人教版高中数学选修1 1知识点总结全

合集下载

高中数学选修1:知识点总结归纳

高中数学选修1:知识点总结归纳

高中数学选修1-1知识点总结归纳常用逻辑用语1.1命题及其关系1.1.1命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。

其中p 叫做命题的条件,q 叫做命题的结论。

1.1.2四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。

其中一个命题叫做原命题,另一个叫做原命题的逆命题。

如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。

如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间原命题若p ,则q 逆命题若q ,则p 否命题若p ⌝,则q ⌝逆否命题若q ⌝,则p⌝原命题逆命题否命题逆否命题互为逆否互为逆否互逆互否互否若p ⌝,则q⌝若q ⌝,则p⌝若p ,则q若q ,则p互逆的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系:(1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。

人教版高中数学选修(1-1)-1.3知识归纳:简单的逻辑联结词

人教版高中数学选修(1-1)-1.3知识归纳:简单的逻辑联结词

1.3 简单的逻辑联结词
1.基本概念: “或”、“且”、“非”称为逻辑联结词.
2.在判断复合命题的真假时,先确定复合命题的构成形成,同时要掌握以下规律:
ⅰ、“非”形式的复合命题的真假与命题的真假相反;
ⅱ、“或”形式的复合命题只有当命题与同时为假时才为假,否则为真;
ⅲ、“且”形式的复合命题只有当命题与同时为真时才真,否则为假。

3.写出一个命题的否定,往往需要对正面词语进行否定,要熟悉常用的正面叙述词语及它的否定形式,比如:“至少”、“最多”、以及“至少有一个是(不是)”、“最多有一个是(不是)”、“都是(不是)”、“不都是”等。

4.逻辑中的“或”与日常生活中的“或”是有区别的:“或”在日常生活中通常有两种解释: “不
可兼有”和“可兼有”.例如:“今天晚上要有一个人在值班室接电话,你去或他去”(不可兼有),“今天下午要留人出黑板报,你留或他留”(可兼有).在数学上一般采用“可兼有”,如或 . 生活中如果说“苹果是长在树上或长在地里”,就觉得不妥,但在逻辑中却是可以的且是真命题。

5.举出一些生活例子说明逻辑联结词中“或”与“且”的意义.
洗衣机在甩干时,如果“到达预定时间”或“机盖被打开”,就会停机,又如电子保险门在“钥匙
插入”且“密码正确”两个条件都满足时,才会开启.它们相应的电路是或门电路和与门电路。

