跃迁产生红外吸收光谱。
9.质量分析器中,质荷比与H 、V 、R 的关系式是,当H 、R 一定时,V 由低到高。
最先通过狭缝的离子是质荷比最的。
10.增加溶剂的极性能使π→π*跃迁的吸收带波长移,而使n →π*跃迁的吸收带波长移。
11.某核的自旋量子数I=1/2,该核在磁场中有种自旋能级,磁量子数分别为。
12.CS 2是直线型分子,它有种振动形式,其中种是红外活性的,另外种是红外非活性的。
13.屏蔽效应使原子核实际所受到的磁场强度比外磁场强度,要使原子核的共振频率不变,则应外磁场强度。
14.四甲基硅烷是分析中常用的标准物。
规定其化学位移为。
15.质谱图中最强的峰称为峰。
二、选择题1.光量子的能量正比于辐射的( )A. 频率B. 波长C. 波数D. 传播速度E. 周期2.所谓真空紫外区,其波长范围是( ) A. 200~400nm B. 400~800nm C. 10~200nm D. E.3. 有两种化合物如下, 以下说法正确的是( )。
nm 310nm 310(1) (2) A. 两者都有 B. 两者都有 C. 两者都有 跃迁且吸收带波长相同 D. 化合物(1)的 跃迁的吸收波长比(2)长 E. 化合物(1)的跃迁吸收波长比(2)短4.当用红外光激发分子振动能级跃迁时,化学键越强,则( )A. 吸收光子的能量越大B. 吸收光子的波长越长C. 吸收光子的频率越大D. 吸收光子的数目越多E. 吸收光子的波数越大 5.分子不具有红外活性的者,必须是( )。
最大吸收波长和激发波长

最大吸收波长和激发波长在光学领域中,最大吸收波长和激发波长是两个重要的概念。
它们分别指的是物质吸收光线的最大波长和能够激发物质内部能级转变的波长。
本文将从这两个方面展开,介绍它们的意义及应用。
最大吸收波长,顾名思义,是指物质能够吸收的最长波长的光线。
当光线照射到物质上时,光子与物质中的电子相互作用,导致电子跃迁到高能级。
不同物质对不同波长的光有不同的吸收能力。
最大吸收波长是物质对特定波长光吸收能力的极限,超过这个波长,物质几乎不吸收光能。
这一性质在实际应用中有着广泛的用途。
最大吸收波长的研究对于光学传感器、太阳能电池等领域的发展具有重要意义。
以太阳能电池为例,太阳光中的能量主要集中在可见光和近红外光区域,因此太阳能电池的最大吸收波长需要与太阳光的波长相匹配,以提高光电转换效率。
通过研究不同材料的吸收光谱,科学家们可以设计出更高效的太阳能电池材料,使其能够更好地吸收太阳光能。
除了最大吸收波长,激发波长也是光学研究中的重要参数。
激发波长是指物质内部的能级转变所需的波长。
当物质受到特定波长的光照射时,能量被吸收,导致物质内部的电子跃迁到更高能级。
这种激发过程在许多光学应用中起着至关重要的作用。
激发波长的研究对于激光器、荧光材料等领域具有重要意义。
以激光器为例,激光器的工作原理是利用物质受到激发波长光的作用,使得物质内部的电子跃迁到更高能级,然后通过受激辐射产生激光。
因此,激光器的激发波长需要与激光器材料的能级结构相匹配,以实现有效的能量转换和激光输出。
通过研究不同材料的激发波长,科学家们可以设计出更高效的激光器材料,提高激光器的功率和性能。
最大吸收波长和激发波长的研究不仅在科学研究中有重要应用,也在工程技术中发挥着重要作用。
例如,在光通信领域,光纤的传输效率与光纤的吸收和发射波长密切相关。
通过研究不同波长的光在光纤中的传输特性,可以优化光纤的设计,提高光纤的传输效率。
最大吸收波长和激发波长在光学领域的研究和应用中起着重要作用。
最大吸收波长的计算 - 副本

5
例1 计算下面化合物的 λmax
C9H19
O O H3C
同环共轭二烯母体基本值 253nm 增加共轭双键(2×30) + 60nm 环外双键(3×5) + 15nm 环基取代(5×5) + 25nm 酰氧基取代 + 0nm λmax计算值 353nm (实测值:356nm)
6
R
异环共轭二烯母体基本值: 214nm 增加共轭双键(1×30) + 30nm 环外双键(3×5) + 15nm 环基取代(5×5) + 25nm λmax计算值 284nm (实测值:283nm)
7
链状共轭双键基本值 4个烷基取代
217nm +20nm
2个环外双键
λmax计算值
+10nm
247nm
(实测值:247nm)8来自OAB
C
4
(3)计算时应将共轭体系上的所有取代基及所有环外 双键均考虑在内,对“身兼数职”的基团应按实际
“兼职”次数计算增加值,同时应准确判断共轭体系
的起点与终点,防止将与共轭体系无关的基团计算在
内;
(4)该规则不适用于共轭体系双键多于四个的体系,
也不适用于交叉共轭体系,典型的交叉共轭体系骨架
结构如下:
2
表2-8 环状共轭二烯波长计算法
3
•应用此规则的注意事项: (1)当有多个母体可供选择时,应优先选择较长波 长的母体,如共轭体系中若同时存在同环二烯与异 环二烯时,应选择同环二烯作为母体; (2)环外双键在这里特指 C=C 双键中有一个 C 原
子在该环上,另一个 C 原子不在该环上的情况(如
结构式 A),而结构式 B 和 C 则不是;
不同浓度高锰酸钾溶液的吸收曲线绘制及最大吸收波长的确定-电子.

