人教版七年级数学下册全册课堂同步练习题及答案

合集下载

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)102909

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)102909

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.如图,可以判定的条件是( )A.=B.=C.=D.=2. 下列说法中正确的个数有( )在同一平面内,两条不相交的直线叫做平行线经过直线外一点,能够画出一条直线与已知直线平行,并且只能画出一条如果,,则两条不平行的射线,在同一平面内一定相交.A.B.C.D.3. 如图,下列条件:①,②,③,④中,能判断直线的有( )A.个B.个C.个AB//CD ∠1∠2∠3∠4∠D ∠5∠BAD+∠B 180∘(1)(2)(3)a//b b//c a//c (4)1234∠1=∠3∠2=∠3∠4=∠5∠2+∠4=180∘//l 1l 2123D.个4. 下列关系中,互相垂直的两条直线是( )A.两直线相交成的四角中相邻两角的角平分线B.互为对顶角的两角的平分线C.互为补角的两角的平分线D.相邻两角的角平分线5. 从下列命题中,随机抽取一个是真命题的概率是( )(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是.A.B.C.D.6. 过直线外一点作的平行线,可以作( )条.A.B.C.D.7. 如图,下列条件中,能判定的是( )A.B.4a −a =x 2a(x+1)(x−1)1cm 14cm 20πcm 240πcm 2120∘1412341m A m 0123DE//AC ∠EDC =∠EFC∠AFE =∠ACDC.D.8. 下列说法正确的是( )①在同一平面内,不相交的两条直线叫做平行线;②在同一平面内,过一点有且仅有一条直线与已知直线平行;③平面内,过一点有且仅有一条直线与已知直线垂直;④平行于同一条直线的两条直线平行;A.①②B.①③C.①②③D.①③④二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,点是延长线上一点,,。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)034144

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)034144

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,按下面的程序进行运算,规定程序运行到“判断结果是否大于”为一次运算.若运算进行了次才停止,则的取值范围是 A. B. C.D.2. 不等式组的整数解是( )A.B.C.D.3. 下列不等式中是一元一次不等式的是( )A.B.C.D.4. 某校准备组织名学生进行野外考察活动,行李共有件.学校计划租用甲、乙两种型号的汽303x ()a −1<2,2a +>3120123x+y <2>3x 2−<12x 2x+1>−35202404. 某校准备组织名学生进行野外考察活动,行李共有件.学校计划租用甲、乙两种型号的汽车共辆,经了解,甲种汽车每辆最多能载人和件行李,乙种汽车每辆最多能载人和件行李.设租用甲种汽车辆,你认为下列符合题意的不等式组是( )A.B.C.D.5. 不等式组 的解集在数轴上表示为( )A.B.C.D.6. 小明网购了一本课外阅读书,同学们想知道书的价格,小明让他们猜.甲说:“至少元.”乙说:“至多元.”丙说:“至多元.”小明说:“你们三个人都说错了”.则这本书的价格(元)所在的范围为( )A.B.C.D.7. 不等式组’的整数解的个数是( )5202401250154025x {50x+40(12−x)≥52015x+25(12−x)≥240{50x+40(12−x)>52015x+25(12−x)>240{50x+40(12−x)≤52015x+25(12−x)≤240{50x+40(12−x)<52015x+25(12−x)<2403x <2x+4−x ≤−1x+33151210x 10<x <1212<x <1510<x <15x >12{1−2x <3x+1≤4A.个B.个C.个D.个8. 下列不等式组:① ②③ ④ ⑤其中一元一次不等式组的个数是 ( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 对于实数,规定表示不大于的最大整数,例如,,若,则的取值范围为________.10. 不等式组的非负整数解是________.11. 某地经历百年一遇的干旱,驻地部队官兵开展“军民一家亲,鱼水情意深”的活动,帮助驻地周边农村运水,现需组战士步行运送水,要求每组分配的人数相同,若按每组人数比预定人数多分配人,则总数会超过人;若按每组人数比预定人数少分配人,则总数不够人,那么预定每组分配的人数是________人.12. 不等式组的解集是________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 某校学生志愿服务小组分给每位老人盒牛奶,那么剩下盒牛奶;如果分给每位老人盒牛奶,那么最后一位老人分得的牛奶不足盒,但至少有盒.求这个敬老院的老人最少有多少人?14. 解不等式组并求出最大整数或最小整数解.6543{x >−2,x <3{x >0,x+2>4{+1<x ,x 2+2>4x 2{x+3>0,x <−7{x+1>0,y−1<02345x [x]x [1.2]=1[−2.5]=−3[x−2]=−1x 6−3x ≥0>−2x−2281100190 2−x ≥3,x+1>x−13212428541 +<−1,x+23x 21−2(x−1)≥−3,15. 某手机专营店代理销售,两种型号手机.手机的进价、售价如下表:型 号进 价元/部元/部售 价元/部元/部第一个月:用元购进,两种型号的手机,全部售完后获利元,求第一个月购进,两种型号手机的数量;第二个月:计划购进,两种型号手机共部,且不超出第一个月购进,两种型号的手机总费用,则型号手机最多能购多少部?16. 已知方程组的解能使等式成立,求的值.A B A B1800150020701800(1)54000A B 9450A B (2)A B 34A B A {7x+3y =4,5x−2y =m−14x−3y =7m参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】由实际问题抽象出一元一次不等式组一元一次不等式组的应用【解析】根据程序运算进行了次才停止,即可得出关于的一元一次不等式组,解之即可得出的取值范围.【解答】解:解得:故选.2.【答案】C【考点】一元一次不等式组的整数解【解析】首先解不等式组求出该不等式组的解集,然后根据解集求整数解即可.【解答】3x x {\left\{ \begin{array} {l}{2\left(2x-3\right)-3\le 30} \\ {2\left[2\left(2x-3\right)-3\right]-3\gt 30} \\ {2\left(2x-3\right)-3}<x ≤518394C a −1<2,①解:解不等式,得,解不等式,得,∴不等式组的解集为,∴该不等式组的整数解为.故选.3.【答案】D【考点】一元一次不等式组的定义【解析】此题暂无解析【解答】解:.不等式含两个未知数,∴二元不等式;.只有一个未知数,且未知数的次数是,∴是一元二次不等式;.是分式,不是整式,∴不是一元一次不等式;.只有一个未知数,且未知数的系数不是,次数是,∴是一元一次不等式,故选.4.【答案】A【考点】由实际问题抽象出一元一次不等式组【解析】设租用甲种汽车辆,则租用乙种汽车辆,根据题意可得两种车所载人数人,两种车载行李数件,根据不等关系列出不等式组即可.【解答】解:设租用甲种汽车辆,则租用乙种汽车辆,由题意得:,a −1<2,①2a +>3,②12①a <3②a >54<a <3542C A B 2C 2x D 01D x (12−x)≥520≥240x (12−x){50x+40(12−x)≥52015x+25(12−x)≥240故选:.5.【答案】C【考点】解一元一次不等式组【解析】此题暂无解析【解答】解:,由①得,;由②得,,故此不等式组的解集为:,在数轴上表示为:故选.6.【答案】B【考点】一元一次不等式组的应用【解析】根据题意得出不等式组解答即可.【解答】解:根据题意可得:∴.故选.7.【答案】C A 3x <2x+4①−x ≤−1②x+33x <4x ≥33≤x <4Cx <15,x >12,x >10,12<x <15B【考点】一元一次不等式组的整数解【解析】此题暂无解析【解答】解:,由①得:,由②得:,∴不等式组的解集为:,∴不等式组的整数解有共个.故选.8.【答案】B【考点】一元一次不等式组的定义【解析】此题暂无解析【解答】解:一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组.故①②④是一元一次不等式组.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】一元一次不等式组的应用【解析】{1−2x <3①x+1≤4②x >−1x ≤3−1<x ≤30,1,2,34C B 0<x ≤1此题暂无解析【解答】解:由题意得,解得:.故答案为:.10.【答案】,,【考点】一元一次不等式组的整数解【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.【解答】解不等式①得;解不等式②得∴原不等式组的解是,∴不等式组的非负整数解,,,11.【答案】【考点】由实际问题抽象出一元一次不等式组解一元一次不等式组【解析】先设预定每组分配人,根据若按每组人数比预定人数多分配人,则总数会超过人;若按每组人数比预定人数少分配人,则总数不够人,列出不等式组,解不等式组后,取整数解即可.【解答】{x−2≤−1,x−2>−2,0<x ≤10<x ≤10126−3x ≥0>−2x−22x ≤2x >−2−2<x ≤201212x 1100190解:设预定每组分配人,根据题意得:解得:,∵为整数,∴,答:预定每组分配的人数是人.故答案为:.12.【答案】【考点】解一元一次不等式组【解析】此题暂无解析【解答】解:由不等式可得;由不等式可得;故不等式组的解集是.故答案为: .三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:设老人人,牛奶盒,则∴∴或或∴至少有人.【考点】一元一次不等式组的应用【解析】此题暂无解析x {8(x+1)>100,8(x−1)<90,11<x <121214x x =121212−2<x ≤−12−x ≥3x ≤−1x+1>x−13212x >−2−2<x ≤−1−2<x ≤−1x y {4x+28=y 1≤y−5x <424<x ≤27x =25262725略14.【答案】解:解不等式得,解不等式得,所以原不等式组的解集是,所以最大整数解是.【考点】一元一次不等式组的整数解解一元一次不等式组【解析】此题暂无解析【解答】解:解不等式得,解不等式得,所以原不等式组的解集是,所以最大整数解是.15.【答案】解:设该专营店第一个月购进、两种型号手机的数量分别为部和部.由题意可知:解得:答:该专营店本次购进、两种型号手机的数分别为部和部;设第二个月购进型号手机部.由题意可知:,解得:,则不等式的最大整数解为.答:第二个月最多能购型号手机部.【考点】二元一次方程组的应用——销售问题由实际问题抽象出一元一次不等式组+<−1x+23x 2x <−21−2(x−1)≥−3x ≤3x <−2−3+<−1x+23x 2x <−21−2(x−1)≥−3x ≤3x <−2−3(1)A B x y {1800x+1500y =54000,270x+300y =9450,{x =15,y =18.A B 1518(2)A a 1800a +1500(34−a)≤54000a ≤1010A 10(1)设该专营店第一个月购进、两种型号手机的数量分别为部和部,根据用元购进、两种型号的手机,全部售完后获利元,列方程组求解;(2)设第二个月购进型号手机部,根据购进、两种型号手机共部,总费用不超过元,据此列不等式求解.【解答】解:设该专营店第一个月购进、两种型号手机的数量分别为部和部.由题意可知:解得:答:该专营店本次购进、两种型号手机的数分别为部和部;设第二个月购进型号手机部.由题意可知:,解得:,则不等式的最大整数解为.答:第二个月最多能购型号手机部.16.【答案】解:根据题意,得①②,得,解得,把代入①,得,所以原方程组的解为将,代入,解得,所以的值为.【考点】二元一次方程组的解【解析】先解方程组,求得、的值,即为原方程组的解,再将、的值代入,从而得出的值.【解答】解:根据题意,得①②,得,解得,A B x y 54000A B 9450A a A B 3454000(1)A B x y {1800x+1500y =54000,270x+300y =9450,{x =15,y =18.A B 1518(2)A a 1800a +1500(34−a)≤54000a ≤1010A 10{7x+3y =4①,4x−3y =7②,+11x =11x =1x =1y =−1{x =1,y =−1,x =1y =−15x−2y =m−1m=8m 8{7x+3y =4①4x−3y =7②x y x y 5x−2y =m−1m {7x+3y =4①,4x−3y =7②,+11x =11x =1把代入①,得,所以原方程组的解为将,代入,解得,所以的值为.x =1y =−1{x =1,y =−1,x =1y =−15x−2y =m−1m=8m 8。

