预应力计算表格(三级裂缝控制)
midas civil预应力计算

m i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i lm i d a s C i v i l12-2-2 锚具变形、钢筋回缩和接缝压缩引起的预应力损失2l张拉预应力钢筋时在张拉端因为锚具的变形、钢筋的回缩、接缝压缩等原因在锚固端会发生预应力损失。
另外因为钢束和管道之间存在摩擦,该种预应力损失在端部最大,离端部越远损失越小。
这种预应力损失一般可通过超张拉(Overstressing)方法补偿。
程序目前不支持先张法的锚具变形、钢筋回缩和接缝压缩的预应力损失的计算。
程序中后张法的计算中默认考虑锚固后反摩擦的影响。
midas Civil 中使用了铁路规范(TB10002.3-2005)的附录D 中介绍的应力不动点的概念开发了更准确的考虑锚固后反摩擦影响的预应力损失计算方法,使其能适用于更为复杂的实际工程中。
图12.2.1是程序中两端张拉时考虑锚固后反摩擦的影响计算预应力损失的计算简图之一。
图12.2.1 考虑反摩擦后钢筋预应力损失计算简图之一在midas Civil 中可以考虑钢束张力沿纵向的曲线分布计算锚具变形、钢筋回缩和接缝压缩的预应力损失。
m i d a s C i v i lm i d a s C i v i l12-2-3 混凝土弹性压缩引起的预应力损失4l张拉预应力钢筋时会引起混凝土受压,混凝土的受压变形会引起预应力钢筋缩短,从而引起钢筋的预应力损失。
如图12.2.2所示先张法构件在截断钢筋的瞬间混凝土会发生弹性变形并发生预应力损失,即张拉时的预应力值和截断后实际加到混凝土上的预应力值是不同的。
程序中输入的是锚下控制应力,因此选择先张法时程序不能考虑张拉该预应力钢筋时发生的弹性变形。
同样,选择后张法时不能考虑张拉该预应力钢筋时发生的弹性变形。
但是如图12.2.3所示按顺序张拉钢筋时,程序可以考虑后张拉的钢束引起的混凝土弹性变形对已有钢束的影响。
预应力张拉计算(自动计算表)

2.6
2137370
2139941
10.5
2142513
2151762
2.6
2161011
2163811
11.4
2166610
2170108
1.0
2173605
2176626
12.3
2179646
2183164
1.0
2186683
2210740
97.9
2234798
2238405
1.0
2242013
0.008597
0.991440
2135383
0.020790
0.979425
2118788
0.008597
0.991440
2137082
0.002403
0.997600
2142223
0.008597
0.991440
2160720
0.002588
0.997416
2166318
0.003223
0.996782
第一联、第六联-F3c
股数:12
弹性模量(N/mm²):EP=195000
管道摩擦系数:μ=0.2
kl+μθ
e-(kl+μθ)
起点力 (N)
/
/
P
0.000605
0.999396
2249856
0.002888
0.997117
2248496
0.003223
0.996782
2242013
0.025065
切线角度 (rad)
θ
0 0 0.014992378 0 0.014992378 0 0.014992378 0 0.039985492 0 0.039985492 0 0.039985492 0 0.039985492 0 0.014992378 0 0.014992378 0 0.014992378 0 0
预应力梁计算书

YKL-1一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为70.00 4)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1 ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):2287 恒荷载力作用下的弯矩标准值Mk(KN.m):891 活荷载力作用下的弯矩标准值Mk(KN.m):303 2)、支座截面支座设计弯矩M(KN.m):947 恒荷载力作用下的弯矩标准值Mk(KN.m):939 活荷载力作用下的弯矩标准值Mk(KN.m):285 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×6Φs15.2+9φ25上部:2×6Φs15.2+8φ254、张拉方式:一端张拉5、跨度L(mm)12.6二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1000 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 6.700E+05支座截面面积A2(mm2) 6.700E+05跨中截面形心距上翼缘边缘的距离y11(mm) 329 跨中截面形心距下翼缘边缘的距离y12(mm) 671 支座截面形心距上翼缘边缘的距离y21(mm) 329 支座截面形心距下翼缘边缘的距离y22(mm) 671跨中截面惯性矩I1(mm4) 6.296E+10支座截面惯性矩I2(mm4) 6.296E+102.