大连理工大学线性代数上机作业PPT
线性代数ppt

推论 设A、B 都是n阶方阵,若AB E(或
BA E) , 则B A1.
3. 可逆矩阵的性质
1 若A可逆,则A1也可逆,且 A1 1 A.
2 若A可逆,数 0,则A可逆,且 A1 1 A1.
3 若A, B为同阶可逆矩阵,则AB也可逆,且 1
1 1
4 若A可逆,则AT也可逆 ,且 A A .
线性代数总复习
第一章 行列式
第一节 n阶行列式的定义
二阶行列式的计算方法
a11 a21
a12 a22
a11a22
a12a21.
三阶行列式的计算方法——沙路法
一些常用的行列式结果:
a11 a12 a1n
1.
0 a22 a2n
a11a22
ann
0 0 ann
1
2.
2
12 n
1
n
3.
(其中 为数);
3 AB C AB AC, B C A BA CA;
方阵的幂运算: (1) Ak Al Akl (2) ( Ak )l Akl
注意:ABk AkBk .
转置运算:
1 AT T A;
2 A BT AT BT ; 3 AT AT ; 4 ABT BT AT .
M
M
M
an1
an2
ann
则D等于下列两个行列式之和:
a11 a12 a1n
a11 a12 a1n
MMM
bi 2 bin ci1
M
M
M
ci 2 cin
M
M
an1 an2 ann
an1 an2 ann
性质1.6 把行列式的某一行(列)的各元素乘以 同一数然后加到另一行(列)对应的元素上去,行列 式不变. (倍加运算)
线性代数(含全部课后题详细答案)4-3PPT课件

目
CONTENCT
录
• 课程介绍与教学目标 • 向量空间与线性变换 • 行列式与矩阵运算 • 特征值与特征向量 • 课后习题详解 • 课程总结与拓展延伸
01
课程介绍与教学目标
线性代数课程简介
线性代数是数学的一个分支, 研究线性方程组、向量空间、 矩阵等概念和性质。
简要介绍数值计算中常用的迭代法、插值 法、逼近法等基本方法,培养学生运用计 算机解决实际问题的能力。
简要介绍数学建模的基本思想和方法,通 过实例展示数学建模在解决实际问题中的 应用和价值。
THANK YOU
感谢聆听
05
课后习题详解
习题类型及解题思路
计算题
主要针对线性代数中的基本运算,如矩阵的加减、数乘和乘法等。解题思路通常是按照运算规则逐步进行,注意保持 矩阵的维度一致。
证明题
主要考察学生对线性代数基本定理和性质的理解和掌握。解题思路一般是从已知条件出发,结合相关定理和性质进行 推导,最终得出结论。
应用题
行列式性质
行列式具有线性性、交换性、倍加性 等基本性质,这些性质在行列式的计 算和证明中起到重要作用。
矩阵运算规则
矩阵加法
两个矩阵相加,要求它们具有相同的行数和列数, 对应元素相加。
矩阵数乘
一个数与矩阵相乘,将该数与矩阵中的每一个元素 相乘。
矩阵乘法
两个矩阵相乘,要求第一个矩阵的列数等于第二个 矩阵的行数,结果矩阵的行数等于第一个矩阵的行 数,列数等于第二个矩阵的列数。
将线性代数的知识应用于实际问题中,如求解线性方程组、矩阵的特征值和特征向量等。解题思路是首 先建立数学模型,将实际问题转化为线性代数问题,然后利用相关知识进行求解。
大连理工大学线代上机

软1414 叶秀云201492015 上机报告上机作业一Trial>> A=round(5*rand(5))B=round(5*rand(5))C=round(5*rand(5))b=round(5*rand(5,1))A+BA-BA*B+B*Ainv(A)*binv(A)rank(A)det(B)inv(B)rank(B)inv(A*B)rank(A*B)(B')*(A')inv(A*B)inv(B)*inv(A)inv(A)*C*inv(B)A =4 0 1 1 35 1 5 2 01 3 5 5 45 5 2 4 53 545 3B =4 4 4 2 24 0 3 2 22 1 2 4 33 0 54 41 0 0 1 4C =1 2 4 5 43 5 1 3 13 2 3 1 41 3 3 1 11 1 4 1 5b =21132ans =8 4 5 3 59 1 8 4 23 4 7 9 78 5 7 8 94 5 4 6 7 ans =0 -4 -3 -1 11 12 0 -2-1 2 3 1 12 5 -3 0 12 5 4 4 -1 ans =80 53 79 69 7175 54 74 77 7589 51 85 97 102110 77 111 113 12379 41 79 80 80ans =0.4754-0.3197-0.59840.9672-0.0902ans =0.3197 -0.0164 -0.2541 -0.2049 0.3607-0.8443 0.2869 0.1967 0.8361 -0.8115 -0.7213 0.4344 0.4836 0.6803 -1.05741.4262 -0.6885 -0.6721 -1.60662.1475-0.3279 0.1066 0.4016 0.5820 -0.8443 ans =5ans =418.0000ans =-0.0144 0.4354 0.0574 -0.2727 0.01910.2321 -0.2057 0.0718 -0.0909 0.02390.0718 -0.1770 -0.2871 0.3636 -0.0957-0.1100 0.0048 0.4402 -0.0909 -0.18660.0311 -0.1100 -0.1244 0.0909 0.2919 ans =5ans =-0.8088 0.3399 0.3081 0.8553 -1.02110.0586 