2021年人教版七年级下《5.1相交线》讲义练习和同步练习答案解析

合集下载

2021年人教版七年级数学下册5.1.1《相交线》课后练习 (含答案)

2021年人教版七年级数学下册5.1.1《相交线》课后练习 (含答案)

一、选择题1.如图,直线AB,CD相交于O,所形成的∠1,∠2,∠3,∠4中,下列四种分类不同于其他三个的是( )A.∠1和∠2B.∠2和∠3C.∠3和∠4D.∠2和∠42.如图,已知∠1+∠3=180°,则图中和∠1互补的角有( )A.1个B.2个C.3个D.4个3.如图,直线AB与CD相交于O点,∠1=∠2.若∠AOE=140°,则∠AOC度数为( )A.40°B.60°C.80°D.100°二、填空题4.如图,当剪子口∠AOB增大15°时,∠COD增大________度,其根据是______________.5.如图,直线AB,CD,EF相交于同一点O,且3∠BOC=2∠AOC,3∠DOF=∠AOD,∠FOC=_____度.6.如图,已知直线AB,CD相交于点O,∠1∶∠2=2∶3,∠AOC=50°,则∠2度数是_______.三、解答题7.如图,有两堵墙,要测量地面上所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外.如何运用本章知识进行测量?8.如图所示,直线AB,CD相交于点O,作∠DOE=∠BOD,OF平分∠AOE,若∠AOC=28°,求∠EOF 的度数.9.观察下列图形,寻找对顶角(不含平角):(1)两条直线相交(如图(1)),图中共有______对对顶角.(2)三条直线相交于一点(如图 (2)),图中共有________对对顶角.(3)四条直线相交于一点(如图(3)),图中共有________对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可构成________对对顶角.(5)若有2025条直线相交于一点,则可构成________对对顶角.参考答案1.答案为:D.2.答案为:D.3.答案为:C.4.答案为:15 对顶角相等5.答案为:1566.答案为:30°7.解:如图,延长AO与BO得到∠AOB的对顶角∠COD,测出∠COD的度数,由∠AOB=∠COD,即得∠AOB的度数.8.解:因为∠BOD=∠DOE,所以2∠DOE=∠BOE,同理2∠EOF=∠AOE,所以∠DOF=∠DOE+∠EOF=0.5∠BOE+0.5∠AOE=0.5(∠BOE+∠AOE)=0.5×180°=90°.又∠BOD和∠AOC是对顶角,所以∠BOD=∠AOC=28°,所以∠EOF=90°-28°=62°.9.解:图(1)中有两条直线,共有2对对顶角,而2=2×1;图(2)中有三条直线,共有6对对顶角,而6=3×2;图(3)中有四条直线,共有12对对顶角,而12=4×3;……当有n条直线相交于一点时,共有n(n-1)对对顶角;若有2025条直线相交于一点,则可构成2025×2024=4 098 600对对顶角.。

人教版 七年级数学下册 (5.1相交线) 课时同步优化训练习题(含答案)

人教版 七年级数学下册 (5.1相交线) 课时同步优化训练习题(含答案)

