七年级数学课时练答案下册
【★】人教版七年级下册数学课时练《5-3-2 命题、定理、证明》(含答案)

《5.3.2 命题、定理、证明》课时练一、选择题1.下列命题中,是假命题的为()A.邻补角的平分线互相垂直B.平行于同一直线的两条直线互相平行C.如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等D.平行线的一组内错角的平分线互相平行2.下列语句中,不是命题的是()A.若两角之和为90°,则这两个角互补B.同角的余角相等C.作线段的垂直平分线D.相等的角是对顶角3.有下列命题:三角形的两边之和大于第三边;②相等的角是对顶角;③若a与b互为倒数,则ab=1;④绝对值等于本身的数是正数.其中真命题的个数是()A.1 B.2 C.3 D.44.下列语句中,不属于命题的是()A.若两角之和为90°,则这两个角互补B.同角的余角相等C.作线段的垂直平分线D.相等的角是对顶角5.下列语句中,不属于命题的个数是()①延长线段AB;②自然数都是整数;③两个锐角的和一定是直角;④同角的余角相等.A.1B.2C.3D.46.下列命题中,是真命题的是()A.在同一平面内,垂直于同一条直线的两条直线平行B.三角形的一个外角大于它的任何一个内角C.两条直线被第三条直线所截,同旁内角互补D.过一点有且只有一条直线与已知直线平行7.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④一个角的两边分别与另一个角的两边互相平行,则这两个角相等;⑤不在同一直线上的四个点最多可以画6条直线.其中错误的有()A.2个B.3个C.4个 D.5个8.下列命题中是假命题的是()A.同旁内角互补,两直线平行B.直线a⊥b,则a与b的夹角为直角C.如果两个角互补,那么这两个角一个是锐角,一个是钝角D.若a∥b,a⊥c,那么b⊥c二、填空题9.命题“两直线平行,同位角相等”的逆命题是命题.(填“真”或“假”)10.把命题“三角形的内角和等于180°”改写成“如果……那么……”的形式:如果,那么.11.如图,若∠1=∠2,则AB∥CD,这是命题(填“真”或“假”).12.“如果ab=0,那么a=0”是命题.“如果a=0,那么ab=0” 是命题.13.命题“对顶角相等”的条件是.14.下列命题中:①若∣a∣=∣b∣,则a=b;②两直线平行,同位角相等;③对顶角相等;④内错角相等,两直线平行.是真命题的是.(填写所有真命题的序号)三、解答题15.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.16.判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)如果一个数是偶数,那么这个数是4的倍数.(2)两个负数的差一定是负数.17.用语言叙述这个命题:如图,直线AB,CD被EF所截,∠1+∠2=180°,EM,FN分别平分∠BEF和∠CFE,则EM∥FN.18.对于同一平面内的三条直线a,b,c,给出下列论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题(至少写两个命题).参考答案1.C.2.C.3.B.4.C.5.A.6.A7.B.8.C9.真.10.如果三个角是三角形的内角,那么它们的和等于180°.11.假.12.假;真;13.两个角是对顶角14.②③④15.解:假命题.图略,AB⊥BD于点B,CD⊥BD于点D,AB=CD,但AC与BD相交.16.解:(1)假命题.反例:6是偶数,但6不是4的倍数.(2)假命题.反例:(-5)-(-8)=+3.17.解:如果两条直线平行,那么内错角的角平分线互相平行.18.解:答案不唯一,如:若a∥b,b∥c,则a∥c;若a∥b,a∥c则b∥c;若b∥c,a∥c,则a∥b;若a⊥b,a⊥c,则b∥c;若a⊥b,b∥c,则a⊥c;若b∥c,a⊥c,则a⊥b.。
2023-2024学年人教部编版初中七年级下册数学课时练《5.3.2 命题、定理、证明》(含答案)

第三课青春的证明 3.2青春有格一、单项选择题:1. 青春,我们敢想敢做,但青春并不意味着放纵,也要懂得选择。
下列有关“选择”的说法不正确的是( ) A. 只要自己愿意,就可作出各种选择 B. “羞恶之心”是我们明确行为选择的理由C. 我们要树立底线意识,违背道德或法律的行为坚决不做D. 要独立思考,明辨是非善恶,不盲目从众,作出正确的选择2. “世界那么大,我想去看看”,但世界又是纷繁复杂的,美丑、善恶交织在一起,这就要求我们“行己有耻”。
引导我们辨别是非、做出正确选择的主要因素是( )A. 恻隐之心B. 辞让之心C. 是非之心D. 羞恶之心3. 很多人觉得自己计划完不成,拖延,生活中养成种种恶习的根源在于自控力不强。