0.0335 0.0060 -0.0108 -0.04070.9295 -0.4372 -0.4747 -0.9979 1.3348-0.4252 0.2371 0.2279 0.3635 -0.54670.2265 -0.1176 -0.0336 -0.1592 0.1809 ans =5ans =24 40 45 61 5817 25 9 22 1623 43 48 59 6019 40 52 49 5527 35 59 62 60ans =-0.8088 0.3399 0.3081 0.8553 -1.02110.0586 0.0335 0.0060 -0.0108 -0.04070.9295 -0.4372 -0.4747 -0.9979 1.3348-0.4252 0.2371 0.2279 0.3635 -0.54670.2265 -0.1176 -0.0336 -0.1592 0.1809 ans =-0.8088 0.3399 0.3081 0.8553 -1.02110.0586 0.0335 0.0060 -0.0108 -0.04070.9295 -0.4372 -0.4747 -0.9979 1.3348-0.4252 0.2371 0.2279 0.3635 -0.54670.2265 -0.1176 -0.0336 -0.1592 0.1809 ans =-0.0497 -0.5353 -0.0060 0.6289 0.12910.3583 1.0632 0.4029 -1.7332 -0.66080.4518 1.2872 0.8731 -2.1207 -0.6844-0.7394 -2.4091 -1.6491 4.0507 1.62510.2658 0.7208 0.5187 -1.1788 -0.5129 Trial>>上机作业二Trial>> A=rand(4)B=rand(4)C=rand(4)D=rand(4)Z=[A,B;C,D]det(Z)det(A*D-C*B)A=diag([rand rand rand rand])C=diag([rand rand rand rand])Z=[A,B;C,D]det(Z)det(A*D-C*B)A =0.9027 0.3377 0.7803 0.09650.9448 0.9001 0.3897 0.13200.4909 0.3692 0.2417 0.94210.4893 0.1112 0.4039 0.9561B =0.5752 0.8212 0.6491 0.54700.0598 0.0154 0.7317 0.29630.2348 0.0430 0.6477 0.74470.3532 0.1690 0.4509 0.1890C =0.6868 0.7802 0.4868 0.50850.1835 0.0811 0.4359 0.51080.3685 0.9294 0.4468 0.81760.6256 0.7757 0.3063 0.7948D =0.6443 0.3507 0.6225 0.47090.3786 0.9390 0.5870 0.23050.8116 0.8759 0.2077 0.84430.5328 0.5502 0.3012 0.1948Z =0.9027 0.3377 0.7803 0.0965 0.5752 0.8212 0.6491 0.54700.9448 0.9001 0.3897 0.1320 0.0598 0.0154 0.7317 0.29630.4909 0.3692 0.2417 0.9421 0.2348 0.0430 0.6477 0.74470.4893 0.1112 0.4039 0.9561 0.3532 0.1690 0.4509 0.18900.6868 0.7802 0.4868 0.5085 0.6443 0.3507 0.6225 0.47090.1835 0.0811 0.4359 0.5108 0.3786 0.9390 0.5870 0.23050.3685 0.9294 0.4468 0.8176 0.8116 0.8759 0.2077 0.84430.6256 0.7757 0.3063 0.7948 0.5328 0.5502 0.3012 0.1948 ans =-0.0232ans =0.0161A =0.2259 0 0 00 0.1707 0 00 0 0.2277 00 0 0 0.4357C =0.3111 0 0 00 0.9234 0 00 0 0.4302 00 0 0 0.1848Z =0.2259 0 0 0 0.5752 0.8212 0.6491 0.54700 0.1707 0 0 0.0598 0.0154 0.7317 0.29630 0 0.2277 0 0.2348 0.0430 0.6477 0.74470 0 0 0.4357 0.3532 0.1690 0.4509 0.18900.3111 0 0 0 0.6443 0.3507 0.6225 0.47090 0.9234 0 0 0.3786 0.9390 0.5870 0.23050 0 0.4302 0 0.8116 0.8759 0.2077 0.84430 0 0 0.1848 0.5328 0.5502 0.3012 0.1948 ans =7.3868e-04ans =7.3868e-04Trial>>上机作业三N=201492015;a=15;b=49;c=01;d=41;e=21;f=95;g=45;Trial>> h=90;Trial>> A=[a,b,c,d,3,4;1,2,3,4,4,3;12,15,22,17,5,7;e,f,g,h,8,0]; Trial>> B=rref(A)B =1.0000 0 0 0 0.4130 0.95680 1.0000 0 0 -1.7984 -1.49040 0 1.0000 0 -0.3796 -0.37590 0 0 1.0000 2.0806 1.5380N=201492015;a=15;b=49;c=01;d=41;e=21;f=95;g=45;Trial>> h=90;Trial>> A=[a,b,c,d,3,4;1,2,3,4,4,3;12,15,22,17,5,7;e,f,g,h,8,0]; Trial>> B=rref(A)B =1.0000 0 0 0 0.4130 0.95680 1.0000 0 0 -1.7984 -1.49040 0 1.0000 0 -0.3796 -0.37590 0 0 1.0000 2.0806 1.5380上机作业四Trial>> b1=[1,1.9,f,c];Trial>> b2=[1,1.8,f,c];Trial>> A1=[a,b,c,d;0.5,1,1.5,2;12,15,22,17;e,f,g,h];Trial>> A2=[a,b,c,d;0.3,0.6,0.9,1.2;12,15,22,17;e,f,g,h];Trial>> A3=[a,b,c,d;0.1,0.2,0.3,0.4;12,15,22,17;e,f,g,h];Trial>> A4=[a,b,c,d;0.05,0.1,0.15,0.2;12,15,22,17;e,f,g,h];Trial>> x1=A1/b1 x1 =0.02700.01630.23780.5057 Trial>> x2=A2/b1 x2 =0.02700.00980.23780.5057 Trial>> x3=A4/b1 x3 =0.02700.00160.23780.5057 Trial>> x4=A4/b1 x4 =0.02700.00160.23780.5057 Trial>> x5=A1/b2 x5 =0.02650.01630.23760.5046Trial>> x6=A2/b2x6 =0.02650.00980.23760.5046Trial>> x7=A3/b2x7 =0.02650.00330.23760.5046Trial>> x8=A4/b2x8 =0.02650.00160.23760.5046Trial>>上机作业五a1=rand(5,1)a2=rand(5,1)a3=rand(5,1)a4=rand(5,1)a5=rand(5,1)A=[a1,a2,a3,a4,a5]orth(A)a1 =0.90490.97970.43890.11110.2581 a2 =0.40870.59490.26220.60280.7112 a3 =0.22170.11740.29670.31880.4242 a4 =0.50790.08550.26250.80100.0292 a5 =0.92890.73030.48860.57850.2373A =0.9049 0.4087 0.2217 0.5079 0.92890.9797 0.5949 0.1174 0.0855 0.73030.4389 0.2622 0.2967 0.2625 0.48860.1111 0.6028 0.3188 0.8010 0.57850.2581 0.7112 0.4242 0.0292 0.2373 ans =-0.5932 -0.1881 -0.4330 0.1909 -0.6235 -0.5319 -0.5286 0.1934 -0.5094 0.3752 -0.3288 0.0079 -0.0670 0.7395 0.5835 -0.4137 0.8042 -0.1828 -0.3450 0.1723 -0.2931 0.1960 0.8586 0.1953 -0.3167Trial>>上机作业六Trial>> A=rand(5)eig(A)[d,v]=eig(A)x=rand(5,1)eig(x*x')A =0.4588 0.4889 0.9880 0.0987 0.72120.9631 0.6241 0.0377 0.2619 0.10680.5468 0.6791 0.8852 0.3354 0.65380.5211 0.3955 0.9133 0.6797 0.49420.2316 0.3674 0.7962 0.1366 0.7791 ans =2.6238 + 0.0000i0.0391 + 0.2666i0.0391 - 0.2666i0.2420 + 0.0000i0.4829 + 0.0000id =-0.4582 + 0.0000i -0.4322 + 0.1366i -0.4322 - 0.1366i 0.1428 + 0.0000i 0.2020 + 0.0000i-0.3197 + 0.0000i 0.7401 + 0.0000i 0.7401 + 0.0000i -0.6192 + 0.0000i 0.3539 + 0.0000i-0.5143 + 0.0000i -0.0341 - 0.3116i -0.0341 + 0.3116i -0.2603 + 0.0000i -0.0520 + 0.0000i-0.5266 + 0.0000i 0.0473 + 0.2327i 0.0473 - 0.2327i 0.1237 + 0.0000i -0.9110 + 0.0000i-0.3821 + 0.0000i -0.2604 + 0.1558i -0.2604 - 0.1558i 