第五章相交线与平行线5.1 相交线5分钟训练(预习类训练,可用于课前)1.如图5-1-1所示,∠1与∠2互为对顶角的是( )图5-1-1解析:因为对顶角的角的两边互为反向延长线,所以选项A、B、C都不正确,选项D正确.答案:D2.已知∠A=40°,则∠A的补角等于( )A.50°B.90°C.140°D.180°解析:∠A的补角是180°-∠A=140°.答案:C3.如图5-1-2,一条直线c分别与直线a、b相交(也说直线a、b被直线c____________).构成的八个角中,∠1与∠____________是同位角,∠3与∠____________是内错角,∠3与∠____________是同旁内角.图5-1-2 图5-1-3解析:同位角在截线的同旁且两条被截直线的同侧,内错角在截线的两侧且在两条被截直线的内部,同旁内角在截线的同旁且在两条被截直线内部;所以∠1与∠5是同位角,∠3与∠5是内错角,∠3与∠6是同旁内角.答案:所截 5 5 64.如图5-1-3所示,直线AB、CD、EF相交于O点,∠AOF=3∠FOB,∠AOC=90°,则∠EOC的度数为____________.解析:∠AOF=3∠FOB,又因为∠AOF+∠FOB=180°,所以∠FOB=45°.因为∠AOE=∠FOB(对顶角相等),∠AOC=90°,所以∠EOC=∠AOC-∠AOE=45°.答案:45°10分钟训练(强化类训练,可用于课中)1.下列说法中正确的是( )A.对顶角必相等B.相等的角是对顶角C.不是对顶角的角不相等D.有公共顶点的角叫做对顶角解析:因为当两个角的两边互为反向延长线时才构成对顶角,而相等的角、有公共顶点的角的两边不一定成互为反向延长线,所以选项B、D不正确;由对顶角的性质可知“对顶角相等”,但不是对顶角的两个角的大小可以相等,如等腰直角三角板中有两个角相等,所以选项A正确,选项C不正确.答案:A2.下列说法不正确的是( )A.钝角没有余角,但一定有补角B.两个角相等且互补,则它们都是直角C.锐角的补角比该锐角的余角大D.一个锐角的余角一定比这个锐角大 解析:设一个角为α,则其余角为90°-α,补角为180°-α.当α为钝角时, 90°-α<0°,所以其余角不存在,但补角一定存在,所以选项A 正确;当α=180°-α时,α=90°,所以选项B 正确;当α为锐角时,其补角为180°-α>90°>90°-α,所以选项C 正确;因为30°角与60°角互余,所以60°角的余角小于60°.所以选项D 错误. 答案:D3.如图5-1-4所示,∠AOC ,∠BO C ,∠DOE 都是直角,则相等的角有( )图5-1-4A.2对B.3对C.4对D.5对 解析:∵∠AOD 与∠COE 都是∠DOC 的余角,∴∠AOD=∠COE. ∵∠DOC 与∠BOE 都是∠COE 的余角, ∴∠DOC=∠BOE.∵∠AOC ,∠BOC ,∠DOE 都是直角, ∴∠AOC=∠BOC=∠DOE. 答案:D4.如图5-1-5,运动会上,甲、乙两名同学测得小明的跳远成绩分别为DA=4.5米,DB=4.15米,则小明的跳远成绩应该为_____________米.图5-1-5 图5-1-6解析:根据跳远规则及直线外一点与直线上各点连结的所有线段中垂线段最短,得小明的跳远成绩应是BD 的长. 答案:4.155.如图5-1-6,∠1和∠B 是直线_____________和直线_____________被直线_____________所截得到的_____________角;∠2和∠4是直线_____________和直线_____________被直线_____________所截得到的_____________角;∠D 和∠4是直线_____________和直线_____________被直线_____________所截得到的_____________角.解析:由同位角、内错角、同旁内角的概念,进行辨析. 答案:AD BC AB 同位 AB CD AC 同位 AC AD CD 同旁内 6.一个角的余角比这个角的补角的31还小10°,求这个角的余角及补角. 解:设该角为x ,由题意得90°-x=31(180°-x)-10°,解之,得x=60°. ∴90°-x=30°,180°-x=120°,即这个角的余角与补角分别是30°、120°. 30分钟训练(巩固类训练,可用于课后) 1.下列结论不正确的是( )A.互为邻补角的两个角的平分线所成的角为90°B.互不相等的两个角不是对顶角C.两直线相交,若有一个交角为90°,则这四个角中任取两个角都互为补角D.不是对顶角的两个角互不相等 解析:A 选项,如图所示,∵∠1=21∠BOD,∠2=21∠AOD,∴∠EOC=∠1+∠2=21(∠BOD+∠AOD)=90°. B 选项,由于对顶角必然相等,因此不相等的角自然不可能是对顶角,故正确. C 选项,两条直线相交形成的四个角中,如有一个为90°,则其余三个角均为90°,因此,任意两个角互为补角,故正确.D 选项,对顶角相等,但相等的角不一定是对顶角,比如等腰直角三角板的两个45°的角,故错误. 答案:D2.如图5-1-7,AB 与CD 为直线,图中共有对顶角( )图5-1-7A.1对B.2对C.3对D.4对 解析:图中只有两条直线AB 与CD 相交,所以对顶角共有2对. 答案:B3.(2010广西南宁模拟,2)如图5-1-8,已知AB 、CD 相交于O 点,OE ⊥AB ,∠EOC=28°,则∠AOD=______________.图5-1-8 图5-1-9解析:利用垂直求出∠AOD 的对顶角∠COB 即可. 答案:62°4.如图5-1-9所示,直线AB 、CD 相交于O 点,∠AOD=130°,则∠BOC=______________, ∠AOC=______________,∠BOD=______________. 解析:利用对顶角相等和邻补角的关系求解. 答案:130° 50° 50°5.如图5-1-10,直线AB 、CD 相交于O,作∠DOE=∠BOD,OF 平分∠AOE,∠AOC=28°,求∠EOF 的度数.图5-1-10解:由题知∠BOD=∠AOC=28°(对顶角相等), 因为∠DOE=∠BOD,所以∠BOE=2∠BOD=56°. 因为∠AOE+∠BOE=180°,所以∠AOE=124°. 因为OF 平分∠AOE, 所以∠EOF=21∠AOE=62°. 6.A 、B 两厂在公路同侧,拟在公路边建一货场C,若由B 厂独家兴建,并考虑B 厂的利益,则要求货物离B 厂最近,请在图5-1-11中作出此时货场C 的位置,并说出这样做的道理.图5-1-11解:如图所示,过B 作公路所在直线的垂线,垂足O 就是所求货场C 的位置.理由:根据“垂线段最短”,所以BO 是点B 到公路的最短线段. 7.如图5-1-12,直线AB 、CD 、EF 相交于点O.图5-1-12(1)写出∠AOD 、∠EOC 的对顶角(2)已知∠AOC=50°,求∠BOD 、∠COB 的度数.解:(1)∠AOD 的对顶角是∠COB;∠EOC 的对顶角是∠DOF. (2)∠BOD=∠AOC=50°(对顶角相等), ∠COB=180-∠AOC=180°-50°=130°(邻补角的定义).8.图5-1-13中的∠1和∠2,∠3和∠4分别是由哪两条直线被哪一条直线所截而成的?它们各是什么角?图5-1-13解:由题图(1)知∠1和∠2的公共边所在的直线是BD,则BD 是截线,所以∠1和∠2是由直线AB,CD 被直线BD 所截而形成的内错角;∠3和∠4的公共边所在的直线是BD,则BD 是截线,所以∠3和∠4是由直线AD,BC 被直线BD 所截而形成的内错角.由题图(2)知,∠1和∠2的公共边所在的直线是BC,则B C 是截线,所以∠1和∠2是由直线AB,CD 被直线BC 所截而形成的同旁内角;∠3和∠4的公共边所在的直线是AB,则AB 是截线,所以∠3和∠4是由直线AD,BC 被直线AB 所截而形成的同位角.9.如图5-1-14,一棵小树生长时与地面成80°角,它的主根深入泥土,如果主根和小树在同一条直线上,那么∠2等于多少度?图5-1-14解:∵∠1+80°=90°,∴∠1=10°.∵∠1=∠2(对顶角相等),∴∠2=10°.10.(1)如图5-1-15(1)所示,两条直线AB与CD相交成几对对顶角?(2)如图5-1-15(2)所示,三条直线AB、CD、EF相交呢?(3)试猜想n条直线相交会成多少对对顶角?图5-1-15解:(1)两条直线AB与CD相交成2对对顶角.(2)三条直线AB、CD、EF相交有6对对顶角.(3)因为3条不同直线相交所成的对顶角有(3×2)÷2×2=6(对);4条不同直线相交所成的对顶角有(4×3)÷2×2=12(对);则可推测:n条直线相交所成的对顶角有n×(n-1)÷2×2=n(n-1)(对).。