2023年人教版高中数学选修一全部重要知识点

2023年人教版高中数学选修一全部重要知识点

(名师选题)2023年人教版高中数学选修一全部重要知识点单选题1、动点P在抛物线x2=4y上,则点P到点C(0,4)的距离的最小值为()A.√3B.2√3C.12√3D.12答案:B分析:设出点P坐标,用两点间距离公式表达出点P到点C(0,4)的距离,配方后求出最小值.设P(x,x 24),则|PC|=√x2+(x24−4)2=√116(x2−8)2+12,当x2=8时,|PC|取得最小值,最小值为2√3故选:B2、若ab≠0,则ax−y+b=0和bx2+ay2=ab所表示的曲线只可能是下图中的()A.B.C.D.答案:C分析:根据椭圆、双曲线的性质判断参数a,b 的符号,结合直线的位置判断a,b 与曲线参数是否矛盾,即可知正确选项.方程可化为y =ax +b 和x 2a +y 2b=1.A :双曲线的位置:a <0,b >0,由直线的位置:a >0,b >0,矛盾,排除;B :椭圆知a ,b ∈(0,+∞),但B 中直线的位置:a <0,b <0,矛盾,排除;C :双曲线的位置:a >0,b <0,直线中a ,b 的符号一致.D :椭圆知a ,b ∈(0,+∞),直线的位置:a <0,b >0,矛盾,排除; 故选:C.3、已知A(−2,0),B(4,a)两点到直线l:3x −4y +1=0的距离相等,则a =( ) A .2B . 92C .2或−8D .2或92 答案:D分析:利用点到直线距离公式进行求解即可.因为A(−2,0),B(4,a)两点到直线l:3x −4y +1=0的距离相等, 所以有√32+(−4)2=√32+(−4)2⇒|13−4a |=5⇒a =2,或a =92,故选:D4、已知F 是双曲线x 24−y 212=1的左焦点,A(1,4),P 是双曲线右支上的动点,则|PF|+|PA|的最小值为( )A .9B .8C .7D .6 答案:A分析:由双曲线方程求出a ,再根据点A 在双曲线的两支之间,结合|PA |+|PF ′|≥|AF ′|=5可求得答案 由x 24−y 212=1,得a 2=4,b 2=12,则a =2,b =2√3,c =√a 2+b 2=4, 所以左焦点为F(−4,0),右焦点F ′(4,0), 则由双曲线的定义得|PF |−|PF ′|=2a =4,因为点A(1,4)在双曲线的两支之间,所以|PA|+|PF′|≥|AF′|=√32+42=5,所以|PF|+|PA|≥9,当且仅当A,P,F′三点共线时取等号,所以|PF|+|PA|的最小值为9,故选:A5、已知椭圆x24+y23=1的两个焦点为F1,F2,过F2的直线交椭圆于M,N两点,若△F1MN的周长为()A.2B.4C.6D.8答案:D分析:运用椭圆的定义进行求解即可.由x 24+y23=1⇒a=2.因为M,N是椭圆的上的点,F1、F2是椭圆的焦点,所以MF1+MF2=2a,NF1+NF2=2a,因此△F1MN的周长为MF1+MN+NF1=MF1+MF2+NF2+NF1=2a+2a=4a=8,故选:D6、设圆C1:x2+y2−2x+4y=4,圆C2:x2+y2+6x−8y=0,则圆C1,C2的公切线有()A.1条B.2条C.3条D.4条答案:B分析:先根据圆的方程求出圆心坐标和半径,再根据圆心距与半径的关系即可判断出两圆的位置关系,从而得解.由题意,得圆C1:(x−1)2+(y+2)2=32,圆心C1(1,−2),圆C2:(x+3)2+(y−4)2=52,圆心C2(−3,4),∴5−3<|C1C2|=2√13<5+3,∴C1与C2相交,有2条公切线.故选:B.7、已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别是F1,F2,直线y=kx与椭圆C交于A,B两点,|AF1|=3|BF 1|,且∠F 1AF 2=60°,则椭圆C 的离心率是( ) A .716B .√74C .916D .34答案:B分析:根据椭圆的对称性可知,|AF 2|=|BF 1|,设|AF 2|=m ,由|AF 1|=3|BF 1|以及椭圆定义可得|AF 1|=3a 2,|AF 2|=a2,在△AF 1F 2中再根据余弦定理即可得到4c 2=7a 24,从而可求出椭圆C 的离心率.由椭圆的对称性,得|AF 2|=|BF 1|.设|AF 2|=m ,则|AF 1|=3m .由椭圆的定义,知|AF 1|+|AF 2|=2a ,即m +3m =2a ,解得m =a2,故|AF 1|=3a2,|AF 2|=a2. 在△AF 1F 2中,由余弦定理,得|F 1F 2|2=|AF 1|2+|AF 2|2−2|AF 1||AF 2|cos∠F 1AF 2,即4c 2=9a 24+a 24−2×3a 2×a2×12=7a 24,则e 2=c 2a 2=716,故e =√74. 故选:B.8、已知抛物线x 2=my 焦点的坐标为F(0,1),P 为抛物线上的任意一点,B(2,2),则|PB|+|PF|的最小值为( )A .3B .4C .5D .112答案:A分析:先根据焦点坐标求出m ,结合抛物线的定义可求答案. 因为抛物线x 2=my 焦点的坐标为(0,1),所以m4=1,解得m =4.