0.7164 + 0.0000i -0.0373 + 0.0000iv =2.6238 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0391 + 0.2666i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i 0.0391 - 0.2666i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.2420 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.4829 + 0.0000i上机作业七A=[1,3/2,0;3/2,-1,1;0,1,1]rref(A)eig(A)B=[1,0,2;0,-1,-2;2,-2,0]rref(B)eig(B)A =1.0000 1.5000 01.5000 -1.0000 1.00000 1.0000 1.0000ans =1 0 00 1 00 0 1ans =-2.06161.00002.0616B =1 0 20 -1 -22 -2 0ans =1 0 20 1 20 0 0ans =-3.0000-0.00003.0000Trial>>上机作业八Trial>> A=[0.7,0.2,0.1;0.2,0.7,0.1;0.1,0.1,0.8]P0=[15;9;6]A =0.7000 0.2000 0.10000.2000 0.7000 0.10000.1000 0.1000 0.8000 P0 =1596Trial>> A*P0ans =12.90009.90007.2000Trial>> A*A*P0ans =11.730010.23008.0400Trial>> A*A*A*A*A*P0ans =10.429910.24249.3277Trial>>。
线性代数 课件ppt

例6:
a11 A a21
a12 a22
a13
1
a23 , E 0
0 1
0 0 ,
求AE和EA.
a31 a32 a33
0 0 1
解:
a11
AE a21
a31
a12 a22 a32
a13 1 a23 0 a33 0
0 1 0
0 0
a11 a21
1 a31
a12 a22 a32
a13 a23 A; a33
1 0 0 a11 a12 a13 a11 a12 a13 EA 0 1 0 a21 a22 a23 a21 a22 a23 A.
0 0 1 a31 a32 a33 a31 a32 a33
单位矩阵E在矩阵的乘法中与数1在数中的乘法中所起的作用相似.
排成的 m行 n列的数表
a11 a12 a1n
a21 a22 a2n
am1 am2 amn
称为m行n列矩阵,简称mXn矩阵。记作
主对角线
a11 a12
A
a21
a22
副对角线 am1 am2
a1n
a2n
amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
a11 x1 a12 x2 a1n xn a21 x1 a22 x2 a2n xn
b1
b2
,
am1 x1 am2 x2 amn xn bm
所以方程组可以用矩阵的乘法来表示.方程组中 系数组成的矩阵A称为系数矩阵,
方程组中系数与常数组成的矩阵
a11 a21
大连理工矩阵上机作业

第一题Lagrange插值函数function y=lagrange(x0,y0,x);n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endx0=[1:10];y0=[67.052,68.008,69.803,72.024,73.400,72.063,74.669,74.487,74.065,76 .777];lagrange(x0,y0,17)ans=-1.9516e+12x=[1:0.1:10];x=x';plot(x0,y0,'r');hold onplot(x,y,'k');legend('原函数','拟合函数')拟合图像如下拟合函数出现了龙格现象,运用多项式进行插值拟合时,效果并不好,高次多项式会因为误差的不断累积,导致龙格现象的发生。
第二题function fun =nihe(n)m=[67.052*10^6,68.008*10^6,69.803*10^6,72.024*10^6,73.400*10^6,72.063 *10^6,74.669*10^6,74.487*10^6,74.065*10^6,76.777*10^6];w=[1,2,3,4,5,6,7,8,9,10];d1=0;d2=0;d3=0;y1=polyfit(m,w,1);y2=polyfit(m,w,2);y3=polyfit(m,w,3);y2=poly2sym(s2);y3=poly2sym(s3);y4=poly2sym(s4);f1=subs(y1,17);f2=subs(y2,17);f3=subs(y3,17);for p=1:10;d1=d1+(subs(y1,w(p))-m(p))^2;d2=d2+(subs(y2,w(p))-m(p))^2;d3=d3+(subs(y3,w(p))-m(p))^2;endd1=sqrt(d1);d2=sqrt(d2);d3=sqrt(d3);fun=[f1 f2 f3;d2 d3 d4];return;结果三次函数的均方误差最小,拟合的最好。
大连理工大学优化方法上机作业