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。

最新人教部编版初中七年数学下册全册同步练习答案

最新人教部编版初中七年数学下册全册同步练习答案

最新⼈教部编版初中七年数学下册全册同步练习答案同步练习参考答案第五章相交线与平⾏线11.公共,反向延长线.2.公共,反向延长线.3.对顶⾓相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提⽰:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)⾄C,测出∠AOB的邻补⾓∠AOC(或∠BOC)的⼤⼩后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶⾓,说理提⽰:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补⾓,即∠AOC+∠AOD=180°,⼜∵∠BOD=∠AOC,从⽽∠BOD+∠AOD=180°,∴∠AOB是平⾓,从⽽A,O,B三点共线.∴∠AOC与∠BOD是对顶⾓.21.(1)有6对对顶⾓,12对邻补⾓.(2)有12对对顶⾓,24对邻补⾓.(3)有m(m-1)对对顶⾓,2m(m-1)对邻补⾓.21.互相垂直,垂,垂⾜.2.有且只有⼀条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂⾜是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所⽰,不同的垂⾜为三个或两个或⼀个.这是因为:(1)当A ,B ,C 三点中任何两点的连线都不与直线m 垂直时,则分别过A ,B ,C 三点作直线m 的垂线时,有三个不同的垂⾜.(2)当A ,B ,C 三点中有且只有两点的连线与直线m 垂直时,则分别过A ,B ,C 三点作直线m 的垂线时,有两个不同的垂⾜.(3)当A ,B ,C 三点共线,且该线与直线m 垂直时,则只有⼀个垂⾜.25.以点M 为圆⼼,以R =1.5cm 长为半径画圆M ,在圆M 上任取四点A ,B ,C ,D ,依次连接AM ,BM ,CM ,DM ,再分别过A ,B ,C ,D 点作半径AM ,BM ,CM ,DM 的垂线l 1,l 2,l 3,l 4,则这四条直线为所求.26.相等或互补.27.提⽰:如图,,9073,9075FOC AOE.90710,9072BOC AOB .90712BOC AOB ∴是712倍. 31.(1)邻补⾓,(2)对顶⾓,(3)同位⾓,(4)内错⾓, (5)同旁内⾓,(6)同位⾓,(7)内错⾓,(8)同旁内⾓, (9)同位⾓,(10)同位⾓.2.同位⾓有:∠3与∠7、∠4与∠6、∠2与∠8;内错⾓有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内⾓有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD,同位.(2)AB,CE,AC,内错.4.(1)ED,BC,AB,同位;(2)ED,BC,BD,内错;(3)ED,BC,AC,同旁内.5.C.6.D.7.B.8.D.9.6对对顶⾓,12对邻补⾓,12对同位⾓,6对内错⾓,6对同旁内⾓.41.不相交,a∥b.2.相交、平⾏.3.经过直线外⼀点有且只有⼀条直线与这条直线平⾏.4.第三条直线平⾏,互相平⾏,a∥c.5.略.6.(1)EF∥DC,内错⾓相等,两直线平⾏.(2)AB∥EF,同位⾓相等,两直线平⾏.(3)AD∥BC,同旁内⾓互补,两直线平⾏.(4)AB∥DC,内错⾓相等,两直线平⾏.(5)AB∥DC,同旁内⾓互补,两直线平⾏.(6)AD∥BC,同位⾓相等,两直线平⾏.7.(1)AB,EC,同位⾓相等,两直线平⾏.(2)AC,ED,同位⾓相等,两直线平⾏.(3)AB,EC,内错⾓相等,两直线平⾏.(4)AB,EC,同旁内⾓互补,两直线平⾏.8.略.9.略.10.略.11.同位⾓相等,两直线平⾏.12.略.13.略.14.略.51.(1)两条平⾏线,相等,平⾏,相等.(2)被第三条直线所截,内错⾓,两直线平⾏,内错⾓相等.(3)两条平⾏线被第三条直线所截,互补.两直线平⾏,同旁内⾓互补.2.垂直于,线段的长度.3.(1)∠5,两直线平⾏,内错⾓相等.(2)∠1,两直线平⾏,同位⾓相等.(3)180°,两直线平⾏,同旁内⾓互补.(4)120°,两直线平⾏,同位⾓相等.4.(1)已知,∠5,两直线平⾏,内错⾓相等.(2)已知,∠B,两直线平⾏,同位⾓相等.(3)已知,∠2,两直线平⾏,同旁内⾓互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提⽰:这是⼀道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.⼀定成⽴,总是成⽴.5.题设是两条直线垂直于同⼀条直线;结论是这两条直线平⾏.6.题设是同位⾓相等;结论是两条直线平⾏.7.题设是两条直线平⾏;结论是同位⾓相等.8.题设是两个⾓是对顶⾓;结论是这两个⾓相等.9.如果⼀个⾓是90°,那么这个⾓是直⾓.10.如果⼀个整数的末位数字是零,那么这个整数能被5整除.11.如果有⼏个⾓相等,那么它们的余⾓相等.12.两直线被第三条直线截得的同旁内⾓互补,那么这两条直线平⾏.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.71.LM,KJ,HI.2.(1)某⼀⽅向,相等,AB∥A1B1∥A2B2∥A3B3或在⼀条直线上,AB=A1B1=A2B2=A3B3.(2)平⾏或共线,相等.3.(1)某⼀⽅向,形状、⼤⼩.(2)相等,平⾏或共线.4~7.略.8.B9.利⽤图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.⽽CD 的长度⼜是平⾏线PQ与MN之间的距离,所以AC+CD+DB最短.10.提⽰:正⽅形③的⾯积=正⽅形①的⾯积+正⽅形②的⾯积.AB2=AC2+BC2.第六章实数6.11、算术平⽅根 a 根号a 被开⽅数2、2.23613、0.54、0或15、B6、两个,互为相反数,0,没有平⽅根7、±0.6,平⽅根8、算术,负的9、±2 10、C 11、3 12、0.25 4 13、x=2.14、∵4=16,∴15 < 4 ∵25>22>1,∴215 =2125 >1-0.5>0.5 , ∴215 >0.5 15、22.361500071.750 2361.25 7071.05.0(2)被开⽅数扩⼤或缩⼩100倍,算术平⽅根扩⼤或缩⼩10倍 16、90.424 60.19490.4 周长⼤约是19.60厘⽶ 17、(1)12(2)410 (3)6 (4)151118、B 19、计算;① 91697134② 81404122-9 ③0.4220、解⽅程:① x=±43 ② x=217 ③ 25142 x ④ 223324 x125251425)1(2x x x 3232233249)32(2x x x X=-3.5或1.5 2x=-1.5或-4.5 X=-0.75或-2.2521、解:x=±11,因为被开⽅数⼤于等于零,算术平⽅根⼤于等于零,所以y-2=0,y=2 故xy=±2222、解;因为⼀个数的两个平⽅根互为相反数,所以(2a-3)+(4-a )=0,得a=-1,即2a-3=-5故这个数的负的平⽅根是-523、解:由题意得1613912b a a ,解得25b a ,所以392252 b a24、①25x 052即x ②3-2x ≥0且2x-3≥0,解得x=1.5 ③5+x ≥0且x+2≠0,解得x ≥-5且x ≠-2 6.21.D 2.D 3.C 4.C1. B 6. B 7. B 8.D 9.C 10. A11.8 4 12.27 9 13.3m 14.-6 -0.008 15.-3 133 16. ±517.-1. 518. ⑴ -2 ⑵ 0.4 ⑶ 25⑷ 9⑴0.01 0.1 1 10 100⑵被开⽅数⼩数点向左(或右)移动三位,它的⽴⽅根的⼩数点向左(或右)移动⼀位. ⑶① 14.42 0.144221、解析:正⽅体 113 ,球体1 4313433R R R,所以甲不符合要求,⼄符合要求。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)033153