记抛物线的准线为l ,作PN ⊥l 于N ,作BA ⊥l 于A ,则由抛物线的定义得|PB|+|PF|=|PB|+|PN|⩾|BA|=3,当且仅当P 为BA 与抛物线的交点时,等号成立.故选:A.9、已知动点P 在正方体ABCD −A 1B 1C 1D 1的对角线BD 1(不含端点)上.设D 1PD 1B =λ,若∠APC 为钝角,则实数λ的取值范围为( )A .(0,13)B .(0,12)C .(13,1)D .(12,1) 答案:C分析:建立空间直角坐标系,由题设,建立如图所示的空间直角坐标系D −xyz ,用坐标法计算,利用∠APC 不是平角,可得∠APC 为钝角等价于cos∠APC <0,即PA ⃑⃑⃑⃑⃑ ⋅PC⃑⃑⃑⃑⃑ <0,即可求出实数λ的取值范围.设正方体ABCD −A 1B 1C 1D 1的棱长为1, 则有A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,1) ∴D 1B ⃑⃑⃑⃑⃑⃑⃑ =(1,1,−1),∴设D 1P ⃑⃑⃑⃑⃑⃑⃑ =(λ,λ,−λ),∴PA ⃑⃑⃑⃑⃑ =PD 1⃑⃑⃑⃑⃑⃑⃑ +D 1A ⃑⃑⃑⃑⃑⃑⃑ =(−λ,−λ,λ)+(1,0,−1)=(1−λ,−λ,λ−1), PC ⃑⃑⃑⃑⃑ =PD 1⃑⃑⃑⃑⃑⃑⃑ +D 1C ⃑⃑⃑⃑⃑⃑⃑ =(−λ,−λ,λ)+(0,1,−1)=(−λ,1−λ,λ−1), 由图知∠APC 不是平角,∴∠APC 为钝角等价于cos∠APC <0, ∴PA⃑⃑⃑⃑⃑ ⋅PC ⃑⃑⃑⃑⃑ <0, ∴(1−λ)(−λ)+(−λ)(1−λ)+(λ−1)2=(λ−1)(3λ−1)<0, 解得13<λ<1 ∴λ的取值范围是(13,1)故选:C.10、已知两圆分别为圆C 1:x 2+y 2=49和圆C 2:x 2+y 2−6x −8y +9=0,这两圆的位置关系是( ) A .相离B .相交C .内切D .外切 答案:B分析:先求出两圆圆心和半径,再由两圆圆心之间的距离和两圆半径和及半径差比较大小即可求解. 由题意得,圆C 1圆心(0,0),半径为7;圆C 2:(x −3)2+(y −4)2=16,圆心(3,4),半径为4,两圆心之间的距离为√32+42=5,因为7−4<5<7+4,故这两圆的位置关系是相交. 故选:B.11、设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A.[√22,1)B.[12,1)C.(0,√22]D.(0,12]答案:C分析:设P(x0,y0),由B(0,b),根据两点间的距离公式表示出|PB|,分类讨论求出|PB|的最大值,再构建齐次不等式,解出即可.设P(x0,y0),由B(0,b),因为x02a2+y02b2=1,a2=b2+c2,所以|PB|2=x02+(y0−b)2=a2(1−y02b2)+(y0−b)2=−c2b2(y0+b3c2)2+b4c2+a2+b2,因为−b≤y0≤b,当−b3c2≤−b,即b2≥c2时,|PB|max2=4b2,即|PB|max=2b,符合题意,由b2≥c2可得a2≥2c2,即0<e≤√22;当−b 3c2>−b,即b2<c2时,|PB|max2=b4c2+a2+b2,即b4c2+a2+b2≤4b2,化简得,(c2−b2)2≤0,显然该不等式不成立.故选:C.小提示:本题解题关键是如何求出|PB|的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.12、美术绘图中常采用“三庭五眼”作图法.三庭:将整个脸部按照发际线至眉骨,眉骨至鼻底,鼻底至下颏的范围分为上庭、中庭、下庭,各占脸长的13,五眼:指脸的宽度比例,以眼形长度为单位,把脸的宽度自左至右分成第一眼、第二眼、第三眼、第四眼、第五眼五等份.如图,假设三庭中一庭的高度为2cm,五眼中一眼的宽度为1cm,若图中提供的直线AB近似记为该人像的刘海边缘,且该人像的鼻尖位于中庭下边界和第三眼的中点,则该人像鼻尖到刘海边缘的距离约为()A .5√24B .7√24C .9√24D .11√24答案:B分析:建立平面直角坐标系,求出直线AB 的方程,利用点到直线距离公式进行求解.如图,以鼻尖所在位置为原点O ,中庭下边界为x 轴,垂直中庭下边界为y 轴,建立平面直角坐标系,则A (12,4),B (-32,2),直线AB : y -42-4=x -12-32-12,整理为x -y +72=0,原点O 到直线距离为|72|√1+17√24,故选:B 双空题13、设P 为椭圆M:x 28+y 2=1和双曲线N:x 2−y 26=1的一个公共点,且P 在第一象限,F 是M 的左焦点,则M的离心率为___________,|PF |=___________.答案:√1441+2√2##2√2+1分析:根据椭圆方程直接求离心率即可,根据椭圆与双曲线的方程可得其共焦点,再根据椭圆和双曲线的定义即可得出答案.解:M的离心率e=√1−18=√144,设M的右焦点为F′,因为8−1=1+6,且M与N的焦点都在x轴上,所以椭圆M与双曲线N的焦点相同,所以|PF|+|PF′|=2√8=4√2,|PF|−|PF′|=2,解得|PF|=1+2√2.