《仪器分析》教案技能点2 不同浓度高锰酸钾溶液的吸收曲线绘制及最大吸收波长的确定能点2:学时2学时教学内容不同浓度高锰酸钾溶液的吸收曲线绘制及最大吸收波长的确定教学重点吸收工作曲线绘制教学难点吸收工作曲线绘制参考资料仪器分析(第二版) 中国环境出版社仪器分析技术华中科技大学出版社现代仪器分析技术及应用中国石化出版社一、高锰酸钾溶液的配制1、理论知识市售的KMnO4试剂中常含有少量的MnO2和其它杂质,高锰酸钾在制备和贮存过程中,常混入少量的杂质,蒸馏水中常含有微量还原性的物质,它们可与MnO4-反应而析出MnO(OH)2沉淀,这些生成物以及光、热、酸、碱等外界条件的改变均会促进KMnO4的分解,因此KMnO4标准溶液不能直接配制。
为了配制较稳定的KMnO4溶液,常采用下列措施:(1)称取稍多于理论量的KMnO4溶液,溶解在规定体积的蒸馏水中。
(2)将配制好的KMnO4溶液加热至沸,并保持微沸1h,然后放置2~3天,使溶液中可能存在的还原性的物质完全氧化。
(3)用微孔玻璃漏斗过滤,除去析出的沉淀。
(4)将过滤后的KMnO4溶液贮存于棕色试剂瓶中,并寸放在暗处,以待标定。
如需要浓度较稀的KMnO4溶液,可用蒸馏水将KMnO4稀释和标定后使用,但不宜长期贮存。
标定KMnO4标准溶液的基准物很多,如Na2C2O4、As2O3、H2C2O4·2H2O铁丝等。
其中以Na2C2O4较为常用,因为它容易提纯,性质稳定,不含结晶水。
Na2C2O4在105~110℃烘干2h后冷却,即可。
在H2SO4溶液中,MnO4-与C2O4-的反应如下:2 MnO4- + 5 C2O4- +16H+=2Mn2+ + 10CO2↑+ 8H2O为了使这个反应能够定量地较快地进行,应注意下列滴定条件:(1)温度:在室温下,这个反应的速率缓慢,因此常将溶液加热至70~85℃时进行滴定。
但温度过高,若高于90℃,会使部分H2C2O4发生分解:H 2C2O4→ CO2+ CO + H2O(2)酸度:酸度过低,KMnO4易分解为MnO2;酸度过高,会促使H2C2O4分解,一般滴定开始时的酸度应控制在0.5~1mol/L。
紫外最大吸收波长的计算方法

紫外最大吸收波长的计算方法紫外最大吸收波长的计算方法___________________________紫外(Ultraviolet)光的特性是与可见光不同的,它的波长比可见光更短,能够激发物质的电子进行激发态,因此有着重要的作用。
紫外光吸收谱中最大吸收波长是描述该物质对紫外光的吸收能力的重要参数,它主要取决于物质的分子结构,分子团及其环境。
本文主要介绍紫外最大吸收波长的计算方法。
一、紫外最大吸收波长的原理--------------------------------紫外最大吸收波长的计算主要是基于光谱学原理。
物质的分子具有一定的电子结构,当入射的光照射到物质分子时,分子中的电子会受到入射光的激发,由低能态跃迁到高能态,从而使物质分子发生变化,从而使物质产生吸收光谱。
其中,最大吸收波长表明该物质对紫外光的最强吸收能力。
二、紫外最大吸收波长的计算方法---------------------------------1. 通过仪器测量法来计算仪器测量法是一种常用的方法,它能够直接测量出物质对紫外光的最大吸收波长。
常用仪器如分光光度计、吸收光度计、旋光仪、衍射仪、偏振仪等,通过调整入射光波长,在发射或吸收光强度上变化的斜率可以计算出物质的最大吸收波长。
2. 通过理论计算方法来计算理论计算方法是通过物质的分子结构、电子能量层次、电子分子态、电子-电子相互作用和其它因素来对物质的吸收光谱进行理论模拟,从而估算出物质的最大吸收波长。
理论计算方法不仅能够准确地估算出物质的最大吸收波长,而且还可以准确地得到物质的其它吸收光谱特性,如共振强度、共振宽度、吸收强度和其它信息。
三、紫外最大吸收波长的应用---------------------------紫外最大吸收波长对于很多领域都具有重要的意义,如化学、材料、生物学、生态学、医学、农学、气候学等都有广泛的应用。