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)033153

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知,,是的三边,且满足,则的形状是 A.等腰三角形B.等边三角形C.任意三角形D.不能确定2. 如图在平面直角坐标系中,▱的两条对角线,交于原点,点的坐标是,则点的坐标是 A.B.C.D.3. 已知在中,,,则的度数为A.B.C.D.4. 七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )a b c △ABC ++=ab +bc +caa 2b 2c 2△ABC ()MNEF ME NF O F (3,2)N ()(−3,−2)(−3,2)(−2,3)(2,3)△ABC AB =AC ∠B =38∘∠A ( )72∘54∘104∘38∘A. B. C. D.5. 等腰三角形中,有一个角是,它的一条腰上的高与底边的夹角是 A.B.C.或D.或6. 如图,点是的中点,,,平分,下列结论:① ;② ;③ ;④.其中正确的是( )A.①②④40∘()20∘50∘25∘40∘20∘50∘E BC AB ⊥BC DC ⊥BC AE ∠BAD ∠AED =90∘∠ADE =∠CDE DE =BE AD =AB+CDB.①②③④C.②③④D.①③7. 如图,等边的顶点、分别在网格图的格点上,则的度数为( )A.B.C.D.8. 如图,在平面直角坐标系中,正方形的顶点在双曲线上,点,在轴上,延长至,使 ,连接交轴于点,连接,则的面积为 ( )A.B.C.D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 如图,已知,等边的顶点在直线上,,则________.10. 如图,在正方形中,是等边三角形,,的延长线分别交于点,,连接△ABC A B ∠α15∘20∘25∘30∘ABCD A y =(x >0)12x C D x BC P BC =2PC PD y F CF △DCF 3456l//m △ABC B m ∠1=20∘∠2=ABCD △BPC BP CP AD E F,,与相交于点.给出下列结论:①=; ②=;③; ④=,其中正确的是________.(填写正确结论的序号)11. 计算: ________.12. 一个等腰三角形的两边为和,则它的周长为________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 如图,在中,,,,将绕点按顺时针旋转一定角度得到,当点的对应点恰好落在边上时,求的长.14. 如图,,点在边上,.(1)求证:;(2)若,求的度数;(3)若,当的外心在直线上时,,求的长. 15. 在中,,点是直线上一点(不与,重合),以为一边在的右侧作,使,,连接.BD DP BD CF H AF DE ∠ADP 15∘PD 2PH ⋅PB −+−+−+⋯+−=1222324252621992200237△ABC AB =4BC =7∠B =60∘△ABC A △ADE B D BC CD ∠A =∠B,AE =BE D AC ∠1=∠2△AEC ≅△BED ∠C =70∘∠AEB ∠AEC =90∘△AEC DE CE =2AE △ABC AB=AC D BC B C AD AD △ADE AD=AE ∠DAE=∠BAC CE如图,当点在线段上①如果,则________;②如果,则________;设,.①如图,当点在线段动,则,之间有怎样的数量关系?请说明理由;②当点在直线动,则,之间有怎样的数量关系?请直接写出你的结论.16. 如图,为的直径,点为左侧一动点,连接,,,过点作,在上取异于点的点,使.求证:四边形是平行四边形;①当________时,与相切;②当________时,四边形是菱形.(1)1D BC∠BAC=90∘∠BCE=∘∠BAC=100∘∠BCE=∘(2)∠BAC=α∠BCE=β2D BCαβD BCαβAB⊙O C⊙O AC BC OC O OE//ACOE O D AD=AO(1)ACOD(2)∠COD=AD⊙O∠COD=ACOD参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】B【考点】因式分解的应用完全平方公式等腰三角形的判定因式分解-运用公式法等边三角形的判定【解析】利用完全平方公式进行局部因式分解,再根据非负数的性质进行分析.【解答】解:∵,∴,,∴,∴是等边三角形.故选.2.【答案】A【考点】平行四边形的性质坐标与图形性质【解析】++=ab +bc +ca a 2b 2c 22+2+2−2ab −2bc −2ca =0a 2b 2c 2(a −b +(a −c +(b −c =0)2)2)2a =b =c △ABC B要求点的坐标,根据平行四边形的性质和关于原点对称的规律写出点的坐标.【解答】解:在▱中,点和点关于原点对称,∵点的坐标是,∴点的坐标是.故选.3.【答案】C【考点】三角形内角和定理等腰三角形的性质【解析】利用等腰三角形的性质以及三角形的内角和定理得解.【解答】解:在中,,所以,所以.故选.4.【答案】C【考点】七巧板【解析】解答此题要熟悉七巧板的结构:五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质便可解答.【解答】图中根据图、图和图形不符合,故不是由原图这副七巧板拼成的.5.【答案】N N MNEF F N F (3,2)N (−3,−2)A △ABC AB =AC ∠B =∠C =38∘∠A =−2×=180∘38∘104∘C C 74【答案】D【考点】等腰三角形的判定与性质【解析】分①角是顶角时,根据等腰三角形两底角相等求出,再根据直角三角形两锐角互余列式计算即可得解;②角是底角时,利用直角三角形两锐角互余列式计算即可得解.【解答】解:①角是顶角时,如图,,∵是高,∴;②角是底角时,如图,∵是高,∴;综上所述,它的一条腰上的高与底边的夹角是或.故选.6.【答案】A【考点】角平分线的性质全等三角形的性质与判定【解析】30∘∠B 30∘40∘1∠B =(−)=12180∘40∘70∘CD ∠BCD =−=90∘70∘20∘40∘2CD ∠BCD =−=90∘40∘50∘20∘50∘D过作于,易证得,得到,,;而点是的中点,得到,则可证得,得到,,也可得到,,即可判断出正确的结论.【解答】解:过作于,如图,∵,,平分,∴.∵,∴,∴,.∵点是的中点,∴,∴.∵,∴,故③错误.∵,,∴,∴,,故②正确,∴,故④正确.,,即,故①正确.故选.7.【答案】A【考点】等边三角形的性质【解析】根据等边三角形的性质和三角形内角和解答即可.【解答】E EF ⊥AD F Rt △AEF ≅Rt △AEB BE =EF AB =AF ∠AEF =∠AEB E BC EC =EF =BE Rt △EFD ≅Rt △ECD DC =DF ∠FDE =∠CDE AD =AF +FD =AB+DC ∠AED =∠AEF +∠FED =∠BEC =1290∘E EF ⊥AD F AB ⊥BC EF ⊥AD AE ∠BAD BE =EF AE =AE Rt △AEF ≅Rt △AEB(HL)AB =AF ∠AEF =∠AEB E BC EC =BE EC =EF DE >EC DE >BE DE =DE EC =EF Rt △EFD ≅Rt △ECD(HL)DC =DF ∠ADE =∠CDE AD =AF +FD =AB+CD ∵∠AED+∠AEB+∠DEC =2∠AEF +2∠FED =180∘∴∠AEF +∠FED =90∘∠AED =90∘A如图:由图可知:==,∵等边,∴=,∴==,∴===,8.【答案】A【考点】等边三角形的性质与判定全等三角形的性质与判定【解析】【解答】解:设,由得,即,∴.∵正方形,∴.∴.∴.即=.∴.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.∠BOE ∠OBE 45∘△ABC ∠ABC 60∘∠OFB −−180∘45∘60∘75∘∠BFG ∠α−90∘75∘15∘AD =BC =CD =a y =12x A(,a)12aOD =12a CP =BC =12a 2ABCD ∠DCP =90∘CP//OF =OD CD OF CP OF =⋅CP OD CD 6a =OF ⋅CD =⋅⋅a =3S △DCF 12126a A【答案】【考点】平行线的判定与性质等边三角形的性质【解析】过作直线,根据等边三角形性质求出,根据平行线的性质求出,,即可求出答案.【解答】解:∵是等边三角形,∴,过作直线,∵直线直线,∴直线直线,∵,,∴,∴,故答案为:.10.【答案】①②④【考点】正方形的性质等边三角形的性质全等三角形的性质与判定相似三角形的性质与判定【解析】先判断出==,===,再判断出==,===,进而得出==,即可判断出,即可得出结论;由等腰三角形的性质得出=,则可得出答案;证明,得出40∘C CM//l ∠ACB =60∘∠1=∠MCB ∠2=∠ACM △ABC ∠ACB =60∘C CM//l l//m l//m//CM ∠ACB =60∘∠1=20∘∠1=∠MCB =20∘∠2=∠ACM =∠ACB−∠MCB =−=60∘20∘40∘40∘BP PC BC ∠PBC ∠PCB ∠BPC 60∘AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)∠PDC 75∘△FPE ∽△CPB,设=,=,则=,得出=,则可求出答案;先判断出=,进而判断出,即可得出结论.【解答】∵是等边三角形,∴==,===,在正方形中,∵==,===,∴==,∴,∴=,∴=,∴=;故①正确;∵=,=,∴=,∴===.故②正确;∵==,∴是等边三角形,∴,∴,设=,=,则=,∵=,∴=,整理得:)=,解得:,则,故③错误;∵=,=,∴=,∵=,∴==,∵=,∴,∴,∴=,∵=,∴=;故④正确.11.【答案】PF x PC y DC y y (x+y)∠DPH ∠DPC △DPH ∽△CPD △BPC BP PC BC ∠PBC ∠PCB ∠BPC 60∘ABCD AB BC CD ∠A ∠ADC ∠BCD 90∘∠ABE ∠DCF 30∘△ABE ≅△DCF(ASA)AE DF AE−EF DF −EF AF DE PC CD ∠PCD 30∘∠PDC 75∘∠ADP ∠ADC −∠PDC −90∘75∘15∘∠FPE ∠PFE 60∘△FEP △FPE ∽△CPB PF x PC y DC y ∠FCD 30∘y (x+y)(1−y x PC CD ∠DCF 30∘∠PDC 75∘∠BDC 45∘∠PDH ∠PCD 30∘∠DPH ∠DPC △DPH ∽△CPD PD 2PH ⋅CP PB PC PD 2PH ⋅PB【考点】平方差公式【解析】先根据平方差公式进行计算,再算加法即可.【解答】解:原式.故答案为:.12.【答案】【考点】等腰三角形的性质三角形三边关系【解析】因为等腰三角形的两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】当为底时,其它两边都为,、、可以构成三角形,周长为;当为腰时,其它两边为和,因为=,所以不能构成三角形,故舍去.所以三角形的周长为.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:∵将绕点按顺时针旋转一定角度得到,∴.∵,∴为等边三角形,−20100=(1+2)(1−2)+(3−4)(3+4)+⋯+(199−200)(199+200)=−3−7−⋯−399=−(3+399)×1002=−20100−20100173737773173733+36<717△ABC A △ADE AB =AD =4∠B =60∘△ABD∴,∴.【考点】旋转的性质等边三角形的性质与判定【解析】由旋转的性质可得,可证为等边三角形,可得,即可求解.【解答】解:∵将绕点按顺时针旋转一定角度得到,∴.∵,∴为等边三角形,∴,∴.14.【答案】(1)证明:∵,又∵,又∵,∴,在与中,,∴.解:(2)由得,,∴,∴,∴,∵,,∴.(3)∵,∴外心在斜边中点上且与点重合,∵,∴,∴,在中,,.BD =AD =4CD =BC −BD =7−4=3AB =AD =4△ABD BD =AD =4△ABC A △ADE AB =AD =4∠B =60∘△ABD BD =AD =4CD =BC −BD =7−4=3∠ADE =∠2+∠BDE ∠ADE =∠1+∠ECD ∠1=∠2∠BDE =∠ECD △AEC △BED ∠BDE =∠ECD∠A =∠BAE =BE△AEC ≅△BED(AAS)(1)△AEC ≅△BED ED =EC ∠EDC =∠C =70∘∠1=−2∠C =180∘40∘∠1=∠2=40∘∠B+∠AEB =∠A+∠2∠BEA =∠2=40∘∠AEC =90∘△AEC D CE =2AD =DC =ED =2AC =4Rt △AEC AE =A −E C 2C 2−−−−−−−−−−√=−4222−−−−−−√=23–√【考点】全等三角形的应用三角形的外角性质三角形的外接圆与外心【解析】本题主要考察了全等三角形的判定及性质、三角形的外角性质、三角形的外心、直角三角形斜边上的中线.【解答】(1)证明:∵,又∵,又∵,∴,在与中,,∴.解:(2)由得,,∴,∴,∴,∵,,∴.(3)∵,∴外心在斜边中点上且与点重合,∵,∴,∴,在中,,.∠ADE =∠2+∠BDE ∠ADE =∠1+∠ECD ∠1=∠2∠BDE =∠ECD △AEC △BED ∠BDE =∠ECD∠A =∠BAE =BE△AEC ≅△BED(AAS)(1)△AEC ≅△BED ED =EC ∠EDC =∠C =70∘∠1=−2∠C =180∘40∘∠1=∠2=40∘∠B+∠AEB =∠A+∠2∠BEA =∠2=40∘∠AEC =90∘△AEC D CE =2AD =DC =ED =2AC =4Rt △AEC AE =A −E C 2C 2−−−−−−−−−−√=−4222−−−−−−√=23–√15.【答案】,①当点在线段的延长线动时,与之间的数量关系是,理由是:∵,∴,∴,在和中∵∴,∴,∵,∴,∵,,∴;②当在线段上时,,当点在线段延长线或反向延长线上时,.【考点】全等三角形的性质与判定等腰三角形的性质【解析】(1)问要求的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.【解答】解:∵,∴,即.在与中,9080(2)D BC αβα=β∠DAE =∠BAC ∠DAE+∠CAD =∠BAC +∠CAD ∠BAD =∠CAE △BAD △CAE AB =AC ,∠BAD =∠CAE ,AD =AE ,△BAD ≅△CAE(SAS)∠B =∠ACE ∠ACD =∠B+∠BAC =∠ACE+∠DCE ∠BAC =∠DCE ∠BAC =α∠DCE =βα=βD BC α+β=180∘D BC α=β∠BCE △ABD ≅△ACE α+β(1)∠BAC=∠DAE ∠BAC −∠DAC =∠DAE−∠DAC ∠BAD=∠CAE △ABD △ACE∴,∴.∴,∴;①当,,∴.②当,,∴.故答案为:.①当点在线段的延长线动时,与之间的数量关系是,理由是:∵,∴,∴,在和中∵∴,∴,∵,∴,∵,,∴;②当在线段上时,,当点在线段延长线或反向延长线上时,.16.【答案】证明:∵ ,,,∵ ,,,∵ ,∴ ,∴,∴.又∵,∴四边形是平行四边形.,【考点】平行四边形的判定AB =AC,∠BAD =∠CAE,AD =AE,△ABD ≅△ACE(SAS)∠B =∠ACE ∠B+∠ACB=∠ACE+∠ACB ∠BCE=∠B+∠ACB =−∠BAC 180∘∠BAC=90∘∠BCE =−∠BAC 180∘∠BCE=90∘∠BAC=100∘∠BCE =−∠BAC 180∘∠BCE=80∘90,80(2)D BC αβα=β∠DAE =∠BAC ∠DAE+∠CAD =∠BAC +∠CAD ∠BAD =∠CAE △BAD △CAE AB =AC ,∠BAD =∠CAE ,AD =AE ,△BAD ≅△CAE(SAS)∠B =∠ACE ∠ACD =∠B+∠BAC =∠ACE+∠DCE ∠BAC =∠DCE ∠BAC =α∠DCE =βα=βD BC α+β=180∘D BC α=β(1)AD =AO ∠AOD =∠ADO ∠DAO =−2∠AOD 180∘OA =OC ∠OAC =∠OCA ∠AOC =−2∠OAC 180∘AC//OD ∠OAC =∠AOD ∠AOC =∠DAO AD//OC AC//OD ACOD 135∘120∘三角形内角和定理平行线的判定与性质切线的性质菱形的性质【解析】利用条件证得两组对边分别平行,即可求证.利用平行线的性质求角.【解答】证明:∵ ,,,∵ ,,,∵ ,∴ ,∴,∴.又∵,∴四边形是平行四边形.解:①,若与相切,则,又∵,∴,又∵,∴,可得,即时,与相切,故答案为:.②若四边形为菱形,则,又,∴为等边三角形,∴,则,即,四边形为菱形.故答案为:.(1)AD =AO ∠AOD =∠ADO ∠DAO =−2∠AOD 180∘OA =OC ∠OAC =∠OCA ∠AOC =−2∠OAC 180∘AC//OD ∠OAC =∠AOD ∠AOC =∠DAO AD//OC AC//OD ACOD (2)AD ⊙O ∠OAD =90∘CO//AD ∠COA =∠OAD =90∘AD =AO ∠AOD =45∘∠COD =∠COA+∠AOD =135∘∠COD =135∘AD ⊙O 135∘ACOD AC =CO OC =OA △ACO ∠ACO =60∘∠COD =120∘∠COD =120∘ACOD 120∘。