大连理工大学优化方法上机作业本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March优化方法上机大作业学院:电子信息与电气工程学部姓名:学号:指导老师:上机大作业(一)%目标函数function f=fun(x)f=100*(x(2)-x(1)^2)^2+(1-x(1))^2;end%目标函数梯度function gf=gfun(x)gf=[-400*x(1)*(x(2)-x(1)^2)-2*(1-x(1));200*(x(2)-x(1)^2)]; End%目标函数Hess矩阵function He=Hess(x)He=[1200*x(1)^2-400*x(2)+2,-400*x(1);-400*x(1), 200;];end%线搜索步长function mk=armijo(xk,dk)beta=0.5; sigma=0.2;m=0; maxm=20;while (m<=maxm)if(fun(xk+beta^m*dk)<=fun(xk)+sigma*beta^m*gfun(xk)'*dk) mk=m; break;endm=m+1;endalpha=beta^mknewxk=xk+alpha*dkfk=fun(xk)newfk=fun(newxk)%最速下降法function [k,x,val]=grad(fun,gfun,x0,epsilon)%功能:梯度法求解无约束优化问题:minf(x)%输入:fun,gfun分别是目标函数及其梯度,x0是初始点,% epsilon为容许误差%输出:k是迭代次数,x,val分别是近似最优点和最优值maxk=5000; %最大迭代次数beta=0.5; sigma=0.4;k=0;while(k<maxk)gk=feval(gfun,x0); %计算梯度dk=-gk; %计算搜索方向if(norm(gk)<epsilon), break;end%检验终止准则m=0;mk=0;while(m<20) %用Armijo搜索步长if(feval(fun,x0+beta^m*dk)<=feval(fun,x0)+sigma*beta^m*gk'*dk) mk=m;break;endm=m+1;endx0=x0+beta^mk*dk;k=k+1;endx=x0;val=feval(fun,x0);>> x0=[0;0];>> [k,x,val]=grad('fun','gfun',x0,1e-4)迭代次数:k =1033x =0.99990.9998val =1.2390e-008%牛顿法x0=[0;0];ep=1e-4;maxk=10;k=0;while(k<maxk)gk=gfun(x0);if(norm(gk)<ep)x=x0miny=fun(x)k0=kbreak;elseH=inv(Hess(x0));x0=x0-H*gk;k=k+1;endendx =1.00001.0000miny =4.9304e-030迭代次数k0 =2%BFGS方法function [k,x,val]=bfgs(fun,gfun,x0,varargin) %功能:梯度法求解无约束优化问题:minf(x)%输入:fun,gfun分别是目标函数及其梯度,x0是初始点,% epsilon为容许误差%输出:k是迭代次数,x,val分别是近似最优点和最优值N=1000;epsilon=1e-4;beta=0.55;sigma=0.4;n=length(x0);Bk=eye(n);k=0;while(k<N)gk=feval(gfun,x0,varargin{:});if(norm(gk)<epsilon), break;enddk=-Bk\gk;m=0;mk=0;while(m<20)newf=feval(fun,x0+beta^m*dk,varargin{:});oldf=feval(fun,x0,varargin{:});if(newf<=oldf+sigma*beta^m*gk'*dk)mk=m;break;endm=m+1;endx=x0+beta^mk*dk;sk=x-x0;yk=feval(gfun,x,varargin{:})-gk;if(yk'*sk>0)Bk=Bk-(Bk*sk*sk'*Bk)/(sk'*Bk*sk)+(yk*yk')/(yk'*sk);endk=k+1;x0=x;endval=feval(fun,x0,varargin{:});>> x0=[0;0];>> [k,x,val]=bfgs('fun','gfun',x0)k =20x =1.00001.0000val =2.2005e-011%共轭梯度法function [k,x,val]=frcg(fun,gfun,x0,epsilon,N)if nargin<5,N=1000;endif nargin<4, epsilon=1e-4;endbeta=0.6;sigma=0.4;n=length(x0);k=0;while(k<N)gk=feval(gfun,x0);itern=k-(n+1)*floor(k/(n+1));itern=itern+1;if(itern==1)dk=-gk;elsebetak=(gk'*gk)/(g0'*g0);dk=-gk+betak*d0; gd=gk'*dk;if(gd>=0),dk=-gk;endendif(norm(gk)<epsilon),break;endm=0;mk=0;while(m<20)if(feval(fun,x0+beta^m*dk)<=feval(fun,x0)+sigma*beta^m*gk'*dk) mk=m;break;endm=m+1;endx=x0+beta^m*dk;g0=gk; d0=dk;x0=x;k=k+1;endval=feval(fun,x);>> x0=[0;0];[k,x,val]=frcg('fun','gfun',x0,1e-4,1000)k =122x =1.00011.0002val =7.2372e-009上机大作业(二)%目标函数function f_x=fun(x)f_x=4*x(1)-x(2)^2-12;%等式约束条件function he=hf(x)he=25-x(1)^2-x(2)^2;end%不等式约束条件function gi_x=gi(x,i)switch icase 1gi_x=10*x(1)-x(1)^2+10*x(2)-x(2)^2-34;case 2gi_x=x(1);case 3gi_x=x(2);otherwiseend%求目标函数的梯度function L_grad=grad(x,lambda,cigma)d_f=[4;2*x(2)];d_g(:,1)=[-2*x(1);-2*x(2)];d_g(:,2)=[10-2*x(1);10-2*x(2)];d_g(:,3)=[1;0];d_g(:,4)=[0;1];L_grad=d_f+(lambda(1)+cigma*hf(x))*d_g(:,1);for i=1:3if lambda(i+1)+cigma*gi(x,i)<0L_grad=L_grad+(lambda(i+1)+cigma*gi(x,i))*d_g(:,i+1);continueendend%增广拉格朗日函数function LA=lag(x,lambda,cee)LA=fun(x)+lambda(1)*hf(x)+0.5*cee*hf(x)^2;for i=1:3LA=LA+1/(2*cee)*(min(0,lambda(i+1)+cee*gi(x,i))^2-lambda(i+1)^2); endfunction xk=BFGS(x0,eps,lambda,cigma)gk=grad(x0,lambda,cigma);res_B=norm(gk);k_B=0;a_=1e-4;rho=0.5;c=1e-4;length_x=length(x0);I=eye(length_x);Hk=I;while res_B>eps&&k_B<=10000dk=-Hk*gk;m=0;while m<=5000if lag(x0+a_*rho^m*dk,lambda,cigma)-lag(x0,lambda,cigma)<=c*a_*rho^m*gk'*dkmk=m;break;endm=m+1;endak=a_*rho^mk;xk=x0+ak*dk;delta=xk-x0;y=grad(xk,lambda,cigma)-gk;Hk=(I-(delta*y')/(delta'*y))*Hk*(I-(y*delta')/(delta'*y))+(delta*delta')/(delta'*y);k_B=k_B+1;x0=xk;gk=y+gk;res_B=norm(gk);end%增广拉格朗日法function val_min=ALM(x0,eps)lambda=zeros(4,1);cigma=5;alpha=10;k=1;res=[abs(hf(x0)),0,0,0];for i=1:3res(1,i+1)=norm(min(gi(x0,i),-lambda(i+1)/cigma)); endres=max(res);while res>eps&&k<1000xk=BFGS(x0,eps,lambda,cigma);lambda(1)=lambda(1)+cigma*hf(xk);for i=1:3lambda(i+1)=lambda(i+1)+min(0,lambda(i+1)+gi(x0,1)); endk=k+1;cigma=alpha*cigma;x0=xk;res=[norm(hf(x0)),0,0,0];for i=1:3res(1,i+1)=norm(min(gi(x0,i),-lambda(i+1)/cigma)); endres=max(res);endval_min=fun(xk);fprintf('k=%d\n',k);fprintf('fmin=%.4f\n',val_min);fprintf('x=[%.4f;%.4f]\n',xk(1),xk(2));>> x0=[0;0];>> val_min=ALM(x0,1e-4)k=10fmin=-31.4003x=[1.0984;4.8779]val_min =-31.4003上机大作业(三)A=[1 1;-1 0;0 -1];n=2;b=[1;0;0];G=[0.5 0;0 2];c=[2 4];cvx_solver sdpt3cvx_beginvariable x(n)minimize (x'*G*x-c*x)subject toA*x<=bcvx_enddisp(x)Status: SolvedOptimal value (cvx_optval): -2.40.40000.6000A=[2 1 1;1 2 3;2 2 1;-1 0 0;0 -1 0;0 0 -1]; n=3;b=[2;5;6;0;0;0];C=[-3 -1 -3];cvx_solver sdpt3cvx_beginvariable x(n)minimize (C*x)subject toA*x<=bcvx_enddisp(x)Status: SolvedOptimal value (cvx_optval): -5.40.20000.00001.600011。
线性代数ppt课件

32514
逆序 逆序
定义 一个排列中所有逆序的总数称为此排列的 逆序数. 例如 排列32514 中,
0 01
32514
1 逆序数为3
故此排列的逆序数为3+1+0+1+0=5.