所以答案是:√144;1+2√2.14、直线l:mx−y+1=0截圆x2+y2+4x−6y+4=0的弦为MN,则|MN|的最小值为__________,此时m的值为__________.答案: 2 1分析:设圆心到直线l的距离为d,则d=√m2+1,然后由|MN|=2√r2−d2,可求出|MN|=2√r2−d2=2√5−8m+1m,进而利用均值不等式可求解x2+y2+4x−6y+4=0可化简为(x+2)2+(y−3)2=9,设圆心到直线l的距离为d,则d=√m2+1,可得|MN|=2√r2−d2=2√9−(2m+2)2m2+1=2√9m2+9−4m2−8m−4m2+1=2√5m2−8m+5m2+1=2√5(m2+1)−8mm2+1=2√5−8mm2+1=2√5−8m+1m,当m>0时,|MN|有最小值,当m<0时,|MN|没有最小值,所以,当且仅当m=1m时,等号成立,此时,m=1所以答案是:①2;②1小提示:关键点睛:解题关键在于求出|MN|=2√r2−d2=2√5−8m+1m,进而利用均值不等式求出答案,属于中档题15、已知椭圆M:x2a2+y2b2=1(a>b>0),双曲线N:x2m2−y2n2=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.答案:√3−1 2分析:方法一:由正六边形性质得渐近线的倾斜角,解得双曲线中m2,n2关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为c+√3c,再根据椭圆定义得c+√3c=2a,解得椭圆M的离心率. [方法一]:【最优解】数形结合+定义法由正六边形性质得椭圆上一点到两焦点距离之和为c+√3c,再根据椭圆定义得c+√3c=2a,所以椭圆M的离心率为ca =1+√3=√3−1.双曲线N的渐近线方程为y=±nm x,由题意得双曲线N的一条渐近线的倾斜角为π3,∴n2m2=tan2π3=3,∴e2=m2+n2m2=m2+3m2m2=4,∴e=2.所以答案是:√3−1 ;2.[方法二]:数形结合+齐次式求离心率设双曲线x 2m2−y2n2=1的一条渐近线y=nmx与椭圆x2a2+y2b2=1在第一象限的交点为A(x0,y0),椭圆的右焦点为F2(c,0).由题可知,A,F2为正六边形相邻的两个顶点,所以∠AOF2=60°(O为坐标原点).所以tan60°=nm =√3.因此双曲线的离心率e=√m2+n2m=√m2+3m2m=2.由y=nm x与x2a2+y2b2=1联立解得A(√m2b2+a2n2√m2b2+a2n2).因为△AOF2是正三角形,所以|OA|=c,因此,可得√a2b2m2m2b2+a2n2+a2b2n2m2b2+a2n2=c.将n=√3m,b2=a2−c2代入上式,化简、整理得4a4−8a2c2+c4=0,即e4−8e2+4=0,解得e=√3−1,e=√3+1(舍去).所以,椭圆的离心率为√3−1,双曲线的离心率为2.所以答案是:√3−1 ;2.[方法三]:数形结合+椭圆定义+解焦点三角形由条件知双曲线N在第一、三象限的渐近线方程为y=√3x,于是双曲线N的离心率为√1+(√3)2=2.设双曲线x 2m2−y2n2=1的一条渐近线与椭圆x2a2+y2b2=1在第一象限的交点为A,椭圆的左、右焦点分别为F1,F2.在△AF1F2中,∠AF1F2=π6,∠AF2F1=π3,∠F1AF2=π2.由正弦定理得|AF1|sin∠AF2F1=|AF2|sin∠AF1F2=|F1F2|sin∠F1AF2.于是|AF1|+|AF2|sin∠AF2F1+sin∠AF1F2=|F1F2|sin∠F1AF2.即椭圆的离心率e=2c2a =sinπ2sinπ6+sinπ3=√3−1.所以答案是:√3−1 ;2.【整体点评】方法一:直接根据椭圆的定义以及正六边形性质求解,是该题的最优解;方法二:利用正六边形性质求出双曲线的离心率,根据平面几何条件创建齐次式求出椭圆的离心率,运算较为复杂;方法三:利用正六边形性质求出双曲线的离心率,再根据通过解焦点三角形求椭圆离心率.16、已知向量a⃗=(1,−3,2),b⃑⃗=(−2,m,−4),若a⃗//b⃑⃗,则实数m的值是________.若a⃗⊥b⃑⃗,则实数m的值是________.答案: 6 −103分析:(1)根据空间向量平行的坐标表示求m的值;(2)根据空间向量垂直的坐标表示求m的值.a ⃗=(1,−3,2),b ⃑⃗=(−2,m,−4),若a ⃗//b⃑⃗, 则(1,−3,2)=λ(−2,m,−4),解得{λ=−12m =6; 若a ⃗⊥b ⃑⃗,则a ⃗⋅b ⃑⃗=−2−3m −8=0,解得:m =−103. 所以答案是:6;−103小提示:本题考查空间向量平行,垂直的坐标公式求参数的取值,属于基础题型.17、已知直线l :y =k (x −1)与抛物线C :y 2=2px (p >0)在第一象限的交点为A ,l 过C 的焦点F ,|AF |=3,则抛物线的准线方程为_______;k =_______.