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)

新人教版七年级数学下册全册教案附同步练习及单元测试卷(含答案)第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

人教版七年级下册数学同步练习(含答案)

人教版七年级下册数学同步练习第五章相交线与平行线5.1 相交线5.1.1 相交线【课前预习】要点感知1有一条公共边,另一边__________,具有这种位置关系的两个角互为邻补角.预习练习1-1 如图,直线AB和CD相交于点O,则∠AOC的邻补角是________.1-2如图,点A,O,B在同一直线上,已知∠BOC=50°,则∠AOC=________.要点感知2有一个公共顶点,并且一个角的两边分别是另一个角的两边的__________,具有这种位置关系的两个角互为对顶角.预习练习2-1 如图,直线AB和CD相交于点O,则∠AOC的对顶角是_______.要点感知3 对顶角__________.预习练习3-1 如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=__________.【当堂训练】知识点1 认识对顶角和邻补角1.下列图形中,∠1与∠2是对顶角的是( )2.下列说法中,正确的是( )A.相等的两个角是对顶角B.有一条公共边的两个角是邻补角C.有公共顶点的两个角是对顶角D.一条直线与端点在这条直线上的一条射线组成的两个角是邻补角3.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是__________,∠1的对顶角是__________.知识点2 邻补角和对顶角的性质4.下面四个图形中,∠1=∠2一定成立的是( )5.如图是一把剪刀,其中∠1=40°,则∠2=__________,其理由是____________________.6.在括号内填写依据:如图,因为直线a,b相交于点O,所以∠1+∠3=180°(__________________),∠1=∠2(____________________).7.如图,O是直线AB上一点,∠COB=30°,则∠1=__________.8.如图所示,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD=__________.【课后作业】9.如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC 的度数为( )A.62°B.118°C.72°D.59°10.如图,三条直线l1,l2,l3相交于一点,则∠1+∠2+∠3等于( )A.90°B.120°C.180°D.360°11.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( )A.35°B.70°C.110°D.145°12.如图,若∠1+∠3=180°,则图中与∠1相等的角有__________个,与∠1互补的角有__________个.13.如图,直线a,b,c两两相交,∠1=80°,∠2=2∠3,则∠4=_______.14.如图所示,直线AB,CD相交于点O,OE平分∠AOC,若∠AOD-∠DOB=60°,则∠EOB=________.15.如图所示,AB,CD,EF交于点O,∠1=20°,∠2=60°,求∠BOC的度数.16.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD 和∠AOE的度数.17.如图所示,l1,l2,l3交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.挑战自我18.探究题:(1)三条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有__________个交点,最多有__________个交点,对顶角有__________对,邻补角有__________对.参考答案课前预习要点感知1互为反向延长线预习练习1-1∠AOD和∠BOC1-2 130°要点感知2反向延长线预习练习2-1∠BOD要点感知3 相等预习练习3-1 50°当堂训练1.C2.D3.∠2,∠4∠34.B5.40°对顶角相等6.邻补角互补对顶角相等7.150°8.35°课后作业9.A 10.C 11.C 12.34 13.140°14.150°15.因为∠BOF=∠2=60°,所以∠BOC=∠1+∠BOF=20°+60°=80°.16.因为∠BOD与∠BOC是邻补角,∠BOC=80°,所以∠BOD=180°—∠BOC=100°.又因为∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC=80°.又因为OE平分∠AOD,所以∠AOE=12∠BOC=40°.17.设∠1=∠2=x°,则∠3=8x°. 由∠1+∠2+∠3=180°,得10x=180.解得x=18.所以∠1=∠2=18°.所以∠4=∠1+∠2=2x°=36°. 18.(1)1 3(2)1 6(3)1()12n n-n(n-1) 2n(n-1)5.1.2 垂线【课前预习】要点感知1 两条直线相交,当有一个夹角为__________时,这两条直线互相垂直,其中一条直线叫做另一条直线的__________.它们的交点叫做__________. 预习练习1-1如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是__________;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=__________.要点感知2 在同一平面内,过一点__________一条直线与已知直线垂直.预习练习2-1 如图,过直线l外一点A,作直线l的垂线,可以作_____条.要点感知3 连接直线外一点与直线上各点的所有线段中,__________最短.预习练习3-1 如图,这是一条马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路AC,AB,AD中最短的是( )A.ACB.ABC.ADD.不确定要点感知4 直线外一点到这条直线的垂线段的长度,叫做__________.预习练习4-1 点到直线的距离是指这点到这条直线的( )A.垂线段B.垂线C.垂线的长度D.垂线段的长度4-2 到直线l的距离等于2 cm的点有( )A.0个B.1个C.无数个D.无法确定【当堂训练】知识点1 认识垂直1.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35°B.40°C.45°D.60°2.如图,直线AB与直线CD相交于点O,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( )A.125°B.135°C.145°D.155°知识点2 画垂线3.过线段外一点,画这条线段的垂线,垂足在( )A.这条线段上B.这条线段的端点C.这条线段的延长线上D.以上都有可能4.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A.1个B.2个C.3个D.4个知识点3 垂线的性质5.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个6.如图所示,AD⊥BD,BC⊥CD,AB=a,BC=b,则BD的范围是__________,理由是____________________.知识点4 点到直线的距离7.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,AB=6 cm,AD=5 cm,则点B到直线AC的距离是__________,点A到直线BC的距离是__________.8.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB 与CD__________时,他跳得最远.【课后作业】9.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是( )10.如图所示,下列说法不正确的是( )A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段11.如图,直线AB,CD相交于点O,OM⊥AB,若∠COB=135°,则∠MOD等于( )A.45°B.35°C.25°D.15°12.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是( )A.2.5B.3C.4D.513.如图,当∠1与∠2满足条件__________时,OA⊥OB.14.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为__________.15.如图所示,OM平分∠AOB,ON平分∠COD,OM⊥ON,∠BOC=26°,求∠AOD的度数.16.如图所示,直线AB,CD相交于点O,作∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系;(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度数.挑战自我17.如图所示,一辆汽车在直线形的公路AB上由A向B行驶,C,D分别是位于公路AB两侧的村庄.(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置时,距离村庄D最近,请在公路AB上作出C′,D′的位置(保留作图痕迹);(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村庄D越来越近?(只叙述结论,不必说明理由)参考答案课前预习要点感知1 90°垂线垂足预习练习1-1垂直 90°要点感知2 有且只有预习练习2-1 1要点感知3垂线段预习练习3-1 B要点感知4点到直线的距离预习练习4-1 D4-2 C当堂训练1.A2.B3.D4.D5.C6.b<BD<a 垂线段最短7.6 cm 5 cm8.垂直课后作业9.C 10.C 11.A 12.A 13.∠1+∠2=90°14.55°15.因为OM平分∠AOB,ON平分∠COD,所以∠AOB=2∠AOM=2∠BOM,∠COD=2∠CON=2∠DON.因为OM⊥ON,所以∠MON=90°.所以∠CON+∠BOC+∠BOM=90°.因为∠BOC=26°,所以∠CON+∠BOM=90°-26°=64°.所以∠DON+∠AOM=64°.所以∠AOD=∠DON+∠AOM+∠MON=64°+90°=154°.16.(1)因为OF平分∠AOE,所以∠AOF=∠EOF=12∠AOE.又因为∠DOE=∠BOD=12∠BOE,所以∠DOE+∠EOF=12(∠BOE+∠AOE)=12×180°=90°,即∠FOD=90°.所以OF⊥OD.(2)设∠AOC=x°,因为∠AOC∶∠AOD=1∶5,所以∠AOD=5x°.因为∠AOC+∠AOD=180°,所以x+5x=180,x=30.所以∠DOE=∠BOD=∠AOC=30°.又因为∠FOD=90°,所以∠EOF=90°-30°=60°.17.(1)图略.过点C作AB的垂线,垂足为C′,过点D作AB的垂线,垂足为D′.(2)在C′D′上距离村庄C越来越远,而离村庄D越来越近.5.1.3 同位角、内错角、同旁内角【课前预习】要点感知1如图1所示,直线AB,CD与EF相交.图1中∠1和∠2分别在直线AB,CD的________,并且都在直线EF的________,具有这样位置关系的一对角叫做________.预习练习1-1 如图,已知直线a,b被直线c所截,那么∠1的同位角是( ) A.∠2 B.∠3 C.∠4 D.∠5要点感知2 图1中∠2和∠8都在直线AB,CD__________,并且分别在直线EF 的__________,具有这样位置关系的一对角叫做__________.预习练习2-1如图,与∠1是内错角的是( )A.∠2B.∠3C.∠4D.∠5要点感知3 图1中∠2和∠7都在直线AB,CD__________,且都在直线EF的__________,具有这样位置关系的一对角叫做__________.预习练习3-1如图,∠1的同旁内角有__________个.【当堂训练】知识点1 认识同位角、内错角、同旁内角1.如图,以下说法正确的是( )A.∠1和∠2是内错角B.∠2和∠3是同位角C.∠1和∠3是内错角D.∠2和∠4是同旁内角2.如图,有以下判断:①∠1与∠3是内错角;②∠2与∠3是内错角;③∠2与∠4是同旁内角;④∠2与∠3是同位角.其中说法正确的有__________(填序号).3.看图填空:(1)∠1和∠3是直线__________被直线__________所截得的__________;(2)∠1和∠4是直线__________被直线__________所截得的__________;(3)∠B和∠2是直线__________被直线__________所截得的__________;(4)∠B和∠4是直线__________被直线__________所截得的__________.4.如图,直线AB,CD与EF相交,构成八个角,找出图中所有的同位角:____________;所有的内错角:__________;所有的同旁内角: _________.知识点2 同位角、内错角、同旁内角之间的关系5.如图所示,若∠1=∠2,在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中相等的有( )A.1对B.2对C.3对D.4对6.