圆柱三面投影图
合集下载
曲面立体的三视图及其表面取点

a
sc
b
2.在圆锥表面取点
s
s
(1) 特殊位置点
已知棱锥表面上点 的投影1、2、3, 求其它两面投影。
SO
A O1
(2)
1
a
3
b(d) d
a 1
2 s
(3)
b
2
c d
1 3 b
a ( c )
c
(2) 一般位置点
已知圆锥表面上点的投影1、2,求其它两面投影。
曲面立体及表面点的三视图投影
回顾基本几何体的分类
根据几何体的表面几何性质,基本几何体可分 为 哪两类:
1、平面立体 2、曲面立体
1:平面立体的定义 表面都是由平面所构成的形体,如棱柱、
棱锥等
2:曲面立体的定义 表面是由曲面和平面 或者 全部由曲面构
成的形体。 如圆柱、圆锥、球体、圆环等
圆的直 径一般 注在投 影为非 圆的视 图上。
尺寸应 尽量注 在反映 形状特 征的视 图上,
圆的直 径一般 注在投 影为非 圆的视 图上。
() ()
1.平面立体的尺寸标注
课堂小结
2. 曲面体的尺寸标注
课堂小结
k
1
(m)
1
基本几何体的 尺寸标注
任何物体都具有长宽高三个方向的尺寸。 在视图上标注基本几何体的尺寸时,怎样 才能将三个方向的尺寸标注齐全,既不能 少,而又不重复标注呢?
尺寸应 尽量注 在反映 基本形 体形状 特征的 视图上。
尺寸应 尽量注 在反映 基本形 体形状 特征的 视图上。
尺寸应 尽量注 在反映 形状特 征的视 图上,
工程制图课件——第3章 立体的投影

1′ 3′ a
⑵ 圆柱体的三视图
2′ 4′
⑶ 轮圆廓柱线面素的线俯的视投图影积分聚析成与一曲
⑷个 两 示圆个。圆面,方柱的在 向面可另 的上见两 轮取性个 廓点的视素判图线断上的分投别影以表
1(2)
a3(4)
O A
O1 A1 1″ 3″ a
2″ 4″
利用投影 的积聚性
已知圆柱表面上的点M及N正面投影m′和n′,求它们 的其余两投影。
• 平面与立体表面的交线,称为截交线; 当平面切割立体时,由截交线围成的平 面图形,称为断面。 • 用平面与立体相交,截去体的一部分—截切。
• 用以截切立体的平面——截平面。
五棱柱被切割后的三面投影
例1:求四棱锥被截切后的俯视图和左视图。
1 (4)2 3
4● ●1 ● 2 ● 3
ⅣⅠ
Ⅱ Ⅲ
4
●
3
三视图
(2)正面与侧面投影 是以轴线为对称线的、 大 小完全相同的矩形。
投影特性
圆
圆 锥
底 成下 看面 是底 成圆围 由圆面 是锥成 一柱围 由是。 直由成 一由圆 母圆。 直圆锥 线柱圆 母锥面面柱 线A面可和A面BB绕和看上可绕、
⑴ 棱柱的组成
由两个底面和若干侧棱面
组成。侧棱面与侧棱面的交线
叫侧棱线,侧棱线相互平行。
⑵ 棱柱的三视图
⑶ 棱在柱图示面位上置取时点,六棱柱
的点两的底可面见为性水规平定面:,在俯视 图中反若映由点实于所形棱在。柱的前的平后表面两面的侧都投棱 面影是是可正平见平面,面,点,所的其以投余在影四棱也个柱可侧的见棱; 面若是表平铅面面垂上的面取投,点影它与积们在聚的平成水面直平上线投, 影点都取的积点投聚的影成方也直法可线相见,同。与。六边形 的边重合。
CH2_三面正投影图解析