(精校版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案

(精校版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案

(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)的全部内容。

初一数学人教版七年级下册第五章 相交线与平行线5.1 相交线同步练习题1. 下列说法中正确的是( )A.不相等的角一定不是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.两条直线相交所成的角是对顶角2. 下列说法正确的是( )A.在同一平面内,过直线外一点向该直线画垂线,垂足一定在该直线上B.在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足一定在该线段或射线上C.过线段或射线外一点不一定能画出该线段或射线的垂线D.过直线外一点与直线上一点画的一条直线与该直线垂直3. 已知∠α和∠β的对顶角,若∠α=60°,则∠β的度数为( )A.30° B.60° C.70° D.150°4。

如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是( )A.同角的余角相等 B.对顶角相等C.同角的补角相等 D.等角的补角相等5. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余 D.不能确定6。

人教版数学七年级下册5.1相交线同步练习【包含答案】

人教版数学七年级下册5.1相交线同步练习【包含答案】

5.1相交线总分:100分班级:__________ 姓名:__________ 学号:__________ 得分:__________一、选择题(共10小题;共30分)1. 对于直线、射线、线段,在下列各图中能相交的是( )A. B.C. D.2. 如图所示,∠1与∠2是对顶角的是( )A. B.C. D.3. 如图所示,下列说法不正确的是( )A. 点B到AC的垂线段是线段ABB. 点C到AB的垂线段是线段ACC. 线段AD是点D到BC的垂线段D. 线段BD是点B到AD的垂线段4. 如图,直线AD,BC被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )A. ∠4,∠2B. ∠2,∠6C. ∠5,∠4D. ∠2,∠45. 下面四个图形中,∠1与∠2是邻补角的是( )A. B.C. D.6. 下面四个图形中,∠1=∠2一定成立的是( )A. B.C. D.7. 过点P向线段AB所在直线画垂线,正确的是( )A. B.C. D.8. 在下面各图中,∠1与∠2是对顶角的是( )A. B.C. D.9. 如图,下列说法错误的是( )A. ∠A与∠EDC是同位角B. ∠A与∠ABF是内错角C. ∠A与∠ADC是同旁内角D. ∠A与∠C是同旁内角10. 如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35∘,则∠AOD等于( )A. 35∘B. 70∘C. 110∘D. 145∘二、填空题(共6小题;共18分)11. 当光线从空气射入水中,光的传播方向发生了改变,这就是折射现象(如图).图中∠1与∠2是对顶角吗? (填“是”或“不是”).12. 如图,过直线AB上一点O作射线OC,∠BOC=29∘18ʹ,则∠AOC的度数为.13. 如图,∠C与是一对内错角.14. 如图,AB与CD相交所成的四个角中,∠1的邻补角是,∠1的对顶角是.15. 如图,AH⊥BC,垂足为H.若AB=1.7cm,AC=2cm,AH=1.1cm,则点A到点B的距离是,点A到直线BC的距离是.16. 探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有对,内错角有对,同旁内角有对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有对,内错角有对,同旁内角有对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有对,内错角有对,同旁内角有对.(用含n的式子表示)三、解答题(共6小题;共52分)17. 如图所示,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,离村庄N最近,请你在AB上分别画出P,Q两点的位置.18. 如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70∘,且∠BOE:∠EOD=2:3,求∠AOE的度数.19. 如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35∘,求∠EOD的度数;(2)若∠AOC+∠BOD=100∘,求∠EOD的度数.20. 直线AB和CD相交于一点O,OE,OF分别是∠AOC和∠BOD的平分线.(1)画出这个图形;(2)射线OE,OF在同一条直线上吗?(3)画∠AOD的平分线OG,OE与OG有什么位置关系?说明理由.21. 请回答下列问题:(1)指出下列各图中的∠1与∠2是同位角、内错角还是同旁内角.(2)请你归纳:辨认同位角、内错角、同旁内角的方法可以是什么?22. 已知OA⊥OB,OE平分∠AOB,过点O引射线OC,OF平分∠BOC.(1)如图1,若∠AOC=60∘,则∠EOF=;(2)如图2,若∠AOC=a(0∘<a<90∘),则∠EOF=(用含a的式子表示);(3)如图3,当∠AOC在∠AOB的外部时,若∠AOC=a(0∘<a<90∘),∠EOF与a有何数量关系?试说明理由.答案第一部分1. B2. B3. C4. B5. D6. B7. C8. B9. D10. C第二部分11. 不是.12. 150∘42ʹ【解析】∵∠BOC=29∘18ʹ,∴∠AOC的度数为:180∘−29∘18ʹ=150∘42ʹ.13. ∠EBC14. ∠2和∠4,∠315. 1.7cm,1.1cm16. 4,2,2,12,6,6,2n(n−1),n(n−1),n(n−1)第三部分17.18. (1)∠BOD;∠AOE(2)因为∠DOB=∠AOC=70∘,∠DOB=∠BOE+∠EOD,∠BOE:∠EOD=2:3,∠BOE,所以得∠EOD=32∠BOE=70∘,所以∠BOE+32所以∠BOE=28∘,所以∠AOE=180∘−∠BOE=152∘.19. (1)∵∠COD是平角,∴∠COD=180∘.∵∠COE=35∘,∴∠EOD=180∘−∠COE=145∘.(2)∵∠AOC+∠BOD=100∘,又∠AOC=∠BOD,∴∠BOD=50∘.∵OE⊥AB,∴∠EOB=90∘,∴∠EOD=∠EOB+∠BOD=140∘.20. (1)(2)射线OE,OF在同一条直线上.∵直线AB和CD相交于一点O,∴∠AOC=∠BOD .∵OE,OF分别是∠AOC和∠BOD的平分线,∴∠AOE=∠COE,∠DOF=∠BOF .∴∠AOE=∠BOF .∴射线OE,OF在同一条直线上.(3)OE⊥OG .∵直线AB和CD相交于一点O,∴∠AOC+∠AOD=180∘ .∵OE,OG分别是∠AOC和∠AOD的平分线,∴∠AOE=12∠AOC,∠AOG=12∠AOD .∴∠EOG=12(∠AOC+∠AOD)=90∘ .【解析】提示:说明∠EOG=90∘或∠FOG=90∘.21. (1)①内错角②同旁内角③同位角④同位角(2)在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中主线是截线,抓住了截线,再利用图形结构特征(F形为同位角,Z形为内错角,U形为同旁内角)判断.22. (1)30∘(2)12a(3)∠EOF=12a.。

