《数列的概念与简单表示法》教案设计
教学设计5:6.1 数列的概念及简单表示法

6.1 数列的概念及简单表示法[知识梳理]1.数列的定义、分类与通项公式(1)数列的定义:①数列:按照排列的一列数.②数列的项:数列中的.(2)数列的分类:分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n(3)数列的通项公式:如果数列{a n}的第n项与之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n}的首项(或前几项),且与它的(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.3.对数列概念的理解(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.4.数列的函数特征数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=a n(n∈N*).[考点精析]考点一由数列的前几项求数列的通项公式典题导入[例1] 下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1 B .a n =-1n +12C .a n =2-⎪⎪⎪⎪sin n π2D .a n =-1n -1+32若本例中数列变为:0,1,0,1,…,则{a n }的一个通项公式为________.由题悟法1.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n+1来调整.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.以题试法1.写出下面数列的一个通项公式. (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)3,33,333,3 333,…;(4)-1,32,-13,34,-15,36,….考点二由a n 与S n 的关系求通项a n典题导入[例2] 已知数列{a n }的前n 项和S n ,根据下列条件分别求它们的通项a n . (1) S n =2n 2+3n ;(2)S n =3n +1.由题悟法已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步: (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.以题试法2.已知数列{a n }的前n 项和为S n ,且S n =n n +1,则1a 5=( )A.56 B.65 C.130D .30考点三数列的性质典题导入[例3] 已知数列{a n }的通项公式为a n =n 2-21n +20. (1)n 为何值时,a n 有最小值?并求出最小值; (2)n 为何值时,该数列的前n 项和最小?在本例条件下,设b n =a nn ,则n 为何值时,b n 取得最小值?并求出最小值.由题悟法1.数列中项的最值的求法根据数列与函数之间的对应关系,构造相应的函数a n =f (n ),利用求解函数最值的方法求解,但要注意自变量的取值.2.前n 项和最值的求法(1)先求出数列的前n项和S n,根据S n的表达式求解最值;(2)根据数列的通项公式,若a m≥0,且a m+1<0,则S m最大;若a m≤0,且a m+1>0,则S m 最小,这样便可直接利用各项的符号确定最值.以题试法3.数列{a n}的通项a n=nn2+90,则数列{a n}中的最大值是() A.310 B.19C.119 D.10 60答案[知识梳理]1.(1)①一定顺序 ②每一个数(3)序号n2.任一项a n 前一项a n -1 [例1]【解析】 由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2, a 3=1,a 4=2,…. 【答案】 C【答案】a n =⎩⎪⎨⎪⎧n 为奇数,1n 为偶数.⎝⎛⎭⎫或a n =1+-1n2或a n =1+cos n π21.解:(1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(3)将数列各项改写为93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,….所以a n =13(10n -1).(4)奇数项为负,偶数项为正,故通项公式的符号为(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+-1nn,也可写为a n=⎩⎨⎧-1n,n 为正奇数,3n ,n 为正偶数.