三视图的特性
X
Z
正
高 长 宽 宽
YW
H
YH
B.立体三面投影的两面之间,存在如下关系: 正面投影和侧面投影具有相同的高度——高平齐 水平投影和正面投影具有相同的长度——长对正 重要
侧面投影和水平投影具有相同的宽度——宽相等
课堂练习:对号入座
课堂练习:对号入座
从投射线的方向观 察,不可见的投影 线用虚线表示。
圆锥体的三视图
正面投影的左、右边线 分别是圆锥最左、最右的两 条轮廓素线的投影,这两条 素线把圆柱分为前、后两半, 他们在W面上的投影与回转 轴的投影重合,在H面上的 投影与圆的水平中心线重合。 侧面投影的左、右边线 分别是圆锥最前、最后的两 条轮廓素线的投影,这两条 素线把圆柱分为左、右两半, 他们在V面上的投影与回转 轴的投影重合,在H面上的 投影与圆的竖直中心线重合。
要将几个视图联系起来看 要注意抓特征视图 要弄清视图中“线断”的 含义 要弄清视图中“线框”的 含义
形体分析法 线面分析法
W
X
O
H
Y
棱柱体的三视图
45°
棱锥体的投影特性
Z V s' S s"
在图示情况下,底面的 水平投影反映实形,正 面投影和侧面投影积聚 为水平线。
a' X
A
a H B s b
C a" c" c
W
后棱面SAC的侧面投影积 聚为一条斜线段,正面 投影和水平投影都是三 角形。 左、右两个棱面SAB、 SBC的三个投影均为三角 形。
§2.1 三面正投影图
三面正投影图是采用正投影法将空间几 何元素或几何形体分别投影到相互垂直的三 个投影面(三面投影体系)上,并按一定的 规律将投影面展开成一个平面,把获得的投 影排列在一起,使多个投影互相补充,以便 确切地、唯一地反映表达对象的空间位置或 形状。这种图又称三视图。
圆柱的三视图

8
9
ቤተ መጻሕፍቲ ባይዱ
作业:
1、习题册P32 3-8 (3)第一问
2、预习圆柱表面上 点的投影。
10
谢谢指导!
11
(3)绘出圆柱的 主视图——矩形 (4)绘出圆柱的 左视图——矩形
5
想一想:
1、三个视图中每一个线框的每一 条线是圆柱什么部分的投影?
上底圆
上底圆
最前素线
最左素线
下底圆 最右素线
最后素线 下底圆
圆柱面
2、可见性如何判断?
6
小结:
圆柱的三视图就是 一个圆和两个矩形。
7
练习: 如果将圆柱横 放,你能画出它的三 视图吗?
简阳市高级职业中学展示课
圆柱的三视图
授课人: 蒋群芳 2013.11.5
1
平面基本体
曲面基本体
2
1.圆柱的组成
由圆柱面和两底面组成。
O
A
圆柱面是由直线AA1绕与 它平行的轴线OO1旋转而成。
直线AA1称为母线。 圆柱面上与轴线平行的任 一直线称为圆柱面的素线。
O1 A1
3
2.圆柱的投影
如图,从上往下 看能看到什么?
一个投影为圆,其 Z 余二投影均为矩形。
V a’ c’d’ A b’ D d” a”b” B c”W
C
d”
从前往后看能 看到什么?
X
a’
c’d’ A a
a”b” c”
d
C
b c
从左往右看能 看到什么?
Y
圆柱的三面投影图
4
3.圆柱投影图的绘制:
(1)画出投影轴, 绘出圆柱的中心线。 (2)绘出圆柱的 俯视图——圆。
建筑制图与识图3立体的投影