2020-2021学年人教版数学 七年级下册 5.1 相交线 垂线段 同步练习

2020-2021学年人教版数学 七年级下册  5.1 相交线  垂线段 同步练习

5.1 相交线垂线段基础训练知识点1 垂线段的定义1.下列说法正确的是()A.垂线段就是垂直于已知直线的线段B.垂线段就是垂直于已知直线并且与已知直线相交的线段C.垂线段是一条竖起来的线段D.过直线外一点向该直线作垂线,这一点到垂足之间的线段叫垂线段2.如图,下列说法不正确的是()A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC.线段AC是点A到BC的垂线段D.线段BD是点B到AD的垂线段知识点2 垂线段的性质3.如图,计划在河边建一水厂,过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是__________.4.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B. B点C.C点D.D点5.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD>ADB.AC<BCC.BC>BDD.CD<BD6.如图,AD⊥BD,BC⊥CD,AB=6 cm,BC=4 cm,则BD的长度的取值范围是()A.大于4 cmB.小于6 cmC.大于4 cm或小于6 cmD.大于4 cm且小于6 cm7.如图,在三角形ABC中,∠C=90°,AC=3,点P可以在直线BC上自由移动,则AP的长不可能是()A.2.5B.3C.4D.5知识点3 点到直线的距离8.如图所示的是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段的长度.9.下列图形中,线段PQ的长表示点P到直线MN的距离的是()10.如图,其长能表示点到直线(线段)的距离的线段的条数是()A.3B.4C.5D.611.如图,三角形ABC是锐角三角形,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是()A.线段CA的长B.线段CD的长C.线段AD的长D.线段AB的长12.点到直线的距离是指()A.直线外一点到这条直线的垂线的长度B.直线外一点到这条直线上的任意一点的距离C.直线外一点到这条直线的垂线段D.直线外一点到这条直线的垂线段的长度13.如图,AB⊥AC,AD⊥BC,如果AB=4 cm,AC=3 cm,AD=2.4 cm,那么点C到直线AB的距离为()A.3 cmB.4 cmC.2.4 cmD.无法确定易错点对垂线段的性质理解不透彻而致错14.点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离()A.等于4 cmB.等于2 cmC.小于2 cmD.不大于2 cm提升训练考查角度1 利用点到直线的距离的定义进行识别15.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条考查角度2 利用作垂线法作图16.如图,已知钝角三角形ABC中,∠BAC为钝角.(1)画出点C到AB的垂线段;(2)过点A画BC的垂线;(3)画出点B到AC的垂线段,并量出其长度.考查角度3 利用垂线段的性质比较大小17.如图,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?考查角度4 利用垂线段的性质解实际应用题18.如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,设汽车行驶到点P位置时,离村庄M最近,行驶到点Q位置时,离村庄N最近,请你在AB上分别画出P,Q两点的位置.探究培优拔尖角度1 利用垂线段的性质进行方案设计(建模思想)19.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H的位置,使它到四个村庄的距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短?并说明根据.拔尖角度2 利用垂线段的性质解决绝对值问题(数形结合思想)20.在如图所示的直角三角形ABC中,斜边为BC,两直角边分别为AB,AC,设BC=a,AC=b,AB=c.(1)试用所学知识说明斜边BC是最长的边;(2)试化简|a-b|+|c-a|+|b+c-a|.参考答案1.【答案】D2.【答案】C3.【答案】垂线段最短4.【答案】A5.【答案】C6.【答案】D解:根据“垂线段最短”可知BC<BD<AB,所以BD大于4 cm且小于6 cm.7.【答案】A8.【答案】BN或AM9.【答案】A解:对于选项A,PQ⊥MN,Q是垂足,故线段PQ的长为点P到直线MN 的距离.10.【答案】C解:线段AB的长度可表示点B到AC的距离,线段CA的长度可表示点C到AB的距离,线段AD的长度可表示点A到BC的距离,线段CD 的长度可表示点C到AD的距离,线段BD的长度可表示点B到AD的距离,所以共有5条.11.【答案】B12.【答案】D13.【答案】A解:因为AB⊥AC,所以点C到直线AB的距离是线段AC的长度,即3 cm.14.错解:B诊断:点到直线的距离是指这个点到直线的垂线段的长度.虽然垂线段最短,但是并没有说明PC是垂线段,所以垂线段的长度可能小于2 cm,也可能等于2 cm.正解:D15.【答案】D16.解:如图:(1)CD即为所求;(2)直线AE即为所求;(3)BF即为所求.长度略.17.解:(1)如图所示.(2)如图所示.(3)PE<PO<FO,其依据是垂线段最短.18.解:如图所示.19.解:(1)如图,连接AD,BC,交于点H,则H点为蓄水池的位置,它到四个村庄的距离之和最小.(2)如图,过点H作HG⊥EF,垂足为G,则沿HG开渠最短.根据:连接直线外一点与直线上各点的所有线段中,垂线段最短.分析:本题考查了垂线段的性质在实际生活中的运用.体现了建模思想的运用.20.解:(1)因为点C与直线AB上点A,B的连线中,CA是垂线段,所以AC<BC.因为点B与直线AC上点A,C的连线中,AB是垂线段,所以AB<BC.故AB,AC,BC中,斜边BC最长.(2)因为BC>AC,AB<BC,AC+AB>BC,所以原式=a-b-(c-a)+b+c-a=a.。