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于__________,∠3的内错角等于__________,∠3的同旁内角等于__________.【课后作业】7.如图所示,是一个“七”字形,与∠1是同位角的是( )A.∠2B.∠3C.∠4D.∠58.如图,属于内错角的是( )A.∠1和∠2B.∠2和∠3C.∠1和∠4D.∠3和∠49.如图,下列说法错误的是( )A.∠1和∠3是同位角B.∠A和∠C是同旁内角C.∠2和∠3是内错角D.∠3和∠B是同旁内角10.如图所示,∠B与∠CAD是由直线__________和直线__________被直线__________所截得到的__________角.11.如图,__________是∠1和∠6的同位角,__________是∠1和∠6的内错角,__________是∠6的同旁内角.12.根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和__________是同位角.(2)若直线ED,BC被直线AF所截,则∠3和__________是内错角.(3)∠1和∠3是直线AB,AF被直线__________所截构成的__________角.(4)∠2和∠4是直线__________,__________被直线BC所截构成的__________角.13.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.14.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?15.如图所示,如果内错角∠1与∠5相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由.挑战自我16.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有__________对,内错角有__________对,同旁内角有__________对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有__________对,内错角有__________对,同旁内角有__________对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有__________对,内错角有__________对,同旁内角有__________对.(用含n的式子表示)5.2平行线及其判定参考答案课前预习要点感知1同一方(或上方) 同侧(或右侧) 同位角预习练习1-1 D要点感知2 之间两侧内错角预习练习2-1 B要点感知3之间同一旁(或右侧)同旁内角预习练习3-1 3当堂训练1.C2.①③3.(1)AB,BC AC 同旁内角(2)AB,BC AC 同位角(3)AB,AC BC 同位角(4)AC,BC AB 内错角4.∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8∠3和∠6,∠4和∠5∠3和∠5,∠4和∠65.C6.80° 80° 100°课后作业7.C 8.D 9.A 10.BC AC BD 同位11.∠3 ∠5 ∠412.(1)∠2(2)∠4(3)ED 内错(4)AB AF 同位13.(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.14.∠1和∠2是直线EF,DC被直线AB所截形成的同位角,∠1和∠3是直线AB,CD被直线EF所截形成的同位角.15.∠1=∠2,与∠1互补的角有∠3和∠4.理由:因为∠1=∠5,∠5=∠2,所以∠1=∠2.因为∠1=∠5,且∠5与∠3或∠4互补,所以与∠1互补的角有∠3和∠4.16.(1)4 2 2(2)12 6 6(3)2n(n-1) n(n-1) n(n-1)5.2.1 平行线【课前预习】要点感知1在__________平面内,两条不__________的直线互相平行.预习练习1-1 在同一平面内的两条不重合的直线的位置关系( )A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直要点感知2 经过直线外一点,有且__________一条直线与这条直线平行.预习练习2-1在同一平面内,下列说法中,错误的是( )A.过两点有且只有一条直线B.过一点有无数条直线与已知直线平行C.过直线外一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直要点感知3如果两条直线都与第三条直线平行,那么这两条直线也__________.预习练习3-1 我们知道,如果a=b,b=c,那么a=c,这可以叫做等式的传递性;平行线也有传递性,如果a∥b,b∥c,那么a__________c.【当堂训练】知识点1 平行线1.下列说法中,正确的是( )A.平面内,没有公共点的两条线段平行B.平面内,没有公共点的两条射线平行C.没有公共点的两条直线互相平行D.互相平行的两条直线没有公共点2.如图所示,能相交的是__________,平行的是__________.3.在同一平面内,直线AB与直线CD满足下列条件,则其对应的位置关系是(1)若直线AB与直线CD没有公共点,则直线AB与直线CD的位置关系为__________;(2)直线AB与直线CD有且只有一个公共点,则直线AB与直线CD的位置关系为__________.4.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线,②经过C点画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.知识点2 平行公理及推论5.若直线a∥b,b∥c,则a∥c的依据是( )A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行6.如图,PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是______________.7.如图,P,Q分别是直线EF外两点.(1)过P画直线AB∥EF,过Q画直线CD∥EF.(2)AB与CD有怎样的位置关系?为什么?【课后作业】8.下列说法中,正确的是( )A.同一平面内的两条直线叫平行线B.平行线在同一平面内C.不相交的两条直线叫平行线D.过直线外一点有且只有一条直线与已知直线相交9.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个10.在同一平面内,下面关于一条直线和两条平行线的位置关系的说法中,正确的是( )A.一定与两条平行线都平行B.可能与两条平行线都相交或都平行C.一定与两条平行线都相交D.可能与两条平行线中的一条平行,一条相交11.如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:__________,__________.12.如图所示,直线AB,CD是一条河的两岸,并且AB∥CD,点E为直线AB,CD外一点,现想过点E作河岸CD的平行线,只需过点E作__________的平行线即可,其理由是______________________________.13.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必__________.14.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.15.如图所示,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?挑战自我16.利用直尺画图:(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)把图2网格中的三条线段通过平移使三条线段AB,CD,EF首尾顺次相接组成一个三角形;(3)在图3的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.参考答案课前预习要点感知1同一相交预习练习1-1 C要点感知2只有预习练习2-1 B要点感知3互相平行预习练习3-1∥当堂训练1.D2.③⑤3.(1)平行(2)相交4.(1)图略.(2)EF∥AB,MC⊥CD.5.D6.经过直线外一点,有且只有一条直线与这条直线平行7.(1)图略.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.课后作业8.B 9.A 10.B 11.CD∥MN GH∥PN 12.AB 平行于同一条直线的两条直线平行13.相交14.(1)(2)图略;(3)l1与l2的夹角有两个:∠1,∠2.因为∠1=∠O,∠2+∠O=180°,所以l1与l的夹角与∠O相等或互补.215.因为AB∥EF,CD∥EF,所以CD∥AB.16.(1)CD∥AB,PQ⊥AB.(2)△EFG或△EFH都是所求作的三角形.(3)四边形ABCD是符合条件的四边形.5.2.2 平行线的判定【课前预习】要点感知平行线的判定方法有:(1)定义:在同一平面内,两条__________的直线互相平行;(2)两条直线都与第三条直线__________,那么这两条直线也互相平行;(3)同位角相等,两直线__________;(4)内错角__________,两直线平行;(5)__________互补,两直线平行;(6)同一平面内,垂直于同一直线的两条直线互相__________.预习练习1-1 如图,∠1=60°,∠2=60°,则直线a与b的位置关系是__________.1-2如图所示,直线AB,CD被直线EF所截,若∠1=_____,则AB∥CD;若∠3=_____,则AB∥CD;若∠2+_____=180°,则AB∥CD.1-3已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是__________.【当堂训练】知识点1 同位角相等,两直线平行1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.如图所示,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( )A.①②B.①③C.①④D.③④知识点2 内错角相等,两直线平行3.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE4.如图,请在括号内填上正确的理由:因为∠DAC=∠C(已知),所以AD∥BC(____________________________).5.如图,∠1=∠2,∠2=∠3,你能判断图中哪些直线平行,并说出理由.知识点3 同旁内角互补,两直线平行6.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是( )A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°7.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于__________.8.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).【课后作业】9.如图,下列条件中能判断直线l1∥l2的是( )A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠510.如图,在下列条件中,能判断AD∥BC的是( )A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD11.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°12.如图,直线a、b被直线c所截,若满足____________,则a、b平行.13.如图,用式子表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.14.如图所示,推理填空:(1)∵∠1=__________(已知),∴AC∥ED(同位角相等,两直线平行).(2)∵∠2=__________(已知),∴AB∥FD(内错角相等,两直线平行).(3)∵∠2+__________=180°(已知),∴AC∥ED(同旁内角互补,两直线平行).15.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.16.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.挑战自我17.如图所示,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?参考答案课前预习要点感知 (1)不相交 (2)平行 (3)平行 (4)相等 (5)同旁内角 (6)平行预习练习1-1 平行1-2 ∠2 ∠2 ∠41-3平行当堂训练1.A2.A3.D4.内错角相等,两直线平行5.DE∥BF,AB∥CD.理由如下:∵∠1=∠2,∴DE∥BF(同位角相等,两直线平行).∵∠2=∠3,∴∠1=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行).6.C7.80°8.合格课后作业9.C 10.A 11.D12.答案不唯一,如:∠1=∠2或∠2=∠3或∠3+∠4=180°13.(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).14.(1)∠C(2)∠BED(3)∠AFD15.∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD.16.PG∥QH,AB∥CD.∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD. ∴PG∥QH,AB∥CD.17.CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴AB∥CD.∵∠1+∠2=180°,∴AB∥EF.∴CD∥EF.5.3 平行线的性质5.3.1 平行线的性质第1课时平行线的性质【课前预习】要点感知平行线的性质:性质1:两直线平行,同位角__________;性质2:两直线__________,内错角相等;性质3:两直线平行,__________互补.预习练习1-1 如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是__________.1-2如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东__________.1-3如图,AB∥CD,∠1=85°,则∠2=__________.【当堂训练】知识点1 平行线的性质1.如图,AB∥CD,∠CDE=140°,则∠A的度数为( )A.140°B.60°C.50°D.40°2.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为( )A.40°B.35°C.50°D.45°3.如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=度.4.如图,AB∥CD,直线EF分别与AB,CD交于点G,H,∠1=50°,求∠2和∠CHG 的度数.知识点2 平行线性质的应用5.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( )A.30°B.45°C.60°D.75°6.探照灯、锅盖天线、汽车灯等都利用了抛物线的一个原理:由它的焦点处发出的光线被反射后将会被平行射出.如图,由焦点O处发出的光线OB,OC经反射后沿与POQ平行的方向射出,已知∠ABO=42°,∠DCO=53°,则∠BOC=_______.7.某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.【课后作业】8.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是( )A.50°B.45°C.35°D.30°9.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60°B.120°C.150°D.180°10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是( )A.1个B.2个C.3个D.4个11.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=_______.12.如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=__________.13.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.14.如图,已知AB ∥CD,∠B=40°,CN 是∠BCE 的平分线,CM ⊥CN,求∠BCM 的度数.15.如图:已知AB ∥DE ∥CF ,若∠ABC=70°,∠CDE=130°,求∠BCD 的度数.挑战自我16.如图,已知直线l 1∥l 2,且l 3和l 1,l 2分别交于A ,B 两点,点P 在AB 上.(1)试找出∠1,∠2,∠3之间的关系并说出理由;(2)如果点P 在A ,B 两点之间运动,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P 在A ,B 两点外侧运动,试探究∠1,∠2,∠3之间的关系(点P 和A ,B 不重合).参考答案课前预习要点感知相等平行同旁内角预习练习1-1 70°1-2 42°1-3 95°当堂训练1.D2.A3.1104.∵AB∥CD,∴∠DHE=∠1=50°.∵∠2=∠DHE,∴∠2=∠1=50°.∵∠2+∠CHG=180°,∴∠CHG=180°-∠2=130°.5.B6.95°7.∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°. 课后作业8.D 9.A 10.D 11.60°12.54°13.∵EF∥BC,∴∠BAF=180°-∠B=100°.∵AC平分∠BAF,∴∠CAF=12∠BAF=50°.∵EF∥BC,∴∠C=∠CAF=50°.14.∵AB∥CD,∴∠BCE+∠B=180°.∵∠B=40°,∴∠BCE=180°-40°=140°. ∵CN是∠BCE的平分线,∴∠BCN=12∠BCE=12×140°=70°.∵CM⊥CN,∴∠BCM=90°-70°=20°.15.∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°.又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°.∴∠DCF=50°.∴∠BCD=∠BCF-∠DCF=70°-50°=20°.16.(1)∠1+∠2=∠3.理由:过点P作l1的平行线PQ.∵l1∥l2,∴l1∥l2∥PQ.∴∠1=∠4,∠2=∠5.∵∠4+∠5=∠3,∴∠1+∠2=∠3.(2)∠1+∠2=∠3不变.(3)∠1-∠2=∠3或∠2-∠1=∠3.理由:①当点P在下侧时,如图,过点P作l1的平行线PQ.∵l1∥l2,∴l1∥l2∥PQ.∴∠2=∠4,∠1=∠3+∠4.∴∠1-∠2=∠3.②当点P在上侧时,同理可得∠2-∠1=∠3.第2课时平行线的性质与判定的综合运用【课前预习】预习练习1-1如图所示,把下面的推理补充完整:①∵∠1+∠α=180°,∴__________(____________________).②∵∠1=∠γ,∴__________(____________________).③∵∠β=∠γ,∴__________(____________________).④∵l1∥l2,l3∥l2,∴__________(____________________).1-2 如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是( )A.35°B.70°C.90°D.110°【当堂训练】知识点1 平行线的性质与判定的综合运用1.如图,直线AB、CD相交于点O,OT⊥AB于点O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT=( )A.30°B.45°C.60°D.120°2.如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为( )A.100°B.110°C.120°D.130°3.如图,∠1=∠2,∠A=75°,则∠ADC=__________.4.如图所示,请根据图形填空:∵AB∥CD(已知),∴∠AEF=∠CFN(____________________).∵EG平分∠AEF,FH平分∠CFN(已知),∴∠1=12∠CFN,∠2=12∠AEF(____________________).∴∠1=∠2(____________________).∴EG∥FH(____________________).5.如图,已知∠1=55°,∠2=60°,∠3=55°,求∠4的度数.知识点2 平行线的性质与判定的实际应用6.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A.先向左转130°,再向左转50°B.先向左转50°,再向右转50°C.先向左转50°,再向右转40°D.先向左转50°,再向左转40°7.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=__________.8.如图,一只船从点A出发沿北偏东60°方向航行到点B,再以南偏西25°方向返回,则∠ABC=__________.9.我们由光的镜面反射可知,当光线射到平面镜上反射后,就有反射角等于入射角,如图所示,∠1=∠2,∠3=∠4,当一束平行光线AB与DE射向水平镜面后被反射,反射后的光线BC与EF平行吗?为什么?【课后作业】10.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2等于( )A.60°B.50°C.40°D.30°11.如图,∠1+∠2=180°,∠3=100°,则∠4等于( )A.70°B.80°C.90°D.100°12.如图,∠1=∠2,∠3=40°.则∠4等于( )A.120°B.130°C.140°D.40°13.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于( )A.40°B.50°C.70°D.80°14.如图所示,AB∥CD,∠E=37°,∠C=20°,∠EAB的度数为( )A.57°B.60°C.63°D.123°15.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=_____.16.如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.17.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.18.如图,E为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,试说明AC∥DF,并在每步后面批注依据.挑战自我19.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图2的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图3的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?参考答案课前预习预习练习1-1①l1∥l2同旁内角互补,两直线平行②l3∥l2同位角相等,两直线平行③l3∥l2内错角相等,两直线平行④l1∥l3平行于同一条直线的两条直线平行1-2 D当堂训练1.C2.D3.105°4.两直线平行,同位角相等角平分线定义等量代换同位角相等,两直线平行5.∵∠1=∠3,∴AB∥CD.∴∠AOG=∠4.∵∠2=60°,∴∠AOG=180°-∠2=120°.∴∠4=120°.6.B7.270°8.35°9.BC∥EF.理由如下:∵AB∥DE,∴∠1=∠3(两直线平行,同位角相等).又∵∠1=∠2,∠3=∠4,∴∠2=∠4.∴BC∥EF(同位角相等,两直线平行).课后作业10.B 11.D 12.C 13.C 14.A 15.63°30′16.∵∠1=72°,∠2=72°,∴∠1=∠2.∴a∥b.∴∠3+∠4=180°.∵∠3=60°,∴∠4=120°.17.AD平分∠BAC.理由:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°.∴AD∥EG.∴∠3=∠2,∠E=∠1.∵∠3=∠E,∴∠1=∠2,即AD平分∠BAC.18.∵∠1=∠2(已知),∠4=∠2(对顶角相等),∴∠4=∠1(等量代换).∴DB∥CE(同位角相等,两直线平行).∴∠C=∠ABD(两直线平行,同位角相等).∵∠C=∠D(已知),∴∠D=∠ABD(等量代换).∴AC∥DF(内错角相等,两直线平行).19.(1)理由:过点E作EF∥AB,∴∠B=∠BEF.∵CD∥AB,∴CD∥EF.∴∠D=∠DEF.∴∠B+∠D=∠BEF+∠DEF=∠BED.(2)AB∥CD.(3)∠B+∠D+∠E=360°.(4)∠B=∠D+∠E.(5)∠E+∠G=∠B+∠F+∠D.5.3.2 命题、定理、证明【课前预习】要点感知1 __________一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是__________,“那么”后面接的部分是__________.预习练习1-1下列语句中,是命题的是( )A.有公共顶点的两个角是对顶角B.在直线AB上任取一点CC.用量角器量角的度数D.直角都相等吗1-2 将“两点之间,线段最短”写成“如果……那么……”的形式:______________________________.要点感知2 题设成立,并且结论一定成立的命题叫做__________;题设成立,不能保证结论__________的命题叫做假命题.预习练习2-1下列命题中的真命题是( )A.锐角大于它的余角B.锐角大于它的补角C.钝角大于它的补角D.锐角与钝角之和等于平角要点感知3 经过推理证实为正确并可以作为推理的依据的真命题叫做__________.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做__________.预习练习3-1如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD ∥AB.【当堂训练】知识点1 命题的定义1.下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤知识点2 命题的结构2.命题的题设是__________事项,结论是由__________事项推出的事项.3.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是____________________.4.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;。

