小学奥数所有考点知识点整理与总复习(考试)
小学数学奥数知识点整理

小学数学奥数知识点整理数学奥赛是一项对学生数学能力的综合考验,旨在培养学生的逻辑思维能力、创造力和解决问题的能力。
在小学阶段,数学奥赛是对学生基础知识的考察和拓展,我们需要掌握一些数学奥数知识点。
以下是小学数学奥数知识点的整理。
1. 数与计算1.1 自然数的认识自然数包括正整数和零。
自然数的大小关系,加减法运算及其性质,以及自然数的各种分组形式都是数学奥数的基础。
1.2 分数与小数分数与小数在数学奥数中应用广泛。
分数与小数之间的相互转换,分数的比较与排序,以及分数的加减乘除等运算是数学奥数的重点。
1.3 数的约数与倍数数的约数是能够整除该数的数,倍数是某个数的整数倍。
理解和运用约数和倍数的性质是解决数学奥数题目的重要途径。
1.4 有理数的认识有理数是能够表示为两个整数的比的数,包括正有理数、负有理数和零。
有理数的运算和性质也是数学奥数的重要内容。
2. 几何与图形2.1 平面图形的认识几何图形包括点、线、面、角,其中直线、曲线和封闭曲线均是小学数学奥数的重点内容。
2.2 三角形的性质三角形是几何学中重要的基本图形。
在数学奥数中,需要熟练掌握三角形的分类、边长关系、角度关系和面积计算等内容。
2.3 平移、旋转和对称平移、旋转和对称是小学数学奥数中的重要几何变换。
掌握几何变换的特点和应用是解决几何问题的关键。
3. 数据分析3.1 调查与统计调查与统计是数学奥数中的常见题型,需要学生掌握统计图表的读取、分析和比较,以及数据的整理和处理等技巧。
3.2 概率概率是数学奥数中一种重要的数学思维方式。
掌握概率的基本概念和计算方法,包括事件的概率计算和概率的性质是数学奥数的重点。
4. 等式与方程4.1 算式与等式算式是数学奥数中常见的计算方式,等式是数学表达式中的重要形式。
了解算式和等式的基本概念,以及它们之间的关系和特点对于数学奥数的解题能力至关重要。
4.2 一元一次方程一元一次方程是小学数学奥数中的重要内容。
奥数知识点总结(非常全面)

小学奥数知识点总结2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
}关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):!②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
雪帆提示:鸡兔同笼的公式千万不要死记硬背,因为它的变形更多!\6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差\③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学奥数知识点梳理(完整版)

小学奥数(知识点梳理)前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。
概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质若111a b c>>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n n m m m <<。
5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n ②()()612121222++=+++n n n n ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则 形如:abc =100a+10b+c4. 整除性质① 如果c|a 、c|b ,那么c|(a ±b)。
小学奥数所有知识点大汇总(最全)

1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数小学奥数很简单,就这30个知识点和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
汇总小学阶段奥数知识点

汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。
下面为大家汇总小学阶段常见的奥数知识点。
一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。
小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。
3、分数四则运算同分母分数加减法:分母不变,分子相加减。
异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。
分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。
分数除法:除以一个数等于乘这个数的倒数。
二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。
偶数:能被 2 整除的整数。
奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。
合数:除了 1 和它本身还有别的因数的自然数。
1 既不是质数也不是合数。
3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。
倍数:c 就是 a 和 b 的倍数。
4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
四年级奥数知识点归纳

四年级奥数知识点归纳一、数与计算1、整数四则运算这是四年级奥数的基础,包括加、减、乘、除的运算规则,以及它们的混合运算。
要熟练掌握运算顺序,先乘除后加减,有括号先算括号内的。
同时,要学会运用运算定律进行简便计算,如加法交换律、结合律,乘法交换律、结合律和分配律。
例如:计算 25×44,可以将 44 拆分成 4×11,然后先计算 25×4=100,再乘以 11 得到 1100,这样就简便多了。
2、小数的认识与计算了解小数的意义和性质,能够进行小数的加减法计算。
要注意小数点的对齐,计算方法与整数加减法类似。
比如:35 +28,先将小数点对齐,然后从低位开始相加,得到63。
3、整数和小数的巧算通过观察数字的特点,运用凑整、拆分等方法进行简便计算。
例如:计算 99×78 + 78,可以将 78 提取出来,变成 78×(99 + 1)= 7800。
二、图形与几何1、角的度量认识角的分类,如锐角、直角、钝角、平角和周角,掌握角的度量方法,会用量角器测量角的度数。
2、三角形了解三角形的特性,如稳定性。
掌握三角形的分类,按角分有锐角三角形、直角三角形和钝角三角形;按边分有等边三角形、等腰三角形和不等边三角形。
同时,要会计算三角形的周长和面积。
比如:一个等腰三角形的腰长是 5 厘米,底边长是 6 厘米,它的周长就是 5×2 + 6 = 16 厘米。
3、平行四边形和梯形认识平行四边形和梯形的特征,知道平行四边形具有不稳定性,会计算它们的面积。
例如:一个平行四边形的底是 8 厘米,高是 5 厘米,面积就是 8×5 = 40 平方厘米。
三、应用题1、行程问题包括相遇问题和追及问题。
相遇问题的基本公式是:路程=速度和×相遇时间;追及问题的基本公式是:路程差=速度差×追及时间。
比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度是每小时 5 千米,乙的速度是每小时 4 千米,经过 3 小时相遇,A、B 两地的距离就是(5 + 4)×3 = 27 千米。
最全小学奥数知识要点