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册第五章相交线与平行线 5.1 相交线同步练习一、单选题(共10题;共30分)1.如图所示,∠1和∠2是对顶角的图形有( )A. 1个B. 2个C. 3个D. 4个2.如图,下列说法不正确的是()A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角3.如图所示,∠1和∠2是对顶角的是()A. B. C. D.4.下列说法中正确的个数为()①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A. 1B. 2C. 3D. 45.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°6.如图所示,下列说法错误的是()A. ∠A和∠B是同旁内角B. ∠A和∠3是内错角C. ∠1和∠3是内错角D. ∠C和∠3是同位角7.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A. 30°B. 34°C. 45°D. 56°8.在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10题;共30分)11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=________12.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.13.如图,∠1和∠2是________角,∠2和∠3 是________角。

七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线同步练习含解析新版新人教版

七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线同步练习含解析新版新人教版

5.1.2垂线基础闯关全练1.如图,直线AB、CD、EF相交于点O,且AB⊥CD,若∠BOE=35°,则∠DOF=( )A.65° B.45° C.35° D.55°2.如图,点O在直线AB上且OC⊥OD,若∠COA= 36°,则∠DOB的大小为( )A.36°B.54°C.55°D.44°3.下列选项中,过点P画AB的垂线CD,三角板放法正确的是( )A B C D4.在下图所示的各图中用三角板分别过点C画线段AB的垂线.(1)(2)(3)(4)5.如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由是( )A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线6.如图.想在河堤两岸搭建一座桥,图中四种搭建方式PA,PB,PC,PD中,最短的是_______. 7.下列图形中,线段PQ的长为点P到直线MN的距离的是( )A B C D8.如图.立定跳远比赛时,小明从点A起跳落在沙坑内B处,这次小明的跳远成绩是4.6米,则小明从起跳点到落脚点之间的距离( )A.大于4.6米 B.等于4.6米 C.小于4.6米 D.不能确定能力提升全练1.如图,∠ACB= 90°.CD⊥AB,垂足为点D,则下面的结论中,正确的有( )①BC与AC互相垂直②AC与CD互相垂直③点A到BC的垂线段是线段BC④点C到AB的垂线段是线段CD⑤线段BC是点B到AC的距离⑥线段AC的长度是点A到BC的距离A.2个 B.3个 C.4个 D.5个2.如图,已知直线CD、EF相交于点O.OA⊥OB,且OE平分∠AOC,若∠EOC= 60°,则∠BOF=______.3.如图,直线AB,CD相交于点O,∠DOE=∠BOD.OF平分∠AOE.(1)判断OF与OD的位置关系;(2)若∠AOC:∠AOD=1:5.求∠EOF的度数.三年模拟全练一、选择题1.如图所示,直线AB⊥CD于点D,直线EF经过点O.若∠1=26°,则∠2的度数是( )A.26° B.64° C.54° D.以上答案都不对2.如图,直线AB、CD相交于点O,OE⊥CD,∠AOE= 52°,则∠BOD等于( )A.24°B.26° C.36° D.38°二、填空题3.如图,已知AC⊥BC,CD⊥ AB.AC=3,BC=4,CD= 2.4,则点C到直线AB的距离等于______. 4.如图,当∠1与∠2满足_________条件时,OA⊥OB.三、解答题5.如图,直线AB与CD相交于点D,OP是∠BOC的平分线,OE ⊥AB,OF⊥ CD.(1)图中除直角外,写出三对相等的角:(2)已知∠EOC= 50°,求∠POF的度数,五年中考全练选择题.1.如图,直线AB,CD相交于点O,EO⊥CD.下列说法错误的是( ) A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOED.∠AOD+∠BOD= 180°2.如图,经过直线l外一点A画l的垂线,能画出( )A.1条B.2条C.3条D.4条3.如图所示,点P到直线l的距离是( )A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段PD的长度核心素养全练如图,随意画一个锐角∠MON和一个钝角∠M'O’N’,画出∠MON的平分线OP和∠M'O’N'的平分线O’P’.(1)在OP上任取一点A,画AB⊥OM,AC⊥ON,垂足分别为B,C;(2)在O'P’上任取一点A’,画A'B'⊥O'M’,A'C'⊥O'N',垂足分别是B’,C’;(3)通过度量线段AB,AC,A'B’,A'C'的长度,发现AB____AC,A'B'____ A'C’;(填“=”或“≠”)(4)通过上面的画图和度量,和同学们交流一下,有什么猜想?请用一句话表述出来.5.1.2垂线1.D∵AB⊥CD,∠BOE=35°,∴∠AOF=35°,∠AOD=∠BOC=90°,∴∠DOF= 90°-35°=55°.故选D.2.B∵OC⊥OD,∴∠COD= 90°,又∵∠AOC+∠COD+∠DOB= 180°.∴∠DOB= 180°-36°-90°= 54°.故选B. 3.C根据垂线的作法,将直角三角板的一条直角边与直线AB重合,另一条直角边过点P后沿该直角边画直线即可.4.解析5.C根据垂线段的性质:垂线段最短,故选C.6.答案PC解析根据“连接直线外一点与直线上各点的所有线段中,垂线段最短”与PC⊥AD.知PC最短.7.A对于选项A,PQ⊥MN,Q是垂足,故线段PQ的长为点P到直线MN的距离.8.A 跳远的成绩是点B 到起跳线的距离,即垂线段的长度为4.6米,结合题图知AB 的长大于4.6米.1.B .