答案: x =−1 2√2解析:由直线方程求得焦点坐标,得准线方程,利用焦半径公式得A 点横坐标,结合图形可得直线斜率, 易知直线l 与x 轴的交点为(1,0),即抛物线的焦点为F(1,0),∴准线方程为x =−1,设A(x 1,y 1),则|AF |=x 1+p 2=x 1+1=3,x 1=2,作AC ⊥x 轴于点C ,如图, 则C(2,0),|FC |=1,∴|AC |=√32−12=2√2,∴直线l 的斜率为k =tan∠AFC =2√21=2√2.所以答案是:x =−1;2√2.小提示:本题考查抛物线的准线方程和焦半径公式,掌握抛物线的定义是解题关键.涉及到抛物线 上的点到焦点的距离时利用焦半径公式可以很快的求解.解答题18、如图所示,某隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成.已知隧道总宽度AD 为6√3m ,行车道总宽度BC 为2√11m ,侧墙高EA ,FD 为2m ,弧顶高MN 为5m .(1)以EF 所在直线为x 轴,MN 所在直线为y 轴,1m 为单位长度建立平面直角坐标系,求圆弧所在的圆的标准方程;(2)为保证安全,要求隧道顶部与行驶车辆顶部(设为平顶)在竖直方向上的高度之差至少为0.5m ,问车辆通过隧道的限制高度是多少?答案:(1)x 2+(y +3)2=36;(2)3.5m .分析:(1)设出圆的方程,代入F,M 即可求解;(2)设限高为ℎ,作CP ⊥AD ,求出点P 的坐标,即可得出答案.(1)由题意,有E(−3√3,0),F(3√3,0),M(0,3).∵所求圆的圆心在y 轴上,∴设圆的方程为(x −0)2+(y −b)2=r 2(b ∈R ,r >0),∵F(3√3,0),M(0,3)都在圆上,∴{(3√3)2+b 2=r 202+(3−b )2=r2 ,解得{b =−3r 2=36 . ∴圆的标准方程是x 2+(y +3)2=36.(2)设限高为ℎ,作CP ⊥AD ,交圆弧于点P ,则CP =ℎ+0.5.将点P 的横坐标x =√11代入圆的方程,得(√11)2+(y +3)2=36,得y =2或y =−8(舍去).∴ℎ=CP −0.5=(2+2)−0.5=3.5(m ).故车辆通过隧道的限制高度为3.5m .19、如图,已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A,B ,且经过点(1,−√32), 直线 l:x =ty −1恒过定点F 且交椭圆于D,E 两点,F 为OA 的中点.(1)求椭圆C 的标准方程;(2)记△BDE 的面积为S ,求S 的最大值.答案:(1)x 24+y 2=1(2)3√32分析:(1)由直线过定点坐标求得a ,再由椭圆所过点的坐标求得b 得椭圆方程;(2)设E (x 1,y 1),D (x 2,y 2),直线l 方程与椭圆方程联立消元后应用韦达定理得y 1+y 2=2tt 2+4,y 1y 2=−3t 2+4,计算弦长|DE |,再求得B 到直线l 的距离,从而求得三角形面积,由函数的性质求得最大值.(1)由题意可得,直线l:x =ty −1恒过定点F(−1,0),因为F 为OA 的中点, 所以|OA|=2, 即a =2.因为椭圆C 经过点 (1,−√32),所以 1222+(−√32)2b 2=1, 解得b =1,所以椭圆C 的方程为x 24+y 2=1.(2)设E (x 1,y 1),D (x 2,y 2).由{x 2+4y 2=4x =ty −1得 (t 2+4)y 2−2ty −3=0,Δ>0恒成立, 则y 1+y 2=2tt 2+4,y 1y 2=−3t 2+4,则|ED|=√1+t 2⋅√(y 1+y 2)2−4y 1y 2=√1+t 2⋅√(2t t 2+4)2−4×(−3t 2+4)=4√1+t 2⋅√t 2+3t 2+4 又因为点B 到直线l 的距离d =√1+t 2, 所以S =12×|ED|×d =12⋅4√1+t 2⋅√t 2+3t 2+4√1+t 2=6√t 2+3t 2+4 令m =√t 2+3⩾√3, 则6√t 2+3t 2+4=6m m 2+1=6m+1m , 因为y =m +1m ,m ≥√3时,y ′=1−1m 2>0,y =m +1m 在m ∈[√3,+∞)上单调递增, 所以当m =√3时,(m +1m )min =4√33时,故S max =3√32. 即S 的最大值为 3√32. 小提示:方法点睛:本题求椭圆的标准方程,直线与椭圆相交中三角形面积问题,计算量较大,属于难题.解题方法一般是设出交点坐标,由(设出)直线方程与椭圆方程联立方程组消元后应用韦达定理,然后由弦长公式求得弦长,再求得三角形的另一顶点到此直线的距离,从而求得三角形的面积,最后利用函数的性质,基本不等式等求得最值.20、已知直线l 1与直线l 2:3x +4y −5=0平行,直线l 1与两坐标轴所构成的三角形的面积为12,求直线l 1的方程.答案:3x +4y ±12√2=0分析:设直线的方程为3x +4y +c =0,求出截距后可求面积,从而可求直线的方程.设直线l 1的方程为3x +4y +c =0.令y =0,得x =−c 3;令x =0,得y =−c4.由题设得12|−c3|⋅|−c4|=12.解得c=±12√2,因此直线l1的方程为3x+4y±12√2=0.。