[例2]【解析】 (1)由题可知,当n =1时,a 1=S 1=2×12+3×1=5, 当n ≥2时,a n =S n -S n -1=(2n 2+3n )-[2(n -1)2+3(n -1)]=4n +1.当n =1时,4×1+1=5=a 1,故a n =4n +1. (2)当n =1时,a 1=S 1=3+1=4, 当n ≥2时,a n =S n -S n -1=(3n +1)-(3n -1+1)=2×3n -1. 当n =1时,2×31-1=2≠a 1,故a n =⎩⎪⎨⎪⎧4, n =1,2×3n -1, n ≥2. 2.【解析】选D 当n ≥2时,a n =S n -S n -1=nn +1-n -1n =1n n +1,则a 5=15×6=130.[例3]【解析】 (1)因为a n =n 2-21n +20=⎝⎛⎭⎫n -2122-3614,可知对称轴方程为n =212=10.5.又因n ∈N *,故n =10或n =11时,a n 有最小值,其最小值为112-21×11+20=-90.(2)设数列的前n 项和最小,则有a n ≤0,由n 2-21n +20≤0,解得1≤n ≤20,故数列{a n }从第21项开始为正数,所以该数列的前19或20项和最小.解:b n =a n n =n 2-21n +20n =n +20n-21,令f (x )=x +20x -21(x >0),则f ′(x )=1-20x 2,由f ′(x )=0解得x =25或x =-25(舍).而4<25<5,故当n ≤4时,数列{b n }单调递减;当n ≥5时,数列{b n }单调递增.而b 4=4+204-21=-12,b 5=5+205-21=-12,所以当n =4或n =5时,b n 取得最小值,最小值为-12.3.【解析】选C a n =1n +90n ,由基本不等式得,1n +90n ≤1290,由于n ∈N *,易知当n =9或10时,a n =119最大.。
数列的概念与简单表示法教案

数列的概念与简单表示法教案一、教学目标1. 了解数列的概念,理解数列的表示方法,如通项公式、项的表示等。
2. 学会用图像和数学公式表示数列。
3. 能够运用数列的性质解决实际问题。
二、教学内容1. 数列的概念:数列是按照一定的顺序排列的一列数。
2. 数列的表示方法:a) 通项公式:数列中每一项的数学表达式。
b) 项的表示:用序号表示数列中的每一项。
3. 数列的图像表示:数列的图像通常为一条直线或曲线。
4. 数列的性质:数列的项数、公差、公比等。
三、教学重点与难点1. 教学重点:数列的概念、数列的表示方法、数列的图像表示。
2. 教学难点:数列的性质及其应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳数列的性质。
2. 利用多媒体展示数列的图像,增强学生的直观感受。
3. 开展小组讨论,培养学生合作学习的能力。
五、教学步骤1. 引入数列的概念,引导学生理解数列是按照一定顺序排列的一列数。
2. 讲解数列的表示方法,如通项公式、项的表示,让学生学会用数学公式表示数列。
3. 利用多媒体展示数列的图像,让学生了解数列的图像表示方法。
4. 分析数列的性质,如项数、公差、公比等,并引导学生运用数列的性质解决实际问题。
5. 进行课堂练习,巩固所学内容。
教案设计仅供参考,具体实施时可根据学生的实际情况进行调整。
六、教学活动1. 课堂讲解:数列的概念与表示方法。
2. 实例分析:分析生活中常见的数列,如等差数列、等比数列。
3. 练习:求给定数列的前n项和。
七、数列的图像表示1. 讲解:数列图像的绘制方法。
2. 练习:绘制给定数列的图像。
八、数列的性质与应用1. 讲解:数列的性质及其应用。
2. 实例分析:运用数列的性质解决实际问题。
3. 练习:运用数列的性质解决给定问题。
九、课堂小结1. 回顾本节课所学内容,总结数列的概念、表示方法、图像表示和性质。
2. 强调数列在实际问题中的应用。
十、课后作业1. 习题:求给定数列的前n项和。
数列的概念与简单表示法教案

数列的概念Ⅰ.课题导入三角形数:1,3,6,10,…正方形数:1,4,9,16,25,… Ⅱ.讲授新课1. 数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 2. 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….如:4,5,6,7,8,9,… ① ,,,,,514131211 ②1,3,4,2.3,9,0,… ③上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项. 3. 数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 如: ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?