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 9 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 12 弯矩标准值Mk(kN-m) 1194 次弯矩M2(kN-m) 469预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)147张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)33裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.56按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.03轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)1003.03纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)788.03等效应力σsk(N/mm2)74.06裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0)0.38裂缝宽度ωmax(mm)0.03 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)2287实际承载力Mu(KN.M)3313 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 8受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 12弯矩标准值M k(kN-m) 647次弯矩M2(kN-m) -462预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)277张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)33 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 26.69按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)111.88纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-7144.2等效应力σsk(N/mm2)-299.90裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.03 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.61 <0.75,满足要求截面换算配筋率ρ(%) 2.41 <2.5%,满足要求受压区高度比x/h0 0.23 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.13 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.66 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)947(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)263实际承载力Mu(KN.M)2710 >M1,满足要求支座计算配筋包络值A s(mm2) 5018支座换算实际配筋面积A s实(mm2) 9065 >As,满足要求支座抗剪设计值V(KN)977抗剪承载力V实(KN)1645 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 2.61 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-2.68 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 1.59 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-3.14 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 76施工阶段反拱验算0.06 0.05751219荷载长期作用下梁挠度验算9.25 满足要求<1/300一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为80.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):2364 恒荷载力作用下的弯矩标准值Mk(KN.m):788 活荷载力作用下的弯矩标准值Mk(KN.m):224 2)、支座截面支座设计弯矩M(KN.m):1474 恒荷载力作用下的弯矩标准值Mk(KN.m):1108 活荷载力作用下的弯矩标准值Mk(KN.m):274 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×8Φs15.2+9φ25上部:2×8Φs15.2+8φ254、张拉方式:一端张拉5、跨度L(mm)15.5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1200 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 7.500E+05支座截面面积A2(mm2) 7.500E+05跨中截面形心距上翼缘边缘的距离y11(mm) 411 跨中截面形心距下翼缘边缘的距离y12(mm) 789 支座截面形心距上翼缘边缘的距离y21(mm) 411 支座截面形心距下翼缘边缘的距离y22(mm) 789跨中截面惯性矩I1(mm4) 1.057E+11支座截面惯性矩I2(mm4) 1.057E+112.