人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_全称量词与存在量词_基础

人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_全称量词与存在量词_基础

人教版高中数学选修1-1知识点梳理重点题型(常考知识点)巩固练习全称量词与存在量词【学习目标】1.理解全称量词、存在量词和全称命题、特称命题的概念;2.能准确地使用全称量词和存在量词符号“∀” “∃ ”来表述相关的教学内容;3.掌握判断全称命题和特称命题的真假的基本原则和方法;4. 能正确地对含有一个量词的命题进行否定.【要点梳理】要点一、全称量词与全称命题全称量词全称量词:在指定范围内,表示整体或者全部的含义的量词称为全称量词.常见全称量词:“所有的”、“任意一个”、“每一个”、“一切”、“任给”等.通常用符号“∀”表示,读作“对任意”.全称命题全称命题:含有全称量词的命题,叫做全称命题.一般形式:“对M 中任意一个x ,有()p x 成立”,记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二、存在量词与特称命题存在量词定义:表示个别或一部分的含义的量词称为存在量词.常见存在量词:“有一个”,“存在一个”,“至少有一个”,“有的”,“有些”等.通常用符号“∃ ”表示,读作“存在 ”.特称命题特称命题:含有存在量词的命题,叫做特称命题.一般形式:“存在M 中一个元素0x ,有0()p x 成立”,记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:(1)一个特称命题中也可以包含多个变量,例如:存在,R R αβ∈∈使sin()sin sin αβαβ+=+.(2)有些特称命题也可能省略了存在量词.(3)同一个全称命题或特称命题,可以有不同的表述要点三、 含有量词的命题的否定对含有一个量词的全称命题的否定全称命题p :x M ∀∈,()p xp 的否定p ⌝:0x M ∃∈,0()p x ⌝;从一般形式来看,全称命题“对M 中任意一个x ,有p (x )成立”,它的否定并不是简单地对结论部分p(x)进行否定,还需对全称量词进行否定,使之成为存在量词,也即“任意,()x M p x ∈”的否定为“0x M ∃∈,0()p x ⌝”.对含有一个量词的特称命题的否定特称命题p :0x M ∃∈,0()p xp 的否定p ⌝:x M ∀∈,()p x ⌝;从一般形式来看,特称命题“0x M ∃∈,0()p x ”,它的否定并不是简单地对结论部分0()p x 进行否定,还需对存在量词进行否定,使之成为全称量词,也即“0x M ∃∈,0()p x ”的否定为“x M ∀∈,()p x ⌝”.要点诠释:(1)全称命题的否定是特称命题,特称命题的否定是全称命题;(2)命题的否定与命题的否命题是不同的.(3)正面词:等于 、 大于 、小于、 是、 都是、 至少一个 、至多一个、 小于等于否定词:不等于、不大于、不小于、不是、不都是、 一个也没有、 至少两个 、 大于等于.要点四、全称命题和特称命题的真假判断①要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立;要判定全称命题“x M ∀∈,()p x ”是假命题,只需在集合M 中找到一个元素x 0,使得0()p x 不成立,即举一反例即可.②要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素x 0,使得0()p x 成立即可;要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M中,使 ()p x 成立得元素不存在.【典型例题】类型一:量词与全称命题、特称命题【全称量词与存在量词395491例1】例1. 判断下列命题是全称命题还是特称命题.(1)∀x ∈R ,x 2+1≥1;(2)所有素数都是奇数;(3)存在两个相交平面垂直于同一条直线;(4)有些整数只有两个正因数.【解析】(1)有全称量词“任意”,是全称命题;(2)有全称量词“所有”,是全称命题;(3)有存在量词“存在”,是特称命题;(4)有存在量词“有些”;是特称命题。

人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)

人教版高中数学【选修1-2】[知识点整理及重点题型梳理] 复数的概念与运算(文)