对于上面的数列②,第一项与这一项的序号有这样的对应关系: 项 151413121↓ ↓ ↓ ↓ ↓ 序号 1 2 3 4 5这个数的第一项与这一项的序号可用一个公式:na n 1=来表示其对应关系即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项4. 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:⑴并不是所有数列都能写出其通项公式,如上述数列③ ; ⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a ,也可以是|21cos|π+=n a n .⑶数列通项公式的作用: ①求数列中任意一项;②检验某数是否是该数列中的一项. 数列的通项公式具有双重身份,它表示了数列的第n 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5. 数列与函数的关系数列可以看成以正整数集N *(或它的有限子集{1,2,3,…,n})为定义域的函数()n a f n =,当自变量从小到大依次取值时对应的一列函数值。
《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案一、教学目标1. 了解数列的定义及其特点2. 掌握数列的表示方法,包括通项公式和前n项和公式3. 能够运用数列的概念和表示法解决实际问题二、教学内容1. 数列的定义与特点2. 数列的表示方法a. 通项公式b. 前n项和公式三、教学重点与难点1. 重点:数列的概念、特点及表示方法2. 难点:通项公式和前n项和公式的运用四、教学方法1. 采用讲授法,讲解数列的概念、特点及表示方法2. 利用例题,引导学生运用数列的知识解决问题3. 小组讨论,探讨数列在实际问题中的应用五、教学过程1. 引入数列的概念,讲解数列的定义和特点2. 介绍数列的表示方法,包括通项公式和前n项和公式3. 举例说明数列的表示方法在实际问题中的应用4. 课堂练习,让学生巩固数列的概念和表示法教案仅供参考,具体实施时可根据学生的实际情况进行调整。
六、教学评估1. 课后作业:布置有关数列概念和表示法的练习题,要求学生在规定时间内完成。
2. 课堂练习:课堂上设置一些数列相关的问题,让学生现场解答,以检验他们对数列概念和表示法的掌握程度。
3. 小组讨论:组织学生进行小组讨论,分享他们在实际问题中运用数列知识的心得,从而提高他们的合作能力和解决问题的能力。
七、教学拓展1. 数列的性质:介绍数列的单调性、周期性等性质,引导学生深入研究数列的特点。
2. 数列的分类:讲解等差数列、等比数列等常见数列的定义和性质,让学生了解数列的多样性。
八、教学反思在教学过程中,要及时关注学生的学习反馈,调整教学节奏和难度,确保学生能够跟上课程进度。
针对学生的薄弱环节,要加强针对性训练,提高他们的数列知识水平。
注重培养学生的数学思维能力和实际应用能力,使他们能够将所学知识运用到实际问题中。
九、课后作业1. 复习数列的概念和表示法,整理课堂笔记。
2. 完成课后练习题,加深对数列知识的理解。
3. 选择一个实际问题,尝试运用数列的知识解决,并将解题过程和答案提交给本节课主要讲解了数列的概念和简单表示法,学生通过学习掌握了数列的基本知识,能够运用通项公式和前n项和公式解决一些实际问题。
数列的概念与简单表示法教案

数列的概念与简单表示法教案教案标题:数列的概念与简单表示法年级:初中教育,七年级学科:数学教学目标:1. 了解数列的基本概念和特点;2. 掌握数列的简单表示方法,包括通项公式和递推公式;3. 能够应用所学知识解决简单的数列问题。
教学重点:1. 数列的定义和基本概念;2. 通项公式和递推公式的理解和运用。
教学准备:1. 教师:教学课件、数列示例、黑板、彩色粉笔等。
2. 学生:教材、作业本、笔、纸等。
教学步骤:引入(10分钟)1. 回顾学生对数学中的序列的概念的理解,介绍数列的概念。
解释数列是按特定顺序排列的一系列数的集合,强调数列中的每个数都有其特定的位置。
2. 通过示例引导学生理解数列,例如:1,3,5,7,9是一个数列,其中每个数都比前一个数大2。
概念讲解(15分钟)1. 解释数列的三要素:首项、公差和通项。
首项即数列中的第一个数,公差指的是相邻两项之间的差值,通项是指数列中任意一项与首项的关系。
2. 引入通项公式,解释如何通过通项公式计算数列中的任意一项。
例如,在等差数列中,通项公式可以表示为an = a1 + (n-1)d,其中a1是首项,d是公差,n是项数。
3. 介绍递推公式,说明如何通过已知的前一项计算出下一项。
例如,在等差数列中,递推公式可以表示为an = an-1 + d,其中an-1代表数列中的前一项。