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 9 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 16 弯矩标准值Mk(kN-m) 1012 次弯矩M2(kN-m) 692预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)156张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.89按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.03轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)777.51纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)868.11等效应力σsk(N/mm2)-34.20裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.04 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)2364实际承载力Mu(KN.M)4809 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 8受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 16弯矩标准值M k(kN-m) 888次弯矩M2(kN-m) -680预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)292张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 27.04按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)95.45纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-18520.95等效应力σsk(N/mm2)-355.74裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.03 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.68 <0.75,满足要求截面换算配筋率ρ(%) 2.41 <2.5%,满足要求受压区高度比x/h0 0.27 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.13 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.59 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)1474(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)310实际承载力Mu(KN.M)3902 >M1,满足要求支座计算配筋包络值A s(mm2) 5989支座换算实际配筋面积A s实(mm2) 11007 >As,满足要求支座抗剪设计值V(KN)895抗剪承载力V实(KN)1996 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 4.51 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-0.49 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 5.89 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-1.69 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 92施工阶段反拱验算 1.36 1.36165642荷载长期作用下梁挠度验算 6.72 满足要求<1/300一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为55.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):2058 恒荷载力作用下的弯矩标准值Mk(KN.m):788 活荷载力作用下的弯矩标准值Mk(KN.m):224 2)、支座截面支座设计弯矩M(KN.m):1729 恒荷载力作用下的弯矩标准值Mk(KN.m):1108 活荷载力作用下的弯矩标准值Mk(KN.m):274 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×5Φs15.2+7φ25上部:2×5Φs15.2+5φ254、张拉方式:一端张拉5、跨度L(mm)15.5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1200 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 7.500E+05支座截面面积A2(mm2) 7.500E+05跨中截面形心距上翼缘边缘的距离y11(mm) 411 跨中截面形心距下翼缘边缘的距离y12(mm) 789 支座截面形心距上翼缘边缘的距离y21(mm) 411 支座截面形心距下翼缘边缘的距离y22(mm) 789跨中截面惯性矩I1(mm4) 1.057E+11支座截面惯性矩I2(mm4) 1.057E+112.