下列增强自控力的合理建议是( )①每天坚持做一些自己力所能及的事情①认真记录一些自己平时不关注的事情①尝试不做某些事情,纠正自己的行为①拒绝一切娱乐活动,专注提高学习成绩A. ①②③B. ①②④C. ①③④D. ②③④4. 后汉东莱太守杨震经过管辖地昌邑县时,县令王密送去十金,并说“暮夜无知者”。
杨震严词拒受,说:“天知,地知,你知,我知,何谓无知?”人们因此称他为“四知太守”。
杨震值得我们当代人学习的品质是( ) A. 自信,要相信自己的能力 B. 自爱,不做有损人格的事C. 自强,有不断进取的精神D. 自负,遇事有自己的主见5. “行己有耻”需要我们磨砺意志,拒绝不良诱惑,不断增强自控力。
我们要做到()①增强“我不要”的力量。
尝试不做某些事情,纠正自己的行为①增强“我想要”的力量。
每天坚持做一些自己未能做到的事情①加强自我监控。
认真记录一些自己平时不关注的事①面对挫折,半途而废A. ①①①B. ①①①C. ①①①D. ①①①6. “行己有耻”出自《论语·子路》。
春秋时期的孔子曾说:“行己有耻,使于四方,不辱君命,可谓士矣。
”下列行为中,没有做到“行己有耻”的是( )①拿别人的缺点、缺陷、姓名开玩笑②经常帮助同学,特别是身体残疾的同学③喜欢散播小道消息,专门讲同学的糗事④上课时给同学讲故事听,逗同学发笑A. ①①①B. ①①①C. ①①①D. ①①①7. 雨果说:“谁虚度了年华,青春就将褪色。
人教版七年级下册数学课时练《8.4 三元一次方程组的解法》试卷含答案

人教版七年级数学下册 第八章 二元一次方程组8.4 三元一次方程组的解法 课后练习一、选择题1.下列方程组是三元一次方程组的是( )A .123x y y z z x +=⎧⎪+=⎨⎪-=⎩B .02310x y z x yz y z ++=⎧⎪-=⎨⎪-=⎩C .22154x y y z x z ⎧+=⎪+=⎨⎪-=⎩D .563x y w z z x +=⎧⎪+=⎨⎪+=⎩2.三元一次方程5x y z ++=的正整数解有( )A .2组B .4组C .6组D .8组 3.已知代数式2ax bx c ++,当1x =-时,其值为4;当1x =时,其值为8;当x =2时,其值为25;则当3x =时,其值为( ).A .4B .8C .62D .524.若实数,,x y z 满足41233x y z x y z -+=⎧⎨-+=⎩,则6x y z ++=( ) A .3- B .0 C .3 D .不能确定值 5.已知三个实数a 、b 、c 满足a+b+c =0,a ﹣b+c =0,则下列结论一定成立的是( ) A .a+b≥0 B .a+c >0 C .b+c≥0 D .b 2﹣4ac≥06.如果方程组864x y y z z x +=⎧⎪+=⎨⎪+=⎩的解使代数式kx +2y ﹣3z 的值为8,则k =( )A .13B .﹣13C .3D .﹣37.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).A .11支B .9支C .7支D .5支 8.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )A .1个B .2个C .3个D .4个 9.小明妈妈到文具店购买三种学习用品,其单价分别为2元、4元、6元,购买这些学习用品需要56元,经过协商最后以每种单价均下调0.5元成交,结果只用了50元就买下了这些学习用品,则小明妈妈有几种不同的购买方法.( )A .6B .5C .4D .310.一个宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团25人准备同时租用这三种客房共9间,如果每个房间都住满,则租房方案共有( )A .4种B .3种C .2种D .1种二、填空题11.已知2234x y y z x z +++===-,则2x y z ++=________. 12.已知3203340x y z x y z -+=⎧⎨--=⎩,则::x y z =___________. 13.对于实数x ,y 定义新运算x y ax by cxy ⋅=++其中a ,b ,c 为常数,若123,234⋅=⋅=,且有一个非零常数d ,使得对于任意的x ,恒有x d x ⋅=,则d 的值是____.14.有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,如果放牧16头牛,则__________天可以吃完牧草.15.重庆市举行了中学生足球联赛,共赛17轮(即每队均需比赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.