∵∠ACB=90°,∴AC ⊥BC,故①正确;AC 与DC 相交不垂直,故②错误;点A 到BC 的垂线段是线段AC .故③错误;点C 到AB 的垂线段是线段CD,故④正确;线段BC 的长度是点B 到AC 的距离,故⑤错误;线段AC 的长度是点A 到BC 的距离,故⑥正确.故选B . 2.答案30°解析∵OE 平分∠AOC,∠EOC=60°,∴∠AOE=∠COE= 60°,∠DOE= 180°-∠COE= 120°, ∴∠DOA= 60°,∵OA ⊥OB,∴∠DOA+∠BOD= 90°.∴∠DOB=30°, ∵∠DOF=∠EOC=60°,∴∠BOF=30°. 3.解析(1)因为OF 平分∠AOE,所以∠AOF=∠EOF=21∠AOE . 又因为∠DOE=∠BOD=21∠BOE,所以∠DOE+∠EOF=21(∠BOE+∠AOE)=21×180°=90°,即∠FOD=90°,所以OF ⊥OD.(2)设∠AOC=x .因为∠AOC:∠AOD=1:5, 所以∠AOD=5x,因为∠AOC+∠AOD= 180°, 所以x+5x= 180°,x=30°. 所以∠DOE=∠BOD=∠AOC=30°.又因为∠FOD= 90°.所以∠EOF= 90°-30°= 60°. 一、选择题1.B ∵∠1=26°,∠DOF 与∠1是对顶角, ∴∠DOF=∠1=26°,又∵AB ⊥CD.∴∠DOF+∠2=90°,∴∠2=90°-∠ DOF=90°-26°=64°.故选B.2.D 因为OE ⊥CD, ∠AOE =52°,所以∠AOC= 38°,则∠BOD=∠AOC= 38°,故选D . 二、填空题 3.答案2.4解析由题意得点C 到直线AB 的距离等于CD 的长,即点C 到直线AB 的距离等于2.4. 4.答案∠1+∠2= 90°解析当∠1+∠2= 90°时,∠AOB= 90°,根据垂直的定义得OA ⊥OB. 三、解答题5.解析(1)①∠AOD= ∠BOC,②∠COP= ∠BOP,③∠COE=∠ BOF 等. (2)∵OE ⊥AB,∴ ∠EOB=90°.∵∠ EOC= 50°,∴∠COB= ∠EOB- ∠EOC= 40°.∵OP 是∠BOC 的平分线,∴∠COP=21∠BOC=20°.∵OF ⊥CD, ∴∠COF=90°,∴∠POF= ∠COF-∠COP=70°. 选择题1.C 由对顶角相等知∠AOD=∠BOC,选项A 中说法正确;由对顶角相等知∠BOD=∠AOC .由EO ⊥CD 知∠AOE+∠AOC=90°,所以∠AOE+∠BOD=90°,选项B 中说法正确;由邻补角概念知∠AOD+∠BOD= 180°,选项D 中说法是正确的.只有选项C 中说法是错误的.2.A 同一平面内,过一点有且只有一条直线垂直于已知直线. 3.B 点P 到直线l 的距离就是点P 到直线l 的垂线段PB 的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第01课相交线同步练习题【例1】如图,直线AB、MN、PQ相交于O,∠BOM是它余角2倍,∠AOP=2∠MOQ,且有OG⊥0A,求∠POG度数.【例2】如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.【例3】如图,MO⊥NO,OG平分∠MOP,∠PON=3∠MOG,求∠GOP的度数.【例4】如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【例5】如图,直线AB,CD相交于O点,OM⊥AB.(1)若∠1=∠2,求∠NOD;(2)若∠1=∠BOC,求∠AOC与∠MOD.【例6】如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON = ________(直接写出结果).(3)如图3,当∠AOB=,∠BOC=时,猜想:∠MON = __________(直接写出结果).课堂同步练习一、选择题:1、在同一个平面内,两条直线的位置关系是( )A.平行或垂直 B.相交或垂直 C.平行或相交 D.不能确定2、下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.3、下列说法中正确的有( )个.①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1 B.2 C.3 D.44、有下列几种说法:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中有一组相邻补角相等;④两条直线相交对顶角互补.其中,能两条直线互相垂直的是( )A.①③B.①②③C.②③④D.①②③④5、点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点p到直线l距离是( )A.2cmB.小于2cmC.不大于2cmD.4cm6、下列四个命题中:①在同一平面内,互相垂直的两条直线一定相交②有且只有一条直线垂直于已知直线③两条直线被第三条直线所截,同位角相等④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.其中真命题的个数为( )A.1个 B.2 个 C.3个 D.4个7、若平面内有点A、B、C、D,过其中任意两点画直线,则最多可以画的条数是( )A.6条 B.7条 C.8条 D.9条8、∠A的余角与∠A的补角互为补角,那么2∠A是( )A.直角B.锐角C.钝角D.以上三种都有可能9、如图,AB、CD相交于点E,EF平分∠AEB,若∠BED:∠DEF=2:3,则∠BEC的度数为( )A.144° B.126° C.150° D.72°第9题图第10题图10、如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数是( )A.65° B.55° C.45° D.35°11、平面内n(n≥2)条直线,每两条直线都相交,交点个数最多有( )A.n B.n(n﹣1) C. D.12、如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有( )A.1条 B.3条 C.5条 D.7条二、填空题:13、自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO⊥BO),路线最短,工程造价最低,根据是.第13题图第14题图第15题图14、如图,∠3和∠9是直线________、_______被直线_______所截而成的______角;∠6和∠9是直线_____、______被直线________所截而成的_______角。