最全小学奥数知识要点同学们,小学奥数可以分为七大板块:计算、计数、数论、几何、应用题、行程和组合。
在这七大板块中,必须掌握的是三十六个知识点。
下面是这些知识点的清单:2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设某种现象存在(甲和乙一样或者乙和甲一样);②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。
基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
小学奥数知识点总结

小学奥数知识点总结小学奥数是培养学生数学思维和推理能力的重要途径,它帮助学生提高数学解决问题的能力,并扩展他们的数学知识面。
下面是一些小学奥数的知识点总结:1.整数:小学奥数中整数是一个基本概念。
学生需要掌握正整数、负整数、零的概念,以及它们的加法、减法、乘法和除法运算。
2.分数:分数也是一个重要的知识点。
学生需要掌握分数的基本概念,以及分数的加法、减法、乘法和除法运算。
3.几何图形:小学奥数涉及到几何图形的知识。
学生需要熟悉平面图形如三角形、四边形、圆等的性质,以及体积、表面积的计算。
4.方程和方程组:方程和方程组是小学奥数中的重要概念。
学生需要学习如何解一元一次方程和一元二次方程,以及如何解方程组。
5.排列组合:排列组合是数学中一个重要的分支。
学生需要掌握排列组合的基本概念,以及如何计算排列和组合的数目。
6.图论:图论也是小学奥数中的一个重要知识点。
学生需要学习图的基本概念,如顶点、边、路径等,并了解图的性质和应用。
7.概率和统计:概率和统计是小学奥数中的另一个重要领域。
学生需要学会计算概率,并了解一些基本的统计概念,如平均数、中位数等。
8.数论:数论是数学中的基础领域,小学奥数中也有一些与数论相关的题目。
学生需要了解素数、因子、最大公约数和最小公倍数等基本概念。
9.逻辑推理:逻辑推理是小学奥数中的重要能力。
学生需要学习如何进行逻辑推理,并解决一些逻辑问题。
10.应用题和综合题:小学奥数中也会涉及一些应用题和综合题。
学生需要学会将数学知识应用到实际问题中,并解决复杂的综合题。
小学奥数的知识点还包括了其他一些基础概念和技巧。
学生在学习小学奥数的过程中,需要通过多做题,多思考,不断总结经验和方法,提高自己的数学思维能力。
同时,学生也要培养良好的数学学习习惯,如有计划地进行复习和练习,积极参加数学竞赛等,以提高自己的数学水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、11、13 末三位数与前几位数的差是 7(或 11 或 13)的倍数
4. 整除性质
① 如果 c|a、c|b,那么 c|(a ± b)。
② 如果 bc|a,那么 b|a,c|a。
③ 如果 b|a,c|a,且(b,c)=1,那么 bc|a。
8
④ 如果 c|b,b|a,那么 c|a. ⑤ a 个连续自然数中必恰有一个数能被 a 整除。 5. 带余除法 一般地,如果 a 是整数,b 是整数(b≠0),那么一定有另外两个整数 q 和 r,0≤r<b, 使得 a=b×q+r 当 r=0 时,我们称 a 能被 b 整除。 当 r≠0 时,我们称 a 不能被 b 整除,r 为 a 除以 b 的余数,q 为 a 除以 b 的不完全 商(亦简称为商)。用带余数除式又可以表示为 a÷b=q……r, 0≤r<b a=b×q+r 6. 唯一分解定理 任何一个大于1的自然数n都可以写成质数的连乘积,即
小学奥数知识点梳理 概述
一、 计算
1. 四则混合运算繁分数 ⑴ 运算顺序 ⑵ 分数、小数混合运算技巧 一般而言: ① 加减运算中,能化成有限小数的统一以小数形式; ② 乘除运算中,统一以分数形式。 ⑶带分数与假分数的互化 ⑷繁分数的化简 (5)循环小数(计算、周期问题、小数分数互换、)
2. 简便计算 ⑴凑整思想 ⑵基准数思想
1
⑶裂项与拆分
2
换元法:
3
⑷提取公因数 ⑸商不变性质 ⑹改变运算顺序
① 运算定律的综合运用 ② 连减的性质 ③ 连除的性质 ④ 同级运算移项的性质 ⑤ 增减括号的性质 ⑥ 变式提取公因数
形如: a1 ÷ b ± a2 ÷ b ± ...... ± an ÷ b = (a1 ± a2 ± ...... ± an ) ÷ b
n= p1 a 1 × p2 a 2 ×...×pk ak 7. 约数个数与约数和定理