人教版高中数学选修1-2知识点梳理重点题型(常考知识点)巩固练习复数的概念与运算【学习目标】1.理解复数的有关概念:虚数单位i 、虚数、纯虚数、复数、实部、虚部等。

2.理解复数相等的充要条件。

3. 理解复数的几何意义,会用复平面内的点和向量来表示复数。

4. 会进行复数的加、减运算,理解复数加、减运算的几何意义。

5. 会进行复数乘法和除法运算。

【要点梳理】知识点一:复数的基本概念1.虚数单位i数i 叫做虚数单位,它的平方等于1-,即21i =-。

要点诠释:①i 是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -;②i 可与实数进行四则运算,进行四则运算时,原有加、乘运算律仍然成立。

2. 复数的概念形如a bi +(,a b R ∈)的数叫复数,记作:z a bi =+(,a b R ∈);其中:a 叫复数的实部,b 叫复数的虚部,i 是虚数单位。

全体复数所成的集合叫做复数集,用字母C 表示。

要点诠释:复数定义中,,a b R ∈容易忽视,但却是列方程求复数的重要依据.3.复数的分类对于复数z a bi =+(,a b R ∈)若b=0,则a+bi 为实数,若b≠0,则a+bi 为虚数,若a=0且b≠0,则a+bi 为纯虚数。

分类如下:用集合表示如下图:4.复数集与其它数集之间的关系 N Z Q R C (其中N 为自然数集,Z 为整数集,Q 为有理数集,R 为实数集,C 为复数集。

) 知识点二:复数相等的充要条件两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即:特别地:00a bi a b +=⇔==.要点诠释:① 一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样.② 根据复数a+bi 与c+di 相等的定义,可知在a=c ,b=d 两式中,只要有一个不成立,那么就有a+bi≠c+di (a ,b ,c ,d ∈R ).③ 一般地,两个复数只能说相等或不相等,而不能比较大小. 如果两个复数都是实数,就可以比较大 小;也只有当两个复数全是实数时才能比较大小.④ 复数相等的充要条件提供了将复数问题化归为实数问题来解决的途径,这也是本章常用的方法, 简称为“复数问题实数化”.知识点三、复数的加减运算1.复数的加法、减法运算法则:设1z a bi =+,2z c di =+(,,,a b c d R ∈),我们规定: 12()()()()z z a bi c di a c b d i +=+++=+++21()()z z c a d b i -=-+-要点诠释:(1)复数加法中的规定是实部与实部相加,虚部与虚部相加,减法同样。

(word版)高中数学选修11知识点归纳,文档

(word版)高中数学选修11知识点归纳,文档

高中数学选修1-1知识点总结第一章简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句 .真命题:判断为真的语句.假命题:判断为假的语句.2、“假设p,那么q〞形式的命题中的p称为命题的条件,q称为命题的结论.3、原命题:“假设p,那么q〞逆命题:“假设q,那么p〞否命题:“假设 p,那么 q〞逆否命题:“假设q,那么 p〞4、四种命题的真假性之间的关系:〔1〕两个命题互为逆否命题,它们有相同的真假性;〔2〕两个命题为互逆命题或互否命题,它们的真假性没有关系.5、假设p q,那么p是q的充分条件,q是p的必要条件.假设p q,那么利用集合间的包含关系:例如:假设A B,那么A是B的充分条件或6、逻辑联结词:⑴且(and):命题形式p q;⑵或〔or〕:命题形式p是q的充要条件〔充分必要条件〕.B是A的必要条件;假设A=B,那么A是B的充要条件;pq;⑶非〔not〕:命题形式p.p q pq pq p真真真真假真假假真假假真假真真假假假假真7、⑴全称量词——“所有的〞、“任意一个〞等,用“〞表示;全称命题p:xM,p(x);全称命题p的否认p:xM,p(x)。

⑵存在量词——“存在一个〞、“至少有一个〞等,用“〞表示;特称命题p:x M,p(x);特称命题p的否认p:x M,p(x);-1-第二章圆锥曲线1、平面内与两个定点F1,F2的距离之和等于常数〔大于F1F2〕的点的轨迹称为椭圆.即:|MF||MF|2a,(2a|FF|)。

1212这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2y21a b0y2x21a b0 a2b2a2b2范围a xa且byb bxb且aya1a,0、2a,010,a、20,a 顶点10,b、20,b1b,0、2b,0轴长短轴的长2b长轴的长2a焦点F1c,0、F2c,0F10,c、F20,c焦距F1F22cc2a2b2对称性关于x轴、y轴、原点对称-2-离心率c b 2e a1 a 20e13、平面内与两个定点F 1,F 2的距离之差的绝对值等于常数〔小于F 1F 2〕的点的轨迹称为双曲线.即:||MF | |MF ||2a,(2a|FF |)。