排列的奇偶性
逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列.
计算排列逆序数的方法
a11
0 00
a21 a22 0 0
an1
an2
an3 ann
a11a22 ann .
例4(第7页例5) 证明对角行列式
1 2
12 n;
n
2
1
nn1
1 2 12 n .
n
1 2
证明 第一式是显然的,下面证第二式.
n
若记 i ai,ni1, 则依行列式定义
2
1
a1n
a2,n1
n
an1
其中 p1 p2 pn 为自然数1,2,,n 的一个排列, t 为这个排列的逆序数.
a11 a12 a1n
D
a21 a22 a2n
an1 an2 ann
1
a a a t p1 p2pn
1 p1 2 p2
npn
p1 p2 pn
说明 1、行列式是一种特定的算式;
2、 n 阶行列式是 n! 项的代数和;
3、 n 阶行列式的每项都是位于不同行、不同 列 n 个元素的乘积;
4、 a1 p1a2 p2 anpn 的符号为 1t .
5、 一阶行列式 a a 不要与绝对值记号相混淆;
(补充例题)例1 计算对角行列式
0001 0020 0300 4000
线性代数作业本 第一章课件

。
二、选择题 1、五阶行列式的展开式共有 ( )项。
(A) 5 (C)
2
; ;
(B) (D)
5! 15
; 。
10
2、设,
3a1 D1 0 3a 2 3a n 0
a1 D2 0 a2
0
an
其中 a1 , a2 an 0, 则( 1 ; D (B) ( A) 3D1 D2
a32 a43 a14 a51 a66 a25 各应带什么符号?
八、根据行列式定义,计算
2x x 1 2 1 x 1 1 4 3 中 x 与x 的系数 f(x)= 3 2 x 1 1 1 1 x
九、(选作题)求排列
n (n 1) 3 21 3 7 1 D 5 9 2 4 6 1
2 4 7 2
1 5 1 1 三、设 D 1 1 2 2
1 3 2 3
3 4 3 4
,计算
A41 A42 A43 A44 ,其中
A4 j 是元素a4 j ( j 1,2,3,4) 的代数余子式。
四、计算n阶行列式:
五、设
3 1 1 2 5 1 3 4 D , 求A31 3 A32 2 A33 2 A34 2 0 1 1 1 5 3 3
六、计算
an D2 n cn a1 c1 b1 d1 dn , 其中未写出的元素都是 0 bn
1 2 3 4 5 5 5 5 3 3 七、选作题:设 D 3 2 5 4 2 2 2 2 1 1 4 5 6 2 3
线性代数作业本
第1次作业
一、填空题 1、排列25431的逆序数为 (奇偶)排列; 2、排列217986354的逆序数为 (奇偶)排列 3、行列式 3 5 = ; 2 4 4、设 a , b 为实数,则当
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N= 200865083共9位 e a b d a= 后两位 83 1 2 3 4 B b=第4-5位 86 1 2 1 5 2 2 1 7 5 7 1 6 c=第6-7位 1. A,B列向量组的一个最大无关组. d=第4,8位 e=第1,8位 2. A*B+B*A f=第5,9位 3. Ax=b,Bx=b的解 g=第4,9位 4. A,B的行列式,逆,秩 h=第5,7位 60 5. A-B,A+B,A*B的行列式,逆,秩 6. 见后面一页
《线性代数》 —上机教学
上机内容:
一、求向量组的最大无关组;
二、解线性方程组;
三、解决实际问题举例.