15、如图,已知AC⊥BC,CD⊥AB,AC=3,BC=4,则点B到直线AC的距离等于______;点C到直线AB的垂线段是线段______.16、已知,如图,直线AB、CD相交于O,OE平分∠BOD且∠AOE=150°,∠AOC的度数为______.第16题图第17题图第18题图17、如图,共有________对对顶角.18、如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE= 度.19、如图,在OB边上取一点C,过C作直线MN交OA于点D,图中所有的角(平角除外)有个,其中∠BCN和构成平角.第19题图第20212021图,直线a与直线b交于点A,与直线c交于点B,∠1=12021∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转_______________.三、简答题:21、如图所示,直线AB、CE交于O,(1)写出∠AOC的对顶角和邻补角;(2)写出∠COF的邻补角;(3)写出∠BOF的邻补角;(4)写出∠AOE的对顶角及其所有的邻补角.22、直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB的度数.23、如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=2021求∠AOM的度数。

24、已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若∠COE=90°,OF平分∠AOE,求∠AOF+∠COF的度数.25、如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.26、如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角有;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据,可得∠BOC= 度;(3)∠EOF=∠AOD,求∠EOF的度数.相交线同步测试题1、如图,∠1和∠2是对顶角的图形的个数有( )A.1个 B.2个 C.3个 D.0个2、如图所示,直线a,b被直线c所截,∠1与∠2是( )A.同位角 B.内错角 C.同旁内角 D.邻补角第2题图第3题图第4题图3、如图,直线a,b被直线c所截,则下列说法中错误的是( )A.∠1与∠2是邻补角 B.∠1与∠3是对顶角C.∠2与∠4是同位角 D.∠3与∠4是内错角4、如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是( ) A.∠2=45° B.∠1=∠3 C.∠AOD与∠1互为补角 D.∠1的余角等于75°30′5、如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD=( )A.35° B.70° C.110° D.145°6、如图,已知直线AB、CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,且∠BOE:∠EOD=2:3,则∠AOE=( )A. 162°B. 152°C. 142°D. 132°第6题图第7题图第8题图7、点P为直线MN外一点,点A、B、C为直线MN上三点,PA=4厘米,PB=5厘米,PC=2厘米,则P到直线MN的距离为( )A.4厘米 B.2厘米 C.小于2厘米 D.不大于2厘米8、图中与∠1是内错角的角的个数是( )A.2个 B.3个 C.4个 D.5个9、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,则∠BOD大小为( )A.22°B.34°C.56°D.90°10、下列说法正确的个数为( )①如果∠1+∠2+∠3=180°,那么∠1、∠2与∠3互为补角;②如果∠A+∠B=90°,那么∠A是余角;③互为补角的两个角的平分线互相垂直;④有公共顶点且又相等的角是对顶角;⑤如果两个角相等,那么它们的余角也相等.A.1B.2C.3D.4二、填空题:11、如图,当剪子口∠AOB增大15°时,∠COD增大.12、一个角的补角是它的余角的3倍但少,则这个角的大小是。