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 7 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 10 弯矩标准值Mk(kN-m) 1012 次弯矩M2(kN-m) 433预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)156张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.64按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.02轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)1056.53纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)924.81等效应力σsk(N/mm2)40.15裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0)0.20裂缝宽度ωmax(mm)0.01 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)2058实际承载力Mu(KN.M)3320 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 5受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 10弯矩标准值M k(kN-m) 888次弯矩M2(kN-m) -425预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)292张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)44 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 27.04按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)340.21纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-544.20等效应力σsk(N/mm2)-575.16裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.05 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.68 <0.75,满足要求截面换算配筋率ρ(%) 1.51 <2.5%,满足要求受压区高度比x/h0 0.14 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.40 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.46 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)1729(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)565实际承载力Mu(KN.M)2622 >M1,满足要求支座计算配筋包络值A s(mm2) 5989支座换算实际配筋面积A s实(mm2) 6879 >As,满足要求支座抗剪设计值V(KN)895抗剪承载力V实(KN)1996 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 1.65 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-2.54 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 2.09 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-1.88 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 92施工阶段反拱验算0.11 0.10540212荷载长期作用下梁挠度验算9.24 满足要求<1/300YKL-4一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为55.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)= 19.1ftk(N/mm2)=2.517)、施加预应力时的混凝土强度为2、内力计算1)、跨中截面跨中设计弯矩M(KN.m):1591 恒荷载力作用下的弯矩标准值Mk(KN.m):665 活荷载力作用下的弯矩标准值Mk(KN.m):15 2)、支座截面支座设计弯矩M(KN.m):518 恒荷载力作用下的弯矩标准值Mk(KN.m):773 活荷载力作用下的弯矩标准值Mk(KN.m):55 3、结构信息1)、裂缝控制等级:三级2)、配筋情况:下部:2×5Φs15.2+7φ25上部:2×5Φs15.2+5φ254、张拉方式:一端张拉5、跨度L(mm)15.5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 400 梁截面高度 h(mm) 1100上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2200 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 400 支座截面加掖高度h a(mm) 0跨中截面面积A1(mm2) 7.100E+05支座截面面积A2(mm2) 7.100E+05跨中截面形心距上翼缘边缘的距离y11(mm) 369 跨中截面形心距下翼缘边缘的距离y12(mm) 731 支座截面形心距上翼缘边缘的距离y21(mm) 369 支座截面形心距下翼缘边缘的距离y22(mm) 