设自然数n的质因子分解式如n= p1 a 1 × p2 a 2 ×...×pk ak 那么: n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1) n的所有约数和:(1+P1+P1 2 +…p1 a 1 )(1+P2+P2 2 +…p2 a 2 )…(1+Pk+Pk 2 +…pk ak ) 8. 同余定理
3. 数的整除特征:
整除数
特征
2
末尾是 0、2、4、6、8
3
各数位上数字的和是 3 的倍数
5
末尾是 0 或 5
9
各数位上数字的和是 9 的倍数
11
奇数位上数字的和与偶数位上数字的和,两者之差是 11 的倍数
4 和 25 末两位数是 4(或 25)的倍数
8 和 125 末三位数是 8(或 125)的倍数
最短线路与展开图形状问题 ⑸染色问题
几面染色的块数与“芯”、棱长、顶点、面数的关系。
16
四、 典型应用题
1. 植树问题 ①开放型与封闭型 ②间隔与株数的关系
2. 方阵问题 外层边长数-2=内层边长数 (外层边长数-1)×4=外周长数 外层边长数 2-中空边长数 2=实面积数
3. 列车过桥问题 ①车长+桥长=速度×时间 ②车长甲+车长乙=速度和×相遇时间 ③车长甲+车长乙=速度差×追及时间 列车与人或骑车人或另一列车上的司机的相遇及追及问题 车长=速度和×相遇时间 车长=速度差×追及时间
⑵等积变形(位移、割补) ① 三角形内等底等高的三角形 ② 平行线内等底等高的三角形 ③ 公共部分的传递性 ④ 极值原理(变与不变)
⑶三角形面积与底的正比关系
13
S1︰S2 =a︰b ; ⑷相似 S1×S3=S2×S4
①a =b = c = h ABC H
约数个数为3的是质数的平方。 ③质因数分解:把数字分解,使他满足积是平方数。 ④平方和。 10.孙子定理(中国剩余定理) 11.辗转相除法 12.数论解题的常用方法: 枚举、归纳、反证、构造、配对、估计
9
10
11
12
三、 几何图形 1、平面几何 一笔画
格点面积(正方形、三角形)
⑴多边形的内角和 N 边形的内角和=(N-2)×180°
① 同余定义:若两个整数 a,b 被自然数 m 除有相同的余数,那么称 a,b 对于模 m 同余,用式子表示为 a≡b(mod m)
②若两个数 a,b 除以同一个数 c 得到的余数相同,则 a,b 的差一定能被 c 整除。 ③两数的和除以 m 的余数等于这两个数分别除以 m 的余数和。 ④两数的差除以 m 的余数等于这两个数分别除以 m 的余数差。 ⑤两数的积除以 m 的余数等于这两个数分别除以 m 的余数积。 9.完全平方数性质 ①平方差: A 2 -B 2 =(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。 ②约数:约数个数为奇数个的是完全平方数。
知 5-2=3,则圆点比方点多 3。 ⑺隐含条件的等价代换
例如弦图中长短边长的关系。 ⑻组合图形的思考方法
① 化整为零 ② 先补后去 ③ 正反结合
14
15
旋转问题(重点记忆小圆在大圆上转) 1. 立体图形
⑴规则立体图形的表面积和体积公式 ⑵不规则立体图形的表面积
整体观照法 ⑶体积的等积变形
①水中浸放物体:V 升水=V 物 ②测啤酒瓶容积:V=V 空气+V 水 ⑷三视图与展开图
234
10
A=1+ 1 + 1 + 1 + + 1 + 1 = 3.01
234
10 11
是:3.
5. 定义新运算
5
6
容斥原理
抽屉原理
7
二、 数论
1. 奇偶性问题
奇 ± 奇=偶 奇 ± 偶=奇 偶 ± 偶=偶
奇×奇=奇 奇×偶=偶 偶×偶=偶
2. 位值原则
形如: abc =100a+10b+c
3. 估算 求某式的整数部分:扩缩法
4. 比较大小 ① 通分 a. 通分母 b. 通分子 ② 跟“中介”比 ③ 利用倒数性质
若 1 > 1 > 1 ,则 c>b>a.。形如: m1 > m2 > m3 ,则 n1 < n2 < n3 。
abc
n1 n2 n3
m1 m2 m3
4
A=1+ 1 + 1 + 1 + + 1 = 2.95
;
S1︰S2=a2︰A2
②S1︰S3︰S2︰S4= a2︰b2︰ab︰ab ; ⑸燕尾定理
A
S=(a+b)2
D
F G
B
E
C
S△ABG:S△AGC=S△BGE:S△GEC=BE:EC; S△BGA:S△BGC=S△AGF:S△GFC=AF:FC; S△AGC:S△BCG=S△ADG:S△DGB=AD:DB; ⑹差不变原理