七年级数学下同步练习册答案人教版

七年级数学下同步练习册答案人教版七年级学生要仔细做人教版数学同步练习册的习题,出错要少,检查要多。

小编整理了关于人教版七年级数学下册同步练习册的答案,希望对大家有帮助!七年级数学下同步练习册答案人教版(一)平方根第2课时基础知识1、 2、 3、 4、B C B B5、47、±58、±11 13/8 ±13/10 -0.59、比较大小能力提升解得x=2 2x+5=2×2+5=9 所以2x+5的算数平方根为311、解:6.75÷1.2=5.625 5.625的算数平方根约等于2.37cm12、解:设宽是x(x>0),长为4x 则4x²=25解得x=2.5 所以4x=10七年级数学下同步练习册答案人教版(二)同位角、内错角、同旁内角基础知识1、B2、C3、∠1 ∠3 ∠2 ∠6 AB CD EF4、∠C 内错∠BAE5、AB 内错6、题目略(1)∠ADC ∠EBG ∠HEB ∠DCG(2)∠ADC ∠ABE ∠AEB ∠ACD能力提升7、题目略(1)AB CD BE(2)AD BC AB(3)AB CD BC(4)AB CD BE8、∠A和∠B ∠A和∠D ∠D和∠C ∠B和∠C 共4对9、题目略(1)∠DEA同位角是∠C,内错角是∠BDE,同旁内角是∠A、∠ADE(2)∠ADE同位角是∠B,内错角是∠CED,同旁内角是∠A、∠AED探索研究10、证明:∵∠2=∠4(互为对顶角)∴∠1=∠2∴∠1=∠4∵∠2+∠3=180° ∠1=∠2∴∠1+∠3=180°∴∠1和∠3互补七年级数学下同步练习册答案人教版(三)平行线的判定第2课时基础知识1、C2、C3、题目略(1)AB CD 同位角相等,两直线平行(2)∠C 内错角相等,两直线平行(3) ∠EFB 内错角相等,两直线平行4、108°5、同位角相等,两直线平行6、已知∠ABF ∠EFC 垂直的性质 AB 同位角相等,两直线平行已知 DC 内错角相等,两直线平行 AB CD 平行的传递性能力提升7、B 8、B9、平行已知∠CDB 垂直的性质同位角相等,两直线平行三角形内角和为180° 三角形内角和为180° ∠DCB 等量代换已知∠DCB 等量代换 DE BC 内错角相等,两直线平行10、证明:(1)∵CD是∠ACB的平分线(已知)∴∠ECD=∠BCD∵∠EDC=∠DCE=25°(已知)∴∠EDC=∠BCD=25°∴DE∥BC(内错角相等,两直线平行)(2)∵DE∥BC∴∠BDE+∠B=180° 即∠EBC+∠BDC+∠B=180°∵∠B=70° ∠EDC=25°∴∠BDC=180°-70°-25°=85°11、平行∵BD⊥BE∴∠DBE=90°∵∠1+∠2+∠DBE=180°∴∠1+∠2=90°∵∠1+∠C=90°∴∠2=∠C∴BE∥FC(同位角相等,两直线平行)探索研究12、证明:∵MN⊥AB EF⊥AB∴∠ANM=90° ∠EFB=90°∵∠ANM+∠MNF=180° ∠NFE+∠EFB=180°∴∠MNF=∠EFB=90°∴MN∥FE。

解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)