731跨中截面惯性矩I1(mm4) 8.263E+10支座截面惯性矩I2(mm4) 8.263E+102.2 截面抗裂及承载力计算验算(三级)1、跨中截面1—1受拉区普通钢筋根数n1 7 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 10 弯矩标准值Mk(kN-m) 680 次弯矩M2(kN-m) 422预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)141张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)34裂缝宽度验算受拉区纵向钢筋的公称直径d eq(mm) 26.64按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.02轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)783.06纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)824.19等效应力σsk(N/mm2)-14.48裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.02 <0.2,满足要求承载力计算跨中计算弯矩包络值+1.2次弯矩M(KN.M)1591实际承载力Mu(KN.M)3013 >M,满足要求2、支座截面2—2受拉区普通钢筋根数n1 5受拉区普通钢筋直径d1(mm) 25拉区预应力钢筋根数n2 10弯矩标准值M k(kN-m) 561次弯矩M2(kN-m) -416预应力损失计算预应力钢筋与孔道壁之间的摩擦系数引起的预应力损失σl2(N/mm2)265张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)0预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)34 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 27.04按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.01轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)103.56纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)-11681.32等效应力σsk(N/mm2)-367.44裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0) 1.00裂缝宽度ωmax(mm)0.06 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.68 <0.75,满足要求截面换算配筋率ρ(%) 1.64 <2.5%,满足要求受压区高度比x/h0 0.15 <0.35,满足要求梁端底面与顶面普通钢筋面积比A s’/As 1.40 >0.3/(1-λ),满足要求梁底面普通钢筋配筋率0.48 >0.2%,满足要求承载力计算支座计算弯矩包络值+次弯矩M(KN.M)518(1.2恒荷弯矩+1.4活荷弯矩)*调幅系数+次弯矩M1(KN.M)197实际承载力Mu(KN.M)2356 >M1,满足要求支座计算配筋包络值A s(mm2) 2986支座换算实际配筋面积A s实(mm2) 6815 >As,满足要求支座抗剪设计值V(KN)495抗剪承载力V实(KN)1821 >V,满足条件施工阶段验算支座验算施工阶段上翼缘边缘砼法向压应力ócc(N/mm2) 2.54 <0.6fck,满足要求施工阶段下翼缘边缘砼法向拉应力ótp(N/mm2)-1.24 <0.95ftk,满足要求跨中验算施工阶段下翼缘边缘砼法向压应力ócc(N/mm2) 2.51 <0.6fck,满足要求施工阶段上翼缘边缘砼法向拉应力ócc(N/mm3)-1.90 <0.95ftk,满足要求施工阶段预应力伸长计算值(mm) 94施工阶段反拱验算0.52 0.51765696荷载长期作用下梁挠度验算8.91 满足要求<1/300一、计算条件1、材料1)、预应力钢筋采用高强低松弛钢绞线Φs15.2,其强度为f ptk=1860N/mm22)、张拉控制应力为σcon(N/mm2)= 13023)、孔道成型采用预埋金属波纹管,直径(mm)为55.004)、锚具种类:夹片锚5)、非预应力钢筋采用HRB400级钢筋,箍筋采用HRB335级钢筋6)、混凝土强度等级为C40 fc(N/mm2)=19.1ftk(N/mm2)=2.397)、施加预应力时的混凝土强度为2、内力计算支座截面支座设计弯矩M(KN.m):562 恒荷载力作用下的弯矩标准值Mk(KN.m):400 活荷载力作用下的弯矩标准值Mk(KN.m):213、结构信息1)、裂缝控制等级:三级2)、配筋情况:上部:2×5Φs15.2+7φ254、张拉方式:一端张拉5、跨度L(mm) 5二、截面验算2.1 截面设计参数梁截面宽度 b(mm) 500 梁截面高度 h(mm) 700 上翼缘高度 h f(mm) 150 上翼缘宽度b f(mm) 2300 下翼缘高度h f'(mm) 0 下翼缘宽度b f'(mm) 500 支座截面加掖高度h a(mm) 0支座截面面积A2(mm2) 6.200E+05支座截面形心距上翼缘边缘的距离y21(mm) 230 支座截面形心距下翼缘边缘的距离y22(mm) 470支座截面惯性矩I2(mm4) 2.632E+102.2 截面抗裂及承载力计算验算(三级)支座截面受拉区普通钢筋根数n1 7 受拉区普通钢筋直径d1(mm) 25 拉区预应力钢筋根数n2 10 