示例与练习(20分钟)1. 展示一些数列的示例,包括等差数列和等比数列,并与学生一起求出各个数列的首项、公差(公比),以及给出特定的项数求解该项的方法。
2. 学生通过课堂练习,巩固所学的数列概念和表示方法,包括计算数列中缺失的项、给出下一项以及判断数列是否为等差(等比)数列等。
总结与拓展(10分钟)1. 总结数列的概念、通项公式和递推公式,确保学生掌握这些概念和方法。
2. 引导学生思考数列在现实生活中的应用,例如金融中的存款利息计算、天体物理中的星球间距离等领域。
课后作业:1. 完成教材中与数列相关的习题;2. 扩展思考:寻找并总结现实生活中的数列应用场景,并写出相关的数学表示式。
数列的概念与简单表示法教案

数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。
举例说明数列的组成,如自然数数列、等差数列等。
1.2 数列的项解释数列中的每一个数称为数列的项。
强调数列项的顺序和重复性质。
1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。
举例讲解如何写出简单数列的通项公式。
第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。
练习写出几个给定数列的列举表示。
2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。
举例说明如何用公式法表示等差数列和等比数列。
2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。
引导学生通过观察图形来理解数列的特点。
第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。
举例说明如何确定一个数列的项数。
3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。
举例说明如何判断一个数列的单调性。
3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。
举例说明如何判断一个数列的周期性。
第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。
推导等差数列的通项公式。
4.2 等比数列的通项公式讲解等比数列的定义和性质。
推导等比数列的通项公式。
4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。
举例讲解如何求解其他类型数列的通项公式。
第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。
推导等差数列的前n项和的公式。
5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。
推导等比数列的前n项和的公式。
5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。
举例讲解如何求解其他类型数列的前n项和。
第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。
高中数学必修五《数列的概念与简单表示法》优秀教学设计

高中数学必修五《数列的概念与简单表示法》优秀教学设计数列的概念与简单表示法一、教学目标:通过日常生活中、数学史中实例的观察、分析和讨论,了解数列的概念,通过小组合作讨论,确定数列研究的内容和方向,了解数列概念的内涵和外延及几种简单的表示方法,体会数列是一种特殊的函数.在对数列抽象、观察的过程中,锻炼学生分析、探索、转化、归纳等能力,经历从特殊到一般,一般到特殊的重要数学思想方法.通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的有机联系,感受数学的整体性,进一步理解数列的本质.二、学情分析:学生学习了集合、函数的概念和性质等基本知识,初步掌握了函数的研究方法,在观察、抽象、概括等学习策略与学习能力方面,有了一定的基础.况且,数列概念的学习并不需要很多的知识基础,可以说学习数列的概念并无知识上的困难.这些都是数列概念教学的有利条件.刚开始高中数学学习的学生,自己主动地建构概念的意识还不够强,能力还不够高.同时,在建立概念的过程中,学生的辨别各种刺激模式、抽象出观察对象或事物的共同本质特征,概括形成概念,并且用数学语言(符号)表达等方面,会表现出不同的水平,从而会影响整体的教学.三、重点难点:“数列的概念与简单表示法”是人教A版普通高中课程标准实验教科书必修5第2章第1课时的内容,主要涉及数列的概念、表示方法、分类、通项公式、数列和函数之间的关系等.数列是刻画离散现象的数学模型,是一种离散型函数,在日常生活中有着重要的应用.