在化学方面,它可以帮助我们识别物质分子中包含哪些元素;在材料方面,它可以帮助我们识别材料中是否存在有害物质;在生物学方面,它可以帮助我们识别生物体中存在哪些物质;在医学方面,它可以帮助我们识别人体中是否存在某些有害物质。
仪器分析试题及答案(完整版)

第一套一、选择题1.所谓真空紫外区,所指的波长范围是 ( )(1)200~400nm (2)400~800nm (3)1000nm (4)10~200nm2.比较下列化合物的UV-VIS吸收波长的位置(λmax )( )(1) a>b>c (2) c>b>a (3)b>a>c (4)c>a>b 3.可见光的能量应( )(1) 1.24×104~ 1.24×106eV (2) 1.43×102~ 71 eV(3) 6.2 ~ 3.1 eV (4) 3.1 ~ 1.65 eV4.电子能级间隔越小,跃迁时吸收光子的 ( )(1)能量越大 (2)波长越长 (3)波数越大 (4)频率越高5.荧光分析法和磷光分析法的灵敏度比吸收光度法的灵敏度 ( )(1) 高 (2) 低 (3) 相当 (4) 不一定谁高谁低6. 三种原子光谱(发射、吸收与荧光)分析法在应用方面的主要共同点( ) (1)精密度高,检出限低 (2)用于测定无机元素(3)线性范围宽 (4)多元素同时测定7.当弹簧的力常数增加一倍时,其振动频率 ( )(1) 增加倍 (2) 减少倍 (3) 增加0.41倍 (4) 增加1倍8. 请回答下列化合物中哪个吸收峰的频率最高? ( )9.下列化合物的1HNMR谱, 各组峰全是单峰的是 ( )(1) CH3-OOC-CH2CH3 (2) (CH3)2CH-O-CH(CH3)2(3) CH3-OOC-CH2-COO-CH3 (4) CH3CH2-OOC-CH2CH2-COO-CH2CH310. 某化合物的相对分子质量M r=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为 ( )(1) C4H8O (2) C3H4O2 (3) C3H6NO (4) (1)或(2)11.物质的紫外-可见吸收光谱的产生是由于 ( )(1) 分子的振动 (2) 分子的转动(3) 原子核外层电子的跃迁 (4) 原子核内层电子的跃迁12. 磁各向异性效应是通过下列哪一个因素起作用的( )(1) 空间感应磁场 (2) 成键电子的传递 (3) 自旋偶合 (4) 氢键13.外磁场强度增大时,质子从低能级跃迁至高能级所需的能量 ( )(1) 变大 (2) 变小 (3) 逐渐变小 (4) 不变化14. 某化合物在一个具有固定狭峰位置和恒定磁场强度B的质谱仪中分析, 当加速电压V慢慢地增加时, 则首先通过狭峰的是: ( )(1) 质量最小的正离子 (2) 质量最大的负离子(3) 质荷比最低的正离子(4) 质荷比最高的正离子15.某化合物Cl-CH2-CH2-CH2-Cl的1HNMR谱图上为 ( )(1) 1个单峰 (2) 3个单峰(3) 2组峰: 1个为单峰, 1个为二重峰 (4) 2组峰: 1个为三重峰, 1个为五重峰二、填空题1. 核磁共振的化学位移是由于 _______________________________________ 而造成的,化学位移值是以 _________________________________为相对标准制定出来的。
吸收光谱波长和lumo计算公式

吸收光谱波长和lumo计算公式在化学和物理学领域中,光谱是一种非常重要的分析方法。
通过光谱技术,我们可以了解物质的结构、性质及其与光的相互作用。
其中,吸收光谱是一种常用的分析方法,用于测量物质在吸收光的过程中吸收光的强度与波长之间的关系。
在吸收光谱中,吸收峰对应的波长对应着物质的特定性质和结构。
而lumo(Lowest Unoccupied Molecular Orbital,最低占据分子轨道)是一种分子的特殊轨道,它在物质吸收光的过程中起着重要作用。