弯矩标准值M k(kN-m) 421预应力损失计算张拉端锚具变形和钢筋内缩引起的预应力损失σl1(N/mm2)234预应力钢筋的应力松弛引起的应力损失σl4(N/mm2)33由于砼的收缩徐变引起的预应力损失σl5(N/mm2)43 裂缝验算受拉区纵向钢筋的公称直径d eq(mm) 26.64按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte0.03轴向压力作用点至纵向受拉钢筋合力点的距离e(mm)305.08纵向受拉钢筋合力点至截面受压区全力点的距离z(mm)218.83等效应力σsk(N/mm2)112.75裂缝间纵向受拉钢筋应变不均匀系数ψ(0.2<ψ<1.0)0.60裂缝宽度ωmax(mm)0.07 <0.2mm,满足要求抗震验算梁端的配筋强度比λ0.60 <0.75,满足要求截面换算配筋率ρ(%) 2.44 <2.5%,满足要求受压区高度比x/h0 0.26 <0.35,满足要求承载力计算支座计算弯矩包络值M(KN.M)5621.2恒荷弯矩+1.4活荷弯矩M1(KN.M)509实际承载力Mu(KN.M)1568 >M1,满足要求支座计算配筋包络值A s(mm2) 2700支座换算实际配筋面积A s实(mm2) 7814 >As,满足要求支座抗剪设计值V(KN)180抗剪承载力V实(KN)1468 >V,满足条件挠度验算挠度f(mm) 10.31 满足要求。
预应力梁截面计算表

Y
端部3几 H B A Ao I Wo 何参数 2500 1200 3.00E+06 2.96E+06 1.56E+12 1.25E+09 钢筋输入区 预筋n1 套管φ 预筋f1 预筋n2 套管φ 预筋f2 普筋层数 普筋直径 PR合力点f PR和普筋合力点 30 90 180 30 90 360 2 32 270 159 按截面强度计算 Mkg Mkq Mu(KNm) M2(KNm) x Y/N Asmin S根数N As Y/N 19058 4617 29333.4 3000 586.35 Y 4920.01 8 6430.72 Y 按预力度计算 λ Asmin S根数N As Y/N 0.65 16584.62 21 16880.64 Y 按裂缝计算 Mk(KNm)裂缝ω max ey δ ct查表 高度修正 预估ρ s% δ ct修正后 f.cuk/4 δ ct限值 δ ct计算 Y/N 23675 0.2 980 5.1 0.7 0.2 4.37 10 4.37 -2.73 Y 该截面配筋汇总 预应力筋 普通钢筋 预应力度 折算配筋 np1 f1 np2 f2 Ap Asmin ny φ As λ 率ρ ' 30 180 30 360 8400 16881 22 32 17684.48 0.64 1.62% As' 14147.58 ny' 18 H B A Ao I Wo 跨中2几 2300 1200 2.76E+06 2.72E+06 1.22E+12 1.06E+09 何参数 钢筋输入区 预筋n1 套管φ 预筋f1 预筋n2 套管φ 预筋f2 普筋层数 普筋直径 24 90 270 0 90 280 2 32 按截面强度计算 Mkg Mkq Mu(KNm) M2(KNm) x Y/N Asmin S根数N 13176 2634 19498.8 2000 474.82 Y 19051.72 26 按预力度计算 λ Asmin S根数N As Y/N 0.65 6633.846 9 7234.56 Y 按裂缝计算 Mk(KNm)裂缝ω max ey δ ct查表 高度修正 预估ρ s% δ ct修正后 f.cuk/4 15810 0.2 880 5.1 0.7 0.2 4.37 10 该截面配筋汇总 预应力筋 普通钢筋 np1 f1 np2 f2 Ap Asmin ny φ 24 270 0 280 3360 19052 26 32 As' 16719.87 ny' 21
预应力计算表格(三级裂缝控制)

预应力简支梁截面示意图一、工程概况1.几何信息截面高度:h=1200mm腹板厚度:b=500mm翼缘宽度:bf’=0mm翼缘高度:hf’=0mm截面积:A=600000mm2中和轴至上边缘距离:y=600.00mm截面惯性矩:I=7.20E+10mm4抗弯刚度:W下= 1.20E+08mm3梁跨度:L=17.9m2、材料信息混凝土等级C40fcu,k40N/mm2混凝土抗压强度:fc=19.1N/mm2混凝土轴心抗压强度标准值:fck=26.8N/mm2混凝土抗拉强度标准值:ftk= 2.39N/mm2预应力筋抗拉强度设计值:fpy=1320N/mm2预应力筋抗拉极限强度标准值:fptk=1860N/mm2非预应力钢筋强度设计值:fy=360N/mm2混凝土弹性模量Ec=32500N/mm2非预应力钢筋弹性模量Es=200000N/mm2预应力钢筋弹性模量Ep=195000N/mm23、荷载信息跨中弯矩设计值:M=2739kN·m跨中弯矩标准值:Mk=2063kN·m跨中弯矩准永久值:Mq=2013.5kN·m跨中弯矩标准值(活载):MQ=99kN·m跨中弯矩标准值(恒载):MG=1964kN·m支座边缘处得剪力最大值V max=637kN二、正截面承载力计算1、中和轴位置取预应力筋合力点距梁底面距离:ap=120mm 截面有效高度:h0=h-ap=1080mm0.0034此值小于0.0033时,取0.00330.8混凝土强度不超过C50时,取0.800.33判断中和轴位置:0.0kN·m>M故中和轴在翼缘内(按照bf’宽矩形梁计算);计算中和轴位置:As=(bf’·xo·fc-Ap·fpy)/fy=-9310mm<0故受拉区和受压区非预应力筋按构造配置受拉区非预应力钢筋选用 As=6383mm2选用受压区非预应力钢筋选用 As'=4419mm2选用3、预应力筋的布置预应力钢筋布置为:两孔(每孔7束)波纹管外径70布筋方式:二次抛物线形布筋。