第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。

2022-2023学年全国初中七年级下数学人教版同步练习(含答案解析)102954

2022-2023学年全国初中七年级下数学人教版同步练习考试总分:100 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 下列计算正确的是 ( )A.B.C.D.2. 下列四个数中,的相反数是A.B.C.D.3. 下列计算正确的是( )A.B.C.D.4. 下列运算正确的是( )A.B.C.D. ⋅=a 3a 4a 12(3x =9)3x 3(=b 3)2b 5÷=a 10a 2a 82019()−201912019−1201920190+=a 3a 2a 5=(−)a 3b 22a 6b 42÷2=0x 2x 2=8(−)12−3⋅=m 2m 3m 6=()m 32m 9÷=m 6m 2m 3=−8(−2)m 23m 65. 计算的结果是( )A.B.C.D.6. 下列计算正确的是 ( )A.B.C.D.7. 若,,,则,,的大小关系是( )A.B.C.D.8. 在下列各数:,,-(),-(-),,中,负有理数的个数是( )A.个B.个C.个D.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 计算:=________.10. ________; ________;________.11. 计算:________.+(−122)03452⋅=x 4x 4x 16⋅=()a 32a 4a 9÷=−a (a )b 23(−ab)2b 4÷=1()a 62()a 43a =−3−2b =(−)13−2c =(−0.3)0a b c a <b <cb <c <ac <b <aa <c <b−(+2)−3243(−1)0|−3|2345−(−⋅÷(−a a 4)5a 3)5=(−0.1)−23=a −2=(−2)x 2y 3z 43(−2019=)011. 计算:________.12. 化简________.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13. 计算:14. 计算:. 15. 已知=,=,=.(1)求的值.(2)求的值.(3)直接写出字母、、之间的数量关系为________.16. 计算:.(−2019=)0÷÷=(x−y)5(y−x)2(y−x)2+−(−1)2018(−)12−2(3.14−π)0(−+4×(−1−|−|+(π−513)−2)201923)05a 35b 85c 72(5a )25a−b+c a b c (π−3−+(−1)0(−)13−2)2019参考答案与试题解析2022-2023学年全国初中七年级下数学人教版同步练习一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】同底数幂的除法幂的乘方及其应用积的乘方及其应用【解析】根据同底数幂的乘法、积的乘方、幂的乘方和同底数幂的除法逐一判断即可.【解答】解:,,故错误;,,故错误;,,故错误;,,故正确.故选.2.【答案】A【考点】零指数幂相反数【解析】根据相反数的概念解答即可.【解答】A ⋅=≠a 3a 4a 7a 12B =27≠9(3x)3x 3x 3C ==≠()b 32b 3×2b 6b 5D ÷==a 10a 2a 10−2a 8D解:的相反数是.故选.3.【答案】B【考点】同底数幂的除法幂的乘方与积的乘方合并同类项负整数指数幂【解析】根据同类项、积的乘方、同底数幂的除法、负指数幂的知识,依次计算出每一项,逐一判断即可.【解答】解:,,不是同类项不能合并,故本选项错误;, ,故本选项正确;, ,故本选项错误;, ,故本选项错误;故选.4.【答案】D【考点】幂的乘方与积的乘方同底数幂的乘法同底数幂的除法【解析】利用同底数幂乘除法,积的乘方与幂的乘方运算求解即可.【解答】解:,,该选项错误;,,该选项错误;2019−2019A A +=a 3a 2a 5B =(−)a 3b 22a 6b 4C 2÷2=1x 2x 2D ==−8(−)12−3(−2)3B A ⋅==m 2m 3m 2+3m 5B (==m 2)3m 2×3m 6÷==626−24,,该选项错误;,,该选项正确.故选.5.【答案】C【考点】有理数的乘方有理数的混合运算零指数幂【解析】解答此题的关键在于理解有理数的乘方的相关知识,掌握有理数乘方的法则:、正数的任何次幂都是正数;、负数的奇次幂是负数;负数的偶次幂是正数;注意:当为正奇数时:或, 当为正偶数时:或.【解答】解:原式.故选.6.【答案】D【考点】同底数幂的乘法幂的乘方与积的乘方同底数幂的除法【解析】根据同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.【解答】解:,=,原式计算错误,故本选项错误;,,原式计算错误,故本选项错误;,,原式计算错误,故本选项错误;,,计算正确,故本选项正确.故选.C ÷==m 6m 2m 6−2m 4D (−2=−8m 2)3m 6D 12n (−a =−)n a n (a −b =−(b −a )n )n n (−a =)n a n (a −b =(b −a )n )n =4+1=5C A ⋅x 4x 4x 8B (⋅=⋅=a 3)2a 4a 6a 4a 10C (a ÷(−ab =÷=b 2)3)2a 3b 6a 2b 2ab 4D (÷(=÷=1a 6)2a 4)3a 12a 12D7.【答案】D【考点】有理数大小比较零指数幂负整数指数幂【解析】化简三个数,再进行比较即可.【解答】解:,,,则,,的大小关系是 .故选.8.【答案】B【考点】有理数的乘方零指数幂绝对值有理数的概念及分类相反数【解析】此题暂无解析【解答】此题暂无解答a =−==−3−213219b ==(−3=9(−)13−2)2c ==1(−0.3)0a b c a <c <b D二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】【考点】同底数幂的除法幂的乘方与积的乘方同底数幂的乘法【解析】直接利用同底数幂的乘除、幂的乘方、积的乘方的运算法则计算得出答案.【解答】===.10.【答案】【考点】负整数指数幂幂的乘方与积的乘方【解析】此题暂无解析【解答】略11.【答案】−a 18−(−⋅÷(−a a 4)5a 5)5⋅÷(−a a 20a 3)8÷(−a a 23)5−a 181003a 2−8x 6y 9z 12【考点】零指数幂【解析】本题考查零指数幂的应用.【解答】解:.故答案为.12.【答案】【考点】同底数幂的除法【解析】本题考查了同底数幂的除法.【解答】解:原式=.故答案为:.三、 解答题 (本题共计 4 小题 ,每题 10 分 ,共计40分 )13.【答案】解:原式【考点】零指数幂负整数指数幂有理数的乘方1=1(−2019)01x−y÷÷(x−y )5(x−y )2(x−y )2=x−y x−y =1+4−1=4【解析】本题考查实数的混合运算.涉及有理数的乘方运算法则,零指数幂与负整指数幂的运算性质.先算乘方,再计算加减即可.【解答】解:原式14.【答案】解:原式.【考点】负整数指数幂零指数幂有理数的乘方绝对值有理数的混合运算【解析】根据零指数幂的意义以及负整数指数幂的意义即可求出答案.【解答】解:原式.15.【答案】∵=,∴==;∵=,=,=,∴==.;=【考点】=1+4−1=4=(−3+4×(−1)−8+1)2=9−4−8+1=−2=(−3+4×(−1)−8+1)2=9−4−8+1=−25a 3(3a )23795a 35b 87c 725a−b+c c 2a +b幂的乘方与积的乘方同底数幂的乘法同底数幂的除法【解析】(1)根据幂的乘方直接解答即可;(2)根据同底数幂的乘除法进行解答即可;(3)根据已知条件直接得出答案即可.【解答】∵=,∴==;∵=,=,=,∴==.;=;故答案为:=.16.【答案】解:原式.【考点】零指数幂、负整数指数幂有理数的乘方【解析】本题主要考查实数的运算.【解答】解:原式.5a 3(3a )23795a 35b 87c 725a−b+c c 2a +b c 2a +b =1−9−1=−9=1−9−1=−9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( )11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角. ( )13.如果两个角是邻补角,那么它们一定互为补角. ( )14.对顶角的角平分线在同一直线上. ( )15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. ( )综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE =4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( )12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α (C)α2190+︒ (D)2α-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为PA =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条(B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC 与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D+∠A=______.(_____________,_____________)即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( ) 二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D 处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b .2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a ∥c .5.略.6.(1)EF ∥DC ,内错角相等,两直线平行.(2)AB ∥EF ,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD =EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个(B)2个(C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C ′EF =32°(2)∠AEC =148° (3)∠BGE =64°(4)∠BFD =116° (A)1个(B)2个 (C)3个(D)4个二、填空题 11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD =(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°. 16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC和∠ACB的平分线交于点O,EF经过点O且平行于BC,分别与AB,AC交于点E,F.(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度数;(2)若∠ABC=α,∠ACB=β ,用α,β 的代数式表示∠BOC的度数.(3)在第(2)问的条件下,若∠ABC和∠ACB邻补角的平分线交于点O,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC的度数.24.已知:如图,AC∥BD,折线AMB夹在两条平行线间.(1)判断∠M,∠A,∠B的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n条(n=3,4,…);②可如图1,图2,或M点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA . 14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.第六章 实数测试1 平方根 学习要求1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.课堂学习检测一、填空题1.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______. 规定:0的算术平方根是______.2.一般的,如果______,那么这个数叫做a 的平方根.这就是说,如果______,那么x 叫做a 的平方根,a 的平方根记为______. 3.求一个数a 的______的运算,叫做开平方.4.一个正数有______个平方根,它们______;0的平方根是______;负数______. 5.25的算术平方根是______;______是9的平方根;16的平方根是______. 6.计算:(1)=121______;(2)=-256______;(3)=±212______;(4)=43______;(5)=-2)3(______;(6)=-412______. 二、选择题7.下列各数中没有平方根的是( ) A .(-3)2 B .0 C .81D .-638.下列说法正确的是( ) A .169的平方根是13 B .1.69的平方根是±1.3 C .(-13)2的平方根是-13 D .-(-13)没有平方根 三、解答题9.求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______; (3)若,492=x ,则x =______; (4)若x 2=(-2)2,则x =______. 10.要切一块面积为16cm 2的正方形钢板,它的边长是多少?综合、运用、诊断一、填空题 11.25111的平方根是______;0.0001算术平方根是______:0的平方根是______. 12.2)4(-的算术平方根是______:81的算术平方根的相反数是______.。

相关文档
最新文档