在本文中,我将围绕吸收光谱波长和lumo计算公式展开讨论,并共享我的个人观点和理解。
我们来了解一下吸收光谱波长的计算。
对于一个分子或物质,其吸收光谱波长与分子内的电子跃迁有着密切的关系。
在分子内,电子可以由一个能级跃迁至另一个能级,而这种跃迁会导致分子对特定波长的光吸收。
根据量子力学的理论,分子在吸收光的过程中,吸收的波长与电子跃迁所需的能量有直接的关系。
我们可以通过计算分子内的电子能级和跃迁能级,来预测吸收光谱波长。
这里需要用到一些物理学和化学的知识,例如分子轨道理论和光谱学理论等。
通过这些理论和计算方法,我们可以较为准确地计算出分子的吸收光谱波长。
我们来探讨一下lumo的计算公式。
作为分子内的一个特殊轨道,lumo在分子与光的相互作用中有着重要的作用。
在分子的光吸收过程中,lumo往往对应着电子的跃迁,因此其能级和结构对于光物理过程有着重要的影响。
计算lumo的方法主要涉及到量子化学和计算化学的知识。
目前,常用的计算lumo能级和轨道结构的方法有很多,例如从头算方法(ab initio)、密度泛函理论(DFT)、分子轨道理论等。
对于不同的分子和体系,选择合适的计算方法和程序非常重要,以保证计算结果的准确性和可靠性。
在我的个人观点和理解中,吸收光谱波长和lumo计算是一项非常复杂和深奥的研究课题。
在实际的科学研究和工程应用中,我们需要不断地探索新的计算方法和理论模型,以提高对分子光物理过程的理解和预测能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档
15
表2-6 某些脂肪族醛和酮的吸收特征
化合物
甲醛 乙醛 丙酮 2-戊酮 4-甲基-2-戊酮 环戊酮 环己酮 环辛酮
溶剂
蒸汽 蒸汽 蒸汽 己烷 异辛烷 异辛烷 异辛烷 异辛烷
n→π*
λmax/nm
ε
304
18
310
5
289
12.5
278
2.伍德沃德-费泽(Woodward-Fieser)规则 共轭双键的数目,共轭体系上取代基的种类、
数目和立体结构等因素都对共轭多烯体系的紫外光 谱产生影响。
Woodward-Fieser 总结出共轭烯烃最大吸收 波长的计算方法,用于估算共轭多烯体系 K 带的 λmax:
实用文档
1
表2-7 链状共轭多烯类化合物的波长计算法
13
四、羰基化合物
羰基: 一对 σ 电子, 一对 π 电子和
两对 n 电子
π→π* 跃迁产 生的强吸收带 (ε>104)
n→σ* 跃迁产 生的强吸收带 (ε ≈104)
实用文档
n→π* 跃迁产 生的弱吸收带 (ε<100)R带
14
(一)饱和羰基化合物
1.对于饱和醛、酮来讲,这三个谱带分别位于: π→π* 跃迁 → 约160nm; n→σ* 跃迁 → 约190nm; n→π* 跃迁 → 约270nm~300nm
母体
取代 基位 置
直链和六或七元环α,β-不饱和酮的基本值 五元环α,β-不饱和酮的基本值 α,β-不饱和醛的基本值
取代基位移增量/nm
烷基 OAc OR OH SR Cl Br
215 nm 202 nm 207 nm
NR2 苯环
α
10 6 35 35
15 25
β
12 6 30 30 85 12 30 95 63
共轭二烯骨架基本值
217nm
每增加一个共轭双键
Ƴnm
环外双键
+5nm
卤素取代
+17nm
实用文档
2
表2-8 环状共轭二烯波长计算法
实用文档
3
•应用此规则的注意事项: (1)当有多个母体可供选择时,应优先选择较长波 长的母体,如共轭体系中若同时存在同环二烯与异 环二烯时,应选择同环二烯作为母体; (2)环外双键在这里特指 C=C 双键中有一个 C 原 子在该环上,另一个 C 原子不在该环上的情况(如 结构式 A),而结构式 B 和 C 则不是;
实用文档
5
253nm + 60nm + 15nm + 25nm + 0nm
C9H19
O