学习数列对深化函数的学习有着积极地意义,数列是以后学习极限的基础,因此,数列在高中数学中占有重要位置.数列的概念是学习数列的起点与基础,因而建立数列的概念是本章教学的重点,更是本节课教学的重点.学生主动自我建构概念,需要经历辨析、抽象、概括等过程,影响概念学习过程的因素又是多样的,所以,数列特征的感知和描述,函数意义的概括和理解,是教学的难点.四、教学方法:运用“问题驱动”、小组合作的教学方法,创设有效问题情境,引导学生进行探究,借助多媒体课件等工具让学生“问题”的引领下,学会思考、大胆探索、建构知识和体会思想.五、教学过程:1.创设情境,激发探究兴趣思考:某位学生先后有四次考试成绩,每次对应的成绩忘了,但记得有66,86,76,96四个数字,该学生的学习成绩是进步还是退步?设计意图:通过学生熟悉的问题实例的思考,吸引学生的注意力,激发学习的兴趣,让学生充分感受到四个数字顺序的不同,该学生学习状态的巨大差异,从而明确学习“数列”的必要性,也为后续具体实例的给出做好铺垫.情境1:研究树枝的生长规律:树苗在第一年长出一条新枝,新枝成长一年后变为老枝,老枝每年都长出一条新枝.每一条树枝都按照这个规律成长,则每年的分枝数依次为:1,1,2,3,5,8,13,21,34,55,89,......情境2:古希腊毕达哥拉斯学派的数学家研究的三角形数依次为:1,4,9,16,25,.......情境3:从1984年到2016年我国共参加了9次奥运会,各次参赛获得的金牌总数依次为:15,5,16,16,28,32,51,38,26 ;情境4:2015年黄岩区1—12月份的最低气温依次为:-3,-3,3,6,13,16,19,21,18,12,1,-1;预设:追问1:①情境3中的第7次奥运会金牌总数为多少?②情境4中最低温度比较低的月份有哪些?夏季那几个月的最低温度是多少?设计意图:结合自然界、数学史和生活中的例子,进一步让学生感受数列无处不在.初步认识到可以用数字描述、刻画客观存在的自然现象和规律.让学生从中体会到为了更好地了解大自然,发现并利用大自然和生活中的规律,我们就必须去解读这些数据,并对其进行研究.同时,这几个实例又代表了数列的不同类型,为后面讲解数列的分类、通项公式等埋下伏笔.2.总结归纳,给出数列概念数列概念:①按照一定顺序排列的一列数称为数列(sequence of number );②数列的一般形式:123,,,,n a a a a ,简记{}n a ;③数列中的每一个数叫做这个数列的项,1a 称为该数列的第1项(通常也叫做首项),2a 称为该数列的第2项,n a 称为该数列的第n 项.问题1:请你根据数列的定义,能否举出数列的例子?预设:①1,4,9,16和1,9,4,16是不是同一数列;②1,1,1,1,1,1是不是数列?第3项和第4项分别是什么?③小牛,小马,小强,是不是数列;设计意图:通过学生举例分析,进一步检验学生对于数列概念的理解,结合教师例子的分析,明确数列讲究的一列数的顺序.3.抽象分析,开展探究活动把上述实例的背景去掉进行抽象可得:① 96,86,76,6;② 1,4,9,16,25;③ 1,1,2,3,5,8,13,21,34,5 ④ 15,5,16,16,28,32,51 ⑤ 3,3,3,6,13,16,19,21,18--- 问题2:结合上述5个数列,哪些角度可以研究数列,并形成相应结论(小组讨论)预设:让各组形成自己的结论进行展示,教师巡查进行分组指导(1)分类:①按项数:项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列;②项的大小:递增数列、递减数列、常数列和摆动数列;(2)表示法:在数列②中,得到2n a n =,可以求出任意项的值——通项公式,例如数列③的通项公式为()10610,14,n a n n n N *=-≤≤∈(通项公式:用一个式子来表示数列{}n a 的第n 项n a 与序号n 之间的关系)追问2:通项公式相当于函数的解析式,数列③④⑤如何表示?追问3:数列是不是函数,定义域是什么?能总体说说数列与函数的区别和联系吗?追问4:数列的图像为什么是离散的点?追问5:递推公式能确定数列的每一项吗?设计意图:通过追问,明确数列与函数的关系,理解数列是定义在正整数集或其有限子集{ }()n ,321 ,,,的函数,是刻画离散的一种特殊函数.辨别每一种表示的优劣,明确不是每一个数列都是有通项公式的,图像表示数列直观,但是离散的点组成,介绍数列的另一种表示方法——递推公式.(3)数列的性质:追问6:数列是否也具有单调性、奇偶性和有界性?预设:不具有奇偶性,定义域不关于原点对称.情境3有最小值,情境4、5有最小值和最大值.设计意图:让学生经历观察、分析、探索、转化、归纳,体会特殊到一般,一般到特殊的重要数学思想方法.通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的有机联系,感受数学的整体性,进一步理解数列的本质做好铺垫.