若文德中学足球队的积分为16分,且踢平场数是所负场数的整数倍,且胜、平、负的场数各不相同.则文德中学足球队共负____场.三、解答题16.解方程:(1)11425x y x y z x y z =+⎧⎪++=⎨⎪+-=⎩(2)3743225x y y z x z -=-⎧⎪+=⎨⎪-=-⎩ (3)1151x y z y z x z x y +-=⎧⎪+-=⎨⎪+-=⎩(4)::3:4:536x y z x y z =⎧⎨++=⎩ 17.已知方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式23x y z -+的值等于-10,求a 的值.18.在等式2y ax bx c =++中,当1x =时,2y =-;当1x =-时,20y =;当32x =与13x =时,y 的值相等.求a ,b ,c 的值.19.在等式2y ax bx c =++中,当1x =-时,0y =;当5x =时,60y =;当x =0时,5y =-,求222a ab c ++的值.20.已知y =ax 2+bx +c ,当x =1时,y =8;当x =0时,y =2;当x =﹣2时,y =4. (1)求a ,b ,c 的值;(2)当x =﹣3时,求y 的值.21.阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:18x y =⎧⎨=⎩就是方程3x +y =11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组206x y z x y z -+=⎧⎨++=⎩的一组“好解”. (1)求方程x +2y =5的所有“好解”;(2)关于x ,y ,k 的方程组155327x y k x y k ++=⎧⎨++=⎩有“好解”吗?若有,请求出对应的“好解”;若没有,请说明理由.22.某工程由甲、乙两队合作需6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合作需10天完成,厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23,此时厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若要不超过15天完成全部工程,问由哪队单独完成此项工程花钱最少?请说明理由.23.若一个四位正整数abcd 满足:a +d =b +c ,我们就称该数是“心想事成数”.比如:对于四位数5263,∵5+3=2+6,∵5263是“心想事成数”,对于四位数1276,∵1+6≠2+7,∵1276不是“心想事成数”.(1)直接写出最小的“心想事成数”和最大的“心想事成数”;(2)判断3625是否为“心想事成数”,并说明理由;(3)若一个“心想事成数”,满足个位上的数字是百位上的数字的两倍,且千位上的数字与十位上的数字之和能被8整除,请求出所有满足条件的“心想事成数”.参考答案1.A 2.C 3.D 4.A 5.D 6.A 7.D 8.C 9.D 10.B 11.-1012.9:5:313.414.1815.1或516.(1)653xyz=⎧⎪=⎨⎪=⎩;(2)2112xyz⎧⎪=-⎪=⎨⎪⎪=⎩;(3)683xyz=⎧⎪=⎨⎪=⎩;(4)91215xyz=⎧⎪=⎨⎪=⎩17.53a=-.18.6113abc=⎧⎪=-⎨⎪=⎩19.2220.(1)731132abc⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩;(2)1221.(1)5xy=⎧⎨=⎩或31xy=⎧⎨=⎩或12xy=⎧⎨=⎩(2)有,96xyk=⎧⎪=⎨⎪=⎩或1014xyk=⎧⎪=⎨⎪=⎩或1122xyk=⎧⎪=⎨⎪=⎩或123xyz=⎧⎪=⎨⎪=⎩22.(1)甲、乙、丙各队单独完成全部工程分别需10天,15天,30天.;(2)由乙队单独完成此工程花钱最少.23.(1)最小的“心想事成数”为1010;最大的“心想事成数”为9999;(2)四位数3625是“心想事成数”,理由见解析;(3)所有满足条件的“心想事成数”有:3254,2468,7294,4040,8080。
2023-2024学年人教部编版初中七年级下册数学课时练《7.2.1 用坐标表示地理位置》(含答案)