同环共轭二烯母体基本值
O
H3C
增加共轭双键(2×30)
环外双键(3×5)
环基取代(5×5)
酰氧基取代
实λ用文ma档x计算值
6
214nm + 30nm + 15nm + 25nm 284nm
R
异环共轭二烯母体基本值:
γ
18 6 17 30
δ
18 6 31 50
实用文档
19
* 应用该规则计算时应注意以下两点:
a. 环上的羰基不作为环外双键看待,例如在结构
O
中无环外双键;
b. 该规则仅适用于乙醇或甲醇溶剂,溶剂改变对
实测值影响较大,需将计算值进行溶剂校正,见下表:
表 2-9 α,β-不饱和醛、酮λmax的溶剂校正
实测值为453nm(在氯仿中)
实用文档
11
2 计算番茄红素的λmax值。
λmax=114+5M+n(48.0-1.7n)-16.5Rendo-10Rexo =114 + 5×7 + 11(48.0-1.7×11)-
16.5×0 -10×0 = 471.3nm
实测值为472nm
实用文档
12
实用文档
15
283
20
300
18
291
15
291
14
实用文档
16
2.羧酸及其衍生物 (如—NR2,—OH,—OR,—NH2,—X)
这些基团都属于助色基团,羰基的 n→π* 跃 迁吸收较醛、酮发生较明显的蓝移,但 ε 变化不 大。
这是 诱导效应和共轭效应的综合结果。
实用文档
17
实用文档
18
(二)不饱和羰基化合物 1.α,β-不饱和醛、酮 Woodward,Fieser和Scott总结共轭醛,酮K带的λmax的计算规则:
1个环外双键
λmax计算值
实用文档
(实9
3. 费泽-库恩(Fieser-Kuhn)规则
如果一个共轭分子中含有四个以上的共轭双键,
则其 λmax: λmax=114 + 5M + n(48.0-1.7n) -
16.5Rendo-10Rexo 式中 n----共轭双键数目
M----共轭体系上取代烷基和环基数目
Rendo----共轭体系上环内双键数目
Rexo----共轭体系上环外双键数目
实用文档
10
例1 计算全反式 β-胡萝卜素的λmax值
λmax=114+5M+n(48.0-1.7n)-16.5Rendo-10Rexo =114 + 5×10 + 11(48.0-1.7×11)-
16.5×2
= 453.3nm
增加共轭双键(1×30)
环外双键(3×5)
环基取代(5×5)
λmax计算值
实用文档
7
链状共轭双键基本值
217nm
4个烷基取代
+20nm
2个环外双键
+10nm
λmax计算值
247nm (实测值:247nm)
实用文档
8
+20nm +5nm 243nm
链状共轭双键基本值 4个环残基或烷基取代
217nm
A
C
实用文档
O
B
4
(3)计算时应将共轭体系上的所有取代基及所有环外 双键均考虑在内,对“身兼数职”的基团应按实际 “兼职”次数计算增加值,同时应准确判断共轭体系 的起点与终点,防止将与共轭体系无关的基团计算在 内; (4)该规则不适用于共轭体系双键多于四个的体系, 也不适用于交叉共轭体系,典型的交叉共轭体系骨架 结构如下:
溶剂 甲醇 氯仿 二氧六环 乙醚 己烷 环己烷 水
Δλ/nm 0 +1
+5
+7 +11 +11 -8
实用文档
20
例1 计算下列化合物的λmax O
六元环α,β-不饱和酮的基本值 215nm
1个烷基α取代 +10 nm
2个烷基β取代 +12×2 nm
2个环外双键
实用文档
21
O
直链α,β-不饱和酮的基本值 延长1个共轭双键 +30 nm 1个烷基γ位取代 +18 nm 1个烷基δ位取代 +18 nm
281 nm
实用文档
215 nm (实22
O O
六元环α,β-不饱和酮的基本值 1个烷基α位取代 2个烷基β位取代 2个环外双键
215 nm +12
实用文档
(乙醇中实测
23
O
六元环α,β-不饱和酮的基本值 延长2个共轭双键 同环共轭双键 1个烷基β位取代 3个烷基γ位以远取代 1个环外双键