3
3.3 切割体的投影
3.3.1 平面切割体的投影
(2)棱面法——面面交线法
将平面立体上参与相交的各棱面, 与截平面求交线,这些交线即围成所 求的平面立体截交线。
3.3 切割体的投影
3.3.1 平面切割体的投影
作图步骤:
1)空间分析及投影分析 a、截平面与立体的相对位置——确定截交线的形状 b、截平面,立体表面与投影面的相对位置——确定截交线的投影特性
PV2
6′ (7′) 7 ′′
例3-8:求作被截五棱柱的三面投影图
4′ (5′) 2′ ( 3′)
PV1
1′
5′′ 3 ′′
6′′
4′′ 2′′ 1′′
3 7(5)
1
2
6(4)
3.3 切割体的投影
3.3.2 曲面切割体的投影
截交线:一般为封闭的平面曲线,特殊情况为直线。 其形状取决于曲面立体的几何特征,以及截平面与曲面立体的相对位置。
c’ (2)绘出圆柱的顶面和底面。
(3)画出正面转向轮廓线和侧面转向轮廓线。
Z
a1’ c1’(d1’) d(d1)
a(a1) c(c1)
d1’
b1’
a1”(b1”) c1’’
c’d’ b’
V a’
D
A
d” B
a”b”
c”W
C
b(b1)
圆柱的投影
正面转向轮廓线 a1’
X
c1’d1’ A1 d(d1)
da11””(b1)”c1” C1b(b1)
曲面上可见与不可见的分界线称为回转面对该投影面的转向轮 廓线,在其他投影面不应画出。
圆柱体的投影
圆柱表面由圆柱面和上下两底面所组成。圆柱面是由一直母线绕与之 平行的轴线回转而成。圆柱上任意一条平行于轴线的直母线称之为素线。
3.3 切割体的投影
3.3.1 平面切割体的投影
(2)棱面法——面面交线法
将平面立体上参与相交的各棱面, 与截平面求交线,这些交线即围成所 求的平面立体截交线。
3.3 切割体的投影
3.3.1 平面切割体的投影
作图步骤:
1)空间分析及投影分析 a、截平面与立体的相对位置——确定截交线的形状 b、截平面,立体表面与投影面的相对位置——确定截交线的投影特性
PV2
6′ (7′) 7 ′′
例3-8:求作被截五棱柱的三面投影图
4′ (5′) 2′ ( 3′)
PV1
1′
5′′ 3 ′′
6′′
4′′ 2′′ 1′′
3 7(5)
1
2
6(4)
3.3 切割体的投影
3.3.2 曲面切割体的投影
截交线:一般为封闭的平面曲线,特殊情况为直线。 其形状取决于曲面立体的几何特征,以及截平面与曲面立体的相对位置。
c’ (2)绘出圆柱的顶面和底面。
(3)画出正面转向轮廓线和侧面转向轮廓线。
Z
a1’ c1’(d1’) d(d1)
a(a1) c(c1)
d1’
b1’
a1”(b1”) c1’’
c’d’ b’
V a’
D
A
d” B
a”b”
c”W
C
b(b1)
圆柱的投影
正面转向轮廓线 a1’
X
c1’d1’ A1 d(d1)
da11””(b1)”c1” C1b(b1)
曲面上可见与不可见的分界线称为回转面对该投影面的转向轮 廓线,在其他投影面不应画出。
圆柱体的投影
圆柱表面由圆柱面和上下两底面所组成。圆柱面是由一直母线绕与之 平行的轴线回转而成。圆柱上任意一条平行于轴线的直母线称之为素线。
三面投影图(精)

图2.1.8 基本形体的三面正投影图(一)图作图的实例
例 2
作出该(如图2.1.9所示(a))有曲面形体的三面正投影图。
(a)直观图
作图步骤:
① 分析:注意,该形体中有曲面体,要掌握曲面体轮廓
线的表达方式。 ② 将形体假想的放在三面投影体系当中。放平放正。让 形体更多的面分别平行于V、H、W这三个投影面。按 习惯可先做出其在 V 面上的投影图。如图 2.1.9 ( b ) 注意该投影图中有的面反映了投影的真实性、也有的 面反映了投影的积聚性,还有的面反映了投影的类似 性。还要注意圆柱体的轮廓线的表达。 ③ 运用同样的原理再做出该形体的 H 、 W 面的投影图。 一定要注意投影图之间的对正关系(长对正、高平齐、 宽相等),同样还要注意形体轮廓图线的不可见性。
图2.1.7 三面投影图的展开
三.基本形体投影图作图的实例
例 1
作出该形体的三面正投影图,图2.1.8所示。
作图步骤:
① 将形体假想的放在三面投影体系当中。放 平放 正。让形体更多的面分别平行于V、 H、W这三个影面。按习惯可先做出其在V 面上的投影图。如图2.1.8(b)注意该投 影图中有的面反映了投影的真实性、也有 的面反映了投影的积聚性,还有的面反映 了投影的类似性。 ② 运用同样的原理再做出该形体的H 、W面 的投影图 。一定要注意投影图之间的对 正关系(长对正 、高平齐 、宽相等), 还要注意形体轮廓图线的不可见性。
二. 基本形体正投影图的作图方法——三面正投影图的形成
形成原因
如图2.1.5所示:空间形体虽然不同,但却有着相同的正投影图。 故仅凭形体的单面投影不足以确定形体的空间形状和尺度的。需 要从几个方面对形体作投影图并综合起来识读,确定形体唯一的 形状和大小。因此,工程上用三面投影体系来完成形体投影图的 表达。
第3章基本形体的投影