人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_命题及其关系_提高

人教版高中数学【选修1-1】[知识点整理及重点题型梳理]_命题及其关系_提高

人教版高中数学选修1-1知识点梳理)巩固练习重点题型(常考知识点命题及其关系【学习目标】1.了解命题、真命题、假命题的概念,能够指出一个命题的条件和结论;2.了解原命题、逆命题、否命题、逆否命题,会分析四种命题的相互关系,能判断四种命题的真假;3.能熟练判断命题的真假性.【要点梳理】要点一、命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.要点诠释:1.不是任何语句都是命题,不能确定真假的语句不是命题,如“x>2”,“2不一定大于3”.2.只有能够判断真假的陈述句才是命题.祈使句,疑问句,感叹句都不是命题,例如:“起立”、“π是有理数吗?”、“今天天气真好!”等.3.语句能否确定真假是判断其是否是命题的关键.一个命题要么是真,要么是假,不能既真又假,模棱两可.命题陈述了我们所思考的对象具有某种属性,或者不具有某种属性,这类似于集合中元素的确定性.要点二、命题的结构命题可以改写成“若p,则q”的形式,或“如果p,那么q”的形式.其中p是命题的条件,q是命题的结论.要点诠释:1.一般地,命题“若p则q”中的p为命题的条件q为命题的结论.2.有些问题中需要明确指出条件p和q各是什么,因此需要将命题改写为“若p则q”的形式.要点三、四种命题原命题:“若p,则q”;逆命题:“若q,则p”;实质是将原命题的条件和结论互相交换位置;否命题:“若非p,则非q”,或“若⌝p,则⌝q”;实质是将原命题的条件和结论两者分别否定;逆否命题:“若非q,则非p”,或“若⌝q,则⌝p”;实质是将原命题的条件和结论两者分别否定后再换位或将原命题的条件和结论换位后再分别否定.要点诠释:对于一般的数学命题,要先将其改写为“若p,则q”的形式,然后才方便写出其他形式的命题.要点四、四种命题之间的关系四种命题之间的构成关系原命题若p则q 互互互逆为逆否逆命题若q则p互否否命题互为逆否否逆否命题若⌝p则⌝q 四种命题之间的真值关系原命题真真假假逆命题真假真假互逆否命题真假真假若⌝q则⌝p逆否命题真真假假要点诠释:(1)互为逆否命题的两个命题同真同假;(2)互为逆命题或互为否命题的两个命题的真假无必然联系.要点五、反证法:1.反证法是假设结论的否定成立,利用已知条件,经过推理论证得出矛盾,判定结论的否定错误,从而得出要证的结论正确.2.反证法的步骤:(1)假设结论不成立.(2)从假设出发推理论证得到矛盾(3)判定假设错误,肯定结论正确.3.互为逆否命题的两个命题同真同假是命题转化的依据和途径之一,因此在直接证明. 原命题有困难时,可以考虑证明与它等价的逆否命题.要点诠释:反证法是间接证明的重要方法之一.【典型例题】类型一:命题的概念例 1.判断下列语句是否为命题?若是,判断其真假.(1) x > 1 ;(2)当 x = 0 时, x > 1 ; (3) 你是男生吗? (4) 求证: π 是无理数.【思路点拨】依据命题的定义判断。

人教版高中数学选修1-1知识点总结(全)

人教版高中数学选修1-1知识点总结(全)

高中数学选修1-1知识点总结第一章 简单逻辑用语● 命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.● “若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. ● 原命题:“若p ,则q ” 逆命题: “若q ,则p ”否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝” ● 四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. ● 若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件). ● 逻辑联结词:⑴且:命题形式p q ∧;⑵或:命题形式p q ∨; ⑶非:命题形式p ⌝.● ⑴全称量词——“所有的”、“任意一个”等,用“∀”表示. 全称命题p :)(,x p M x ∈∀;全称命题p 的否定⌝p :)(,x p M x ⌝∈∃.⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示. 特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀.第二章 圆锥曲线● 平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.焦距为2c X 2 y 2谁分母大,焦点在哪个轴上,分母大的为a 2 ,分母小的为b 2pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真● 椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<● 平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.焦距为2c X 2 y 2谁是正的,焦点在哪个轴上,正的分母为a 2 ,负的分母为b 2 ● 双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±● 实轴和虚轴等长的双曲线称为等轴双曲线.● 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.焦点到准线距离为p. ● 抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤ 0y ≥ 0y ≤第三章 导数及其应用● 函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x --● 导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000.● 函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.● 求切线步骤:1、求导()f x ';2、斜率k=()f x ';3、代点斜式y-y o =k(x-x o ),(x o ,y o)为切点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档