人教版七年级下册数学《7.2.1用坐标表示地理位置》课时练学校:___________姓名:___________班级:___________一、选择题1.小明向同学介绍自己家的位置,下列表述最恰当的是()A.在学校的东南方向B.在东南方向900米处C.距学校900米处D.在学校东南方向900米处2.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )A.(3,2) B.(1,3)C.(0,3) D.(-3,3)3.小张和小陈都在电影院看电影,小张的位置用(a,b)表示,小陈的位置用(x,y)表示,我们约定“排数在前,列数在后”,若小张恰在小陈的正前方,则( )A.a=x B.b=y C.a=y D.b=x4.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A可用(2,3)表示,如果小惠不想因点到地雷而结束游戏的话,下列选项中,她应该点()A.(7,2) B.(2,6) C.(7,6) D.(4,5)5.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)( )A.(2,2)→(2,5)→(5,6)B.(2,2)→(2,5)→(6,5)C.(2,2)→(6,2)→(6,5)D.(2,2)→(2,3)→(6,3)→(6,5)6.下列数据不能确定物体位置的是()A.电影票5排8号B.东经118北纬40C.希望路25号D.北偏东307.海事救灾船前去救援某海域失火货轮,需要确定( )A.方位B.距离C.方位和距离D.失火轮船的国籍二、填空题8.某人从A点沿北偏东60︒的方向走了100米到达点B,再从点B沿南偏西10︒的方向走了100米到达点C,那么点C在点A的南偏东__度的方向上.9.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(-1,-2)表示,小军的位置用(1,-1)表示,那么你的位置可以表示成________.10.对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+kb,ka+b)(其中k为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.11.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______); (2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.12.如图,以灯塔A 为观测点,小岛B 在灯塔A 的北偏东45°方向上,距灯塔A 20 km 处. 若以小岛B 为观测点,则灯塔A 在小岛B 的 方向上,距小岛B km 处.三、解答题13.小兰和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图(如图),可是她忘记了在图中标出原点和x 轴、y 轴,只知道游乐园的位置D 的坐标为(2,-2),你能帮她求出其他各景点所在位置的坐标吗?14.图中标明了李明同学家附近的一些地方,已知李明同学家位于(-2,-1).(1)建立平面直角坐标系,写出学校,邮局的坐标;(2)某星期日早晨,李明同学从家里出发,沿着(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过的地方;(3)连接他在(2)中经过的地点,你能得到什么图形?15.如图,对于平面直角坐标系中的任意两点A,B给出如下定义:过点A作直线m⊥x轴,过点B作直线n⊥y轴,直线m,n交于点C,我们把BC叫做A,B两点之间的水平宽,记作d1(A,B),即d1(A,B)=|x A﹣x B|,把AC叫做A,B两点之间的铅垂高,记作d2(A,B),即d2(A,B)=|y A﹣y B|.特别地,当AB⊥x轴时,规定A,B两点之间的水平宽为0,即d1(A,B)=0,A,B两点之间的铅垂高为线段AB的长,即d2(A,B)=|y A﹣y B|;当AB⊥y轴时,规定A,B两点之间的水平宽为线段AB的长,即d1(A,B)=|x A﹣x B|,A,B两点之间的铅垂高为0,即d2(A,B)=0;(1)已知O为坐标原点,点P(2,﹣1),则d1(O,P)=,d2(O,P)=.(2)已知点Q(3t,﹣2t+2).①若点D(0,2),d1(Q,D)+d2(Q,D)=5,求t的值;②若点D(﹣2t,3t),直接写出d1(Q,D)+d2(Q,D)的最小值.16如图,一只乌鸦从其巢(点O)飞出,飞向其巢东6km北10km的一点A,在该点它发现有一个稻草人,所以就转向,再向东8km北4km的地方B飞去.在那里它吃了一些谷物后立即返巢O,假设乌鸦总是沿直线飞行的,则乌鸦所飞的路径构成了一个三角形OAB(1)若点O的坐标为(0,0),点A的坐标为(6,10),写出点B的坐标.(2)试求三角形OAB的面积.17.如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.(3)汽车行驶到什么位置时,距离两村的和最短?请在图中画出这个位置,并求出此时汽车到两村距离的和.参考答案1.D 2.B 3.B 4.D 5.A 6.B 7.B8.559.