a
2 m
s
3 b
圆锥的投影及表面上的点
例:已知圆锥表面 上点M及N的正面投影 m′和n′,求它们的 其余两投影。
m
(n ) (n )
m
a’ (a”)
n
a
m
在圆锥表面上取点
①特殊点:特殊素线+三等关系 ②一般点:利用辅助素线法、纬圆法+三等关系
3.圆球
⑴ 圆球的形成
圆母线以它的直 径为轴旋转而成。
s
s
b
a c
a(c)
b
b
棱锥的三视图
Z V s' S a' s"
如图为一正三棱锥,锥 顶为S,其底面为△ABC, 呈水平位置,水平投影 △abc反映实形。
棱面△SAB、 △SBC是 一般位置平面,它们的 各个投影均为类似形。 棱面△SAC为侧垂面, 其侧面投影s”a”c”重影 为一直线。
⑴ 圆柱体的组成 由圆柱面和两个底面组成。 圆柱面是由直线AA1绕与 它平行的轴线OO1旋转而成。 直线AA1称为母线。 圆柱面上与轴线平行的任 一直线称为圆柱面的素线。
O1 A1
(1) 圆柱的投影
(1) 先绘出圆柱的对 称线、回转轴线。 (2)绘出圆柱的顶面 和底面。 (3)画出正面转向轮 廓线和侧面转向轮廓线。
1.4 体的三面投影—三视图 3.基本形体的三视图
结束放映
1.4 三面投影图
正立面图 ——由前向后投影,实体的正面投影
Z
V
平面图 ——由上向下投影, 实体的水平投影
左侧立面图 ——由左向右 投影,实体的侧面投影
W X
O
H
Y
2.投影体系的展开
曲面立体及其表面上点和线的投影

水平投影和侧面投影均可见;N点的正面投影不 可见,且在点画线的右侧,由此可判定N点在右、
(a)已知条件
后半圆柱面上,其水平投影可见,侧面投影不可
见。
作图步骤(参见图4-8(b)):
(1)过m′点向下作铅垂线交圆周的前半部分
于一点,则该点为m;由m′点和m点,即可求出m′′
点,m′′点为可见点。
(2)采用同样的方法,先求出N点的水平投
曲面立体及其轴测投影
4.圆环面上点的投影
圆环表面上的点,可使用纬圆法绘制。例如, 已知环面上K点的正面投影k′,求该点的水平投影的 作图方法如图4-13所示。
第 17 页
图4-13 求环面上点的投影
土木工程制图
(b)作图方法 图4-9 利用“辅助线法”求圆柱表面上线的投影
曲面立体及其轴测投影
第 13 页
2.圆锥表面上点的投影
圆锥底面具有积聚性,其上的点可以直接求出。 圆锥面没有积聚性,其上的点需要用辅助线法才能 求出。按辅助线的类型不同,辅助线法可分为素线 法和纬圆法两种。
【例4-3】已知圆锥面上点A的正面 投影a′,如图4-10(a)所示,求其另 外两面投影。
形,同时也是圆锥面的投影。 ➢ V面和W面投影:均为等腰三角形,且三
角形的底边为圆锥底面的积聚投影。V面 投影中,三角形的左、右两边分别是圆锥 面最左素线SA和最右素线SB的投影(素线 也是转向轮廓线);W面投影中,三角形 的左、右两边分别是圆锥面最前素线SC和 最后素线SD的投影。
(a)立体图
(b)投影图
圆柱体的侧面投影积聚在圆周上。 ➢ V面投影:为一个矩形。其中,上、下两边线
分别是圆柱上、下底面的积聚投影,左、右两 边线分别是圆柱最左、最右处素线的投影。 ➢ W面投影:为一个矩形。其中,上、下两边线 分别是圆柱上、下底面的积聚投影,左、右两 边线分别是圆柱最后、最前处素线的投影。