预应力混凝土挠度和裂缝控制

2. 最大裂缝宽度计算
(1) 最大裂缝宽度计算公式 对于矩形截面的预应力混凝土轴心受拉和受弯构件,按荷载效应的标准组合并考虑长期作 用影响计算的最大裂缝宽度公式如下:
(2) 钢筋应力计算公式 对于荷载效应按标准组合的预应力混凝土构件,其受拉区纵向钢筋的等效应力可分别按一 下公式计算:
轴ห้องสมุดไป่ตู้受拉构件:
5.1 裂缝控制验算
1. 预应力混凝土裂缝控制等级
(1) 一级——严格要求不出现裂缝的构件 在荷载效应的标准组合值下应符合:
(2) 二级——一般要求不出现裂缝的构件 在荷载效应的标准组合值下应符合:
在荷载效应的准永久组合值下宜符合下列规定: (3) 三级——允许出现裂缝的构件 按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,应符合以下规定 :
3三级允许出现裂缝的构件按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度应符合以下规定最大裂缝宽度计算1最大裂缝宽度计算公式对于矩形截面的预应力混凝土轴心受拉和受弯构件按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度公式如下
第五章
预应力混凝土构件正常使用极限状态计算
杨凯 2015年5月18日
受弯构件:
3. 构件使用阶段应力验算
(1) 混凝土法向应力 1)轴心受拉构件
2)受弯构件
(2) 混凝土主拉应力与主压应力 1)验算 主拉应力验算: 一级—— 二级—— 主压应力验算:
此时,应选择跨度内不利位置的截面,对该截面的 换算截面重心处和截面宽度显著改变处进行验算
2)计算公式
4. 施工阶段应力验算
(1) 施工阶段不允许出现裂缝的构件或预压时全截面受压构件,截面边缘的混凝土法向 应力应满足:
预应力裂缝和挠度计算

3626374.761 481.470161 1275 2.116E+01 1395.90 1.243E+15 1.73146E+15 1.144241197 2.955365457 2333179315 0 6.40E+14
epn=(σpe*Ap*ypn-σl5*As*ysn)/Np (mm)
三级 标准组合并考虑长期作用的最大裂宽 ωmax≤ω1im ω1im-最大裂缝宽度限值按第3.3.4条采用 ωmax=αcr*ψ*σsk/Es*(1.9c+0.08deq/ρte)= ψ=1.1-0.65ftk/(ρte*σsk)= deq=Σni*(di)^2/Σni*vi*di= V1 V2 按表8.1.2-2 1 ρte=(As+Ap)/Ate= ok Ate=0.5bh+(bf-b)hf= 暂时不考虑bf.hf σsk=(Mk±M2-Np0(z-ep))/((Ap+As)z)=
σpe=σcon-σl (N/mm) σpc=Np/An+Np*epn*yn/In+M2*yn/In (N/mm) σp0=σcon-σl+ae*σpc (N/mm) 不出现裂缝 Bs=0.85*Ec*I0 允许裂缝 Bs=0.85EcI0/(kcr+(1-kcr)ω) kcr=Mcr/Mk ω=(1.0+0.21/αEρ)(1+0.45γf)-0.7 Mcr=(σpc+γftk)W0 γf=(bf-b)hf/bh0 B=Mk/(Mq(θ-1)+Mk)*Bs
C35
3.150E+04
M设计值 2.51E+09 M恒 1.70E+09 M活 3.38E+08 短期弯矩 Ms 2.04E+09 长期弯矩 Ml 1.92E+09 M2 -5.06E+08
混凝土裂缝控制等级的规定

混凝土裂缝控制等级的规定《混凝土结构设计规范》GB 50010-20153.4.4 结构构件正截面的受力裂缝控制等级分为三级,等级划分及要求应符合下列规定:一级——严格要求不出现裂缝的构件,按荷载标准组合计算时,构件受拉边缘混凝土不应产生拉应力。
二级——一般要求不出现裂缝的构件,按荷载标准组合计算时,构件受拉边缘混凝土拉应力不应大于混凝土抗拉强度的标准值。
三级——允许出现裂缝的构件:对钢筋混凝土构件,按荷载准永久组合并考虑长期作用影响计算时,构件的最大裂缝宽度不应超过本规范表,按荷载标准组合并考虑长期作用的影响计算时,构件的最大裂缝宽度不应超过本规范第;对二a类环境的预应力混凝土构件,尚应按荷载准永久组合计算,且构件受拉边缘混凝土的拉应力不应大于混凝土的抗拉强度标准值。
条文说明: 3.4.4 本规范将裂缝控制等级划分为三级,等级是对裂缝控制严格程度而言的,设计人员需根据具体情况选用不同的等级。
关于构件裂缝控制等级的划分,国际上一般都根据结构的功能要求、环境条件对钢筋的腐蚀影响、钢筋种类对腐蚀的敏感性和荷载作用的时间等因素来考虑。
本规范在裂缝控制等级的划分上也考虑了以上因素。
在具体划分裂缝控制等级和确定有关限值时,主要参考了下列资料:历次混凝土结构设计规范修订的有关规定及历史背景;工程实践经验及调查统计国内常用构件的设计状况及实际效果;耐久性专题研究对典型地区实际工程的调查以及长期暴露试验与快速试验的结果;国外规范的有关规定。
经调查研究及与国外规范对比,原规范对受力裂缝的控制相对偏严,可适当放松。
对结构构件正截面受力裂缝的控制等级仍按原规范划分为三个等级。
一级保持不变;二级适当放松,仅控制拉应力不超过混凝土的抗拉强度标准值,删除了原规范中按荷载准永久组合计算构件边缘混凝土不宜产生拉应力的要求。
对于裂缝控制三级的钢筋混凝土构件,根据现行国家标准《工程结构可靠性设计统一标准》GB 50153以及作为主要依据的现行国际标准《结构可靠性总原则》ISO 2394和欧洲规范《结构设计基础》EN 1990的规定,相应的荷载组合按正常使用极限状态的外观要求(限制过大的裂缝和挠度)的限值作了修改,选用荷载的准永久组合并考虑长期作用的影响进行裂缝宽度与挠度验算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预应力简支梁截面示意图