13、如图,与∠1构成同位角的是______,与∠2构成内错角的是______.14、如图,标有角号的7个角中共有____对内错角,____对同位角, ____对同旁内角.15、如图,的内错角有__________个.16、如图,2条直线相交所组成的角中,互为对顶角的角有2对:和,和.(1)3条直线相交于一点所组成的角中,互为对顶角的角有________________对;(2)4条直线相交于一点所组成的角中,互为对顶角的角有________________对;(3)条直线相交于一点所组成的角中,互为对顶角的角有________________对.三、简答题:17、如图所示,直线AB、CE交于O,(1)写出∠AOC的对顶角和邻补角;(2)写出∠COF的邻补角;(3)写出∠BOF的邻补角;(4)写出∠AOE的对顶角及其所有的邻补角.18、如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.19、如图,已知直线AB和CD相交于点O,OM平分∠BOD,ON⊥OM,∠AOC=50°.(1)求∠AON的度数;(2)写出∠DON的余角.2021图,已知∠AOB=90°,在∠AOB的外部作∠BOC,然后分别画出∠AOC与∠BOC的角平分线OM和ON.(1)下面的两个图形是否都符合题意?若符合,选择其中的一个图形,求∠MON的度数;(2)若∠AOB=ɑ,且当∠AOB+∠BOC<180°时,∠MON的度数是多少?当∠AOB+∠BOC>180°时,∠MON的度数又是多少?第01课相交线同步练习题参考答案例题参考答案【例1】50°【例2】【解答】解:(1)∵OE平分∠BOC,∠BOE=70°,∴∠BOC=2∠BOE=140°,∴∠AOC=180°﹣140°=40°,又∠COF=90°,∴∠AOF=90°﹣40°=50°;(2)∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=90°,∴∠AOF=90°﹣36°=54°.【例3】54°【例4】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.【例5】(1)因∠AOD与∠COB为对顶角,且∠1=∠2,则∠MOB=∠NOD,又因OM⊥AB,则∠NOD=∠MOB=90°.(2)因∠MOB=90°,∠1=∠BOC,则知∠1=30°.而∠AOC+∠1=90°,则∠AOC=60°,而∠1+∠MOD=180°,则∠MOD=150°;【例6】(1)∠ MON=45°.理由:∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=90°+60°=150°.∵ OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠AOM=∠AOC=×150°=75°.∠NOC=∠BOC =×60°=30°.∴∠MON=∠AOC -∠AOM -∠NOC =150°-75°-30°=45°(2)∠MON=35°;(3)∠MON=.课堂同步练习参考答案1、C2、C.3、B4、D5、C6、A7、A8、A.9、A 10、B 11、D 12、C13、答案为:垂线段最短14、答案为:AD、BD、AC、同位角 AC、BC、BD、同位角15、答案为: 4 ; CD .16、答案为:60°.17、答案为:218、答案为:53°.19、答案为:9 ∠BCM或∠DCO2021案为:15°21、略;22、【解答】解:∵OE平分∠AOC,∴∠AOC=2x,∵∠EOA:∠AOD=1:4,∴∠AOD=4x,∵∠COA+∠AOD=180°,∴2x+4x=180°,解得x=30°,∴∠EOB=180°﹣30=150°.故∠EOB的度数是150°.23、24、解:∵OF平分∠AOE,∴∠AOF=∠EOF,∴∠AOF+∠COF=∠EOF+∠COF=∠COE=90°.25、解:因为∠FOC=90°,∠1=40°,AB为直线,所以∠3+∠FOC+∠1=180°,所以∠3=180°-90°-40°=50°.因为∠3与∠AOD互补,所以∠AOD =180°-∠3=130°.第11 页共12 页因为 OE平分∠AOD,所以∠2=∠AOD=65°.26、解:(1)图中∠AOF的余角有∠EOF,∠AOC,∠BOD;(把符合条件的角都填出来)(2)如果∠AOD=140°,那么根据对顶角相等,可得∠BOC=140度;故答案为:∠EOF,∠AOC,∠BOD;对顶角相等,140;(3)∵∠EOF+AOF=90°,∠AOC+∠AOF=90°,∴∠EOF=∠AOC=∠BOD.∵∠AOD+∠BOD=180°,∠EOF=∠AOD∴5∠EOF+∠BOD=180°,即6∠EOF=180°,∠EOF=30°.相交线同步测试题参考答案1、A.2、A3、D4、D5、C6、B7、D8、B.9、A 10、A 11、15°.12、35°;13、∠B ∠BDE14、4;2;415、316、(1)6;(2)12;(3).17、(1)∠AOC的对顶角是∠BOC,邻补角是∠AOE和∠BOC;(2)∠COF的邻补角是∠EOF;(3)∠BOF的邻补角是∠AOF;(4)∠AO E的对顶角是∠BOC,邻补角是∠BOE和∠AOC.18、【解答】解:(1)∵OE平分∠BOC,∠BOE=70°,∴∠BOC=2∠BOE=140°,∴∠AOC=180°﹣140°=40°,又∠COF=90°,∴∠AOF=90°﹣40°=50°;(2)∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=90°,∴∠AOF=90°﹣36°=54°.19、【解析】(1)因为直线AB和CD相交于点O,所以∠BOD=∠AOC=50°.因为OM平分∠BOD,所以∠BOM=∠BOD=×50°=25°.因为ON⊥OM,所以∠NOM=90°,所以∠BON=∠BOM+∠MON=25°+90°=115°.所以∠AON=180°-∠BON=180°-115°=65°.(2)图中与∠DON互余的角是∠DOM和∠MOB.2021(1)即的度数为1350(2)∵∠BOC=4∠NOB∴设∠NOB=x0,∠BOC=4x0∴∠CON=∠COB-∠BON=4x0-x0=3x0∵OM平分∠CON∴∠COM=∠MON=∠CON=∵ x=36 ∴∠MON==即∠MON的度数为54021、(1)两个图形是否都符合题意,对于图①,由;对于图②,;(2)当<时,;当>时,。

相关文档
最新文档