(4)总结归纳:1.从项的角度分析:①项与项的大小,可以分成递增数列、递减数列、摆动数列和常数列;②从每一项与序号的关系:通项公式;③从前后几项之间的关系:递推公式;2.从概念的内涵和外延角度分析:①数列与函数、数列与数集的区别和联系;②类比函数的表示法和性质,完善数列的表示法和类似性质;类比函数的学习经历,形成思维导图:4.例题解析,深化概念理解例1:写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)4131211--,,, (2) 2,0,2,0 预设:(1)()n a n n 11+-=或()n n a n π1cos -= (3)()111+-=+n n a 或=为偶数,为奇数,n n a n 02或()π1cos 2-=n a n问题3:上述数列的通项公式为什么可以写出多个?例2:图中的三角形图案称为谢宾斯基(sierpinski )三角形.在下图四个三角形图案中,着色的小三角形的个数依次构成一个数列的前4项,请写出这个数列的一个通项公式和递推公式设计意图:让学生体会写数列的通项公式,主要是寻找与对应关系,具体方法为:(1)整体把握,局部考虑;(2)合理变形,探求规律.如果只知道一个数列的前几项,这个数列的通项公式可能不唯一,进一步理解数列是一种特殊的函数.课堂练习:1.根据数列的通项公式填表2.若数列{}n a 的通项公式为152-+-=n n a n ,*∈N n ,求数列{}na 的最大项.5.课堂小结,形成知识体系1、对于一个新概念你会研究哪些方面,基本思路是什么?2、对于数列,你有什么样的认识?3、下节课我们将研究一些特殊数列,例如等差数列,等比数列等.。
数列的概念与简单表示教案

数列的概念与简单表示教案教案标题:数列的概念与简单表示教学目标:1. 理解数列的概念,能够准确描述数列的特点。
2. 能够使用递推公式和通项公式表示数列。
3. 能够通过观察数列的规律,预测数列的下一项。
教学重点:1. 数列的概念及其特点。
2. 递推公式和通项公式的使用。
3. 规律观察和预测。
教学准备:1. 教学课件或黑板。
2. 学生练习册或作业本。
3. 数列的例题和练习题。
教学过程:一、导入(5分钟)1. 引入数列的概念:通过展示一些实际生活中的数列,如等差数列或等比数列,激发学生对数列的兴趣和好奇心。
2. 引导学生思考:你认为什么是数列?数列有什么特点?二、概念讲解与示例分析(10分钟)1. 讲解数列的概念:数列是由一系列按照一定规律排列的数字组成的序列。
2. 分析数列的特点:数列中的每个数字称为数列的项,用an表示第n项。
数列中的相邻两项之间的差称为公差(对于等差数列)或公比(对于等比数列)。
3. 通过示例解释概念:展示几个常见的数列示例,如等差数列和等比数列,并解释其中的规律和特点。
三、递推公式与通项公式(15分钟)1. 引导学生思考:如何使用递推公式和通项公式表示数列?2. 讲解递推公式:对于等差数列,递推公式为an = a1 + (n-1)d;对于等比数列,递推公式为an = a1 * r^(n-1)。
3. 讲解通项公式:对于等差数列,通项公式为an = a1 + (n-1)d;对于等比数列,通项公式为an = a1 * r^(n-1)。
4. 通过示例演示递推公式和通项公式的使用。
四、规律观察和预测(15分钟)1. 引导学生观察数列的规律:通过给出一些数列示例,让学生观察数列中的规律和特点。
2. 练习预测数列的下一项:给出一些数列,让学生根据观察到的规律预测数列的下一项。
3. 检查学生的预测结果,让学生互相交流并讨论各自的观察和预测过程。
五、练习与巩固(10分钟)1. 发放练习册或作业本,让学生完成相关练习题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的概念与简单表示法
一、教材与教学分析
1.数列在教材中的地位
根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边.
作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。
教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).2.教学任务分析
(1)了解数列的概念
新课标的教学更贴近生活实际.通过实例,引入数列的概念,理解数列的顺序性,感受数列是刻画自然规律的数学模型.了解数列的几种分类.
(2)了解数列是一类离散函数,体会数列中项与序号之间的变量依赖关系.
3.教学重点与难点
重点:理解数列的概念,认识数列是反映自然规律的基本数学模型.
难点:认识数列是一种特殊的函数,发现数列与函数之间的关系.
二、教学方法与学习方法
自主学习与合作探究相结合.
三、教学情境设计。