上机软件:Matlab
上机界面
MATLAB中基本代数运算符
运算 加法,a+b 减法,a-b 乘法,a×b 除法,a÷b 乘幂,ab 符号 + * / or \ ^ 举例 5+3 5-3 5*3 48/4=4\48=12 5^2=25
• 所以
是一个极大无关组,且
3
• • • • • • • • • • • •
Warning: Could not get change notification handle for local C:\Program Files\MATLAB\R2007b\work. Performance degradation may occur due to on-disk directory change checking. >> >> >> a=[1,-2,-1,0,2;-2,4,2,6,-6;2,-1,0,2,3;3,3,3,3,4]; >> b=rref(a) %不打;则计算机将显示b的值 b= 1.0000 0 0.3333 0 1.7778 0 1.0000 0.6667 0 -0.1111 0 0 0 1.0000 -0.3333 0 0 0 0 0 >>
2 b a 1 ,A 12 f c e 1 b 2 2 15 f c 3 3 22 g 4 4 , 0 .1, 0 .2, 0 .5, 0 .7 , 0 .9, 0 .9 5 17 h d
变量及数组输入
• 3:矩阵的简单运算 c=inv(a) %方阵的逆阵 y=c*b %矩阵乘积 d=[a b];disp([d]) %矩阵拼接 d=a'; disp([d]) %矩阵转置 g=2*a+3 %常数乘矩阵,各元素加3 p=eye(3) %3阶单位矩阵 y=a.*p %两矩阵对应元素乘积 zeros(3) %3阶零矩阵
例一、求向量组的最大无关组 • 例1 求下列矩阵列向量组的一个最大无关组.
• • • •
解:在Matlab中输入: a=[1,-2,-1,0,2;-2,4,2,6,-6;2,-1,0,2,3;3,3,3,3,4]; b=rref(a) 求得: b =
1.0000 0 0.3333 0 1.7778 0 1.0000 0.6667 0 -0.1111 0 0 0 1.0000 -0.3333 0 0 0 0 0
变量及数组输入
2:矩阵方式输入(请记下红色部分!) a=[1,2,3;4,5,6;7,8,0] %矩阵输入 (a为3阶方阵) b=[366;804;351] %列矩阵输入 c=[366;804;351] ‘ %行矩阵(转置)输入 det(a) %方阵行列式 inv(a) %方阵的逆 x=a\b %ax=b方程组的解 y=inv(a)*b %与x相同 r=rank(A), %矩阵的秩 disp([a,b,x]) %显示矩阵
解: 在Matlab中输入:
故 b1
2 3
a1
2 3
a 2 a 3 , b1
4 3
a1 a 2
2 3
a3 .
4
例二、解线性方程组
• 直接解法 • 利用左除运算符的直接解法 • 对于线性方程组Ax=b,可以利用左除运 算符“\”求解: x=A\b
例1 用直接解法求解下列线性方程组. 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; x=A\b
a 1 A 1 2 e
b 2 15 f
c 3 22 g
d 4 17 h
1 2 b f c
作业格式:
• 1.姓名,班级,学号N= • A= … , B= ….要求:打印或80535117@(船) sdluran@(化) Ax=b的解在下列不同的取值时变化如何? • 6:
5
• >> A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; • b=[13,-9,6,0]'; • x=A\b %不打;则计算机将显示x的值 • x=
• • • •
-66.5556 25.6667 -18.7778 26.5556
• >>
例子三、求秩
• • • • • • • • • • • • >> A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; >> r=rank(A); >> r= % = 计算机不显示r的值 ??? r= | Error: Expression or statement is incomplete or incorrect. >> rank(A) ans = 4 >> r r= 4 %不打;则计算机将显示rank(A)的值
常见任务
① 矩阵的赋值和其加、减、乘、除(求逆)命令; ② 矩阵化为最简行阶梯型的计算命令;[U0,ip]=rref(A) ③ 多元线性方程组MATLAB求解的几种方法;x=inv(A)*b, U=rref(A) ④ 行列式的几种计算机求解方法; D=det(A),[L,U]=lu(A);D=prod(diag(L)) ⑤ n个m维向量组的相关性及其秩的计算方法和命令; r=rank(A),U=rref(A) ⑥ 求欠定线性方程组的基础解系及超定方程解的MATLAB 命令;xb=null(A) ⑦ 矩阵的特征方程、特征根和特征向量的计算命令; f=poly(A);[P,D]=eig(A) ⑧ 化二次型为标准型的MATLAB命令;yTDy=xTAx; 其中 y=P-1x,