一、工程概况
1.几何信息
截面高度:h=1200mm
腹板厚度:b=500mm
翼缘宽度:bf’=0mm
翼缘高度:hf’=0mm
截面积:A=600000mm2
中和轴至上边缘距离:y=600.00mm
截面惯性矩:I=7.20E+10mm4
抗弯刚度:W下= 1.20E+08mm3
梁跨度:L=17.9m
2、材料信息
混凝土等级C40fcu,k40N/mm2
混凝土抗压强度:fc=19.1N/mm2
混凝土轴心抗压强度标准值:fck=26.8N/mm2
混凝土抗拉强度标准值:ftk= 2.39N/mm2
预应力筋抗拉强度设计值:fpy=1320N/mm2
预应力筋抗拉极限强度标准值:fptk=1860N/mm2
非预应力钢筋强度设计值:fy=360N/mm2
混凝土弹性模量Ec=32500N/mm2
非预应力钢筋弹性模量Es=200000N/mm2
预应力钢筋弹性模量Ep=195000N/mm2
3、荷载信息
跨中弯矩设计值:M=2739kN·m
跨中弯矩标准值:Mk=2063kN·m
跨中弯矩准永久值:Mq=2013.5kN·m
跨中弯矩标准值(活载):MQ=99kN·m
跨中弯矩标准值(恒载):MG=1964kN·m
支座边缘处得剪力最大值V max=637kN
二、正截面承载力计算
1、中和轴位置
取预应力筋合力点距梁底面距离:ap=120mm 截面有效高度:h0=h-ap=1080mm
0.0034此值小于0.0033时,取0.0033
0.8混凝土强度不超过C50时,取0.80
0.33
判断中和轴位置:
0.0kN·m>M
故中和轴在翼缘内(按照bf’宽矩形梁计算);计算中和轴位置:
As=(bf’·xo·fc-Ap·fpy)/fy=-9310mm<0
故受拉区和受压区非预应力筋按构造配置
受拉区非预应力钢筋选用 As=6383mm2选用
受压区非预应力钢筋选用 As'=4419mm2选用
3、预应力筋的布置
预应力钢筋布置为:两孔(每孔7束)
波纹管外径70
布筋方式:二次抛物线形布筋。
预应力筋在跨中处距下边缘:ap=120mm
张拉端至梁截面上端部距离:c1=c2=250mm
则抛物线矢高:e=0.83m
抛物线跨度:l=L/2=8.95m
曲线方程(以跨中为原点)
故:0.185rad
48.3m
4、截面几何特性
预应力钢筋截面转换率:αEp=Ep/Ec= 6.00
1
0.002
1
b
py p
cu s cu
f
E
β
ξ
σ
εε
==
-
++
跨中截面的净截面和换算截面的几何特征值为:
净截面面积An=
6.480E+05mm 4y n =∑Si/An=
596.72mm In=∑I i0+∑I ia -y n ∑Si=8.863E+10mm 4
换算截面面积A0=
6.60674E+05mm 4y 0=∑Si/A0
587.56mm I 0=∑I i0+∑I ia -y 0∑Si 9.14567E+10mm 4
三、预应力损失计算
张拉控制应力:бcon=0.75*fpyk=1395.0N/㎜2
1、锚具变形和钢筋内缩损失
选用夹片式锚具。
选用金属波纹管。
根据《混凝土结构设计规范》(GB50010-2010)表10.2.2,及表10.2.4
张拉端锚具变形和预应力筋内缩:
a=5mm 孔道偏差摩擦系数:
κ=0.0015预应力筋与孔道摩擦系数:
μ=0.25
反摩擦影响长度为:10.23m
换算截面积特征值
净截面积特征值
2、曲线筋的锚固损失为:
见下表
3、钢筋束张拉时,钢筋与孔道间的摩擦产生的预应力损失见下表
跨中
2张拉端248.83N/㎜2
混凝土收缩,徐变引起预应力损失为(考虑自重):其中: 1.38%0.68%跨中截面在第一批预应力损失бl1完成后混凝土法向应力值为3269.63kN
476.72mm 2.32N/㎜2收缩徐变损失
5、混凝土收缩徐变应力损失
所以受拉区预应力合力的应力值为
59.99N/㎜249.90N/㎜2
跨中截面的预应力总损失值为:
216.05N/㎜2满足规范要求最小预应力损失值
80N/㎜2四、裂缝验算
有效预应力бpe=бcom-бl=
1178.95N/㎜2Np=Ap*бpe-As*бl5=
2.61E+06N 476.72mm 561.72mm 464.25mm бpc=Np/An+(Np*e pn /I n )*y n =12.188N/㎜2бck=(Mk/Io)*yo=
13.25N/㎜2бp0=бcom-бl+αEs *бpc=
1253.95N/㎜2467.56mm αcr c (mm)552.56mm ν1 ν2 n1(mm)455.94mm d1(mm) As1(mm2)e p =y 0-ap-e po =
11.62mm n2(mm)Np0=бp0*Ap-σl5*As=2800888.99N d2(mm)e=e p +Mk/Npo
748.17mm As2(mm2) d(mm) As(mm2)214.48N/㎜2 ρte ρte σsk(N/mm2)444.492649mm
w(mm)
20
00.870.12(1)()=f h z r h e ⎡⎤
'=--⎢⎥⎣⎦01()=
()k p
p sk p s M N z e A A z σα--=+5555=
pe P pn pe P pn l s sn l s sn pn pe p pe p l s l s A y A y A y A y e A A A A σσσσσσσσ''''''--+=''''+--005500055=
p P p p P p l s s l s s p p p p p l s l s A y A y A y A y e A A A A σσσσσσσσ''''''--+=''''+--
33时,取0.0033
超过C50时,取0.80
1325a s`=25mm
925a s=25mm。