(3,1)10.±511.3+ 4+ 2+ 0 D 2- ()2,2--12.答案为:南偏西45°,20.13. 解:由题意可知,是以点F 为坐标原点(0,0),射线FA 为y 轴的正半轴建立的平面直角坐标系,则音乐台的位置A(0,4),湖心亭的位置B(-3,2),望春亭的位置C(-2,-2),牡丹园的位置E(3,3)14.(1)学校(1,3),邮局(0,-1);(2)商店,公园,汽车站,水果店,学校,游乐场,邮局;(3)像一艘帆船15.(1)2,1;(2)①±1;②2.16.(1)(14,14);(2)228km .17.(1)汽车行驶到点(2,0)时离A 村最近,坐标是(2,0);(2)汽车行驶到点(7,0)时离B 村最近,点的坐标是(7,0);(3)汽车行驶到C (113,0)时,距离两村的和最短,。
人教版七年级下册数学课时练《7.1.1 有序数对》试卷含答案(1)

人教版七年级下册数学《7.1.1有序数对》课时练学校:___________姓名:___________班级:___________一、单选题1.如图所示,小亮从学校到家所走最短路线是( )A .(2,2)→(2,1)→(2,0)→(0,0)B .(2,2)→(2,1)→(1,1)→(0,1)C .(2,2)→(2,3)→(0,3)→(0,1)D .(2,2)→(2,0)→(0,0)→(0,1)2.以下有序数对书写正确的是( ).A .()59、B .5,6C .(),x yD .()a b3.共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP ,如图,“”为小白同学的位置,“”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是( )A .5DB .5FC .6FD .7F4.如果一类有序数对(),x y 满足方程5y x =-,则下列数对不属于这类的是( ).A .()3,2B .()2,3C .()6,1D .()1,6-5.如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是( )A .(0,4)→(0,0)→(4,0)B .(0,4)→(4,4)→(4,0)C .(0,4)→(3,4)→(4,2)→(4,0)D .(0,4)→(1,4)→(1,1)→(4,1)→(4,0)6.在数轴上,用有序数对表示点的平移,若()2,1得到的数为1,()1,2-得到的数为3,则()3,5得到的数为( ).A .8B .2-C .2D .8-二、填空题7.如图,A 表示三经路与一纬路的十字路口,B 表示一经路与三纬路的十字路口,如果用(3,1)(3,2)(3,3)(2,3)(1,3)表示由A 到B 的一条路径,用同样的方式写出一条由A 到B 的路径:____________________.8.若某个电影院用()512,表示5排12号,则3排4号可以表示为____________. 9.如果有序数对(),a b 表示某栋楼房中a 层楼b 号房,那么有序数对()4,3和()3,4分别代表的是__________,______________.10.如图,李老师家在2街与2巷的十字路口附近,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示李老师从家到学校上班的一条路线.请你用同样的方式写出从家到学校的另外一种路线:____________________________________________________________.11.我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作()4,6,则向西走5米,再向北走3米记作_________;数对()2,6--表示___________.12.教室5排2号可用有序数对(5,2)表示,则2排5号用数对可表示为__.三、解答题13.如图是某个小岛的简图,试用数的对表示出相关地点的位置.14.观察如图所示象棋棋盘,回答下列问题:(1)说出“将”与“帅”的位置;(2)说出“马3进4”(即第3列的“马”前进到第4列)后的位置.15.如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.16.根据指令(s,A)(说明:s≥0,单位:厘米;0°≤A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s,若机器人站在点M处,面对的方向如图所示.(1)给机器人下了一个指令(2,60°),机器人移动到了B点,请你画出机器人从M点到B点的运动路径;(2)若机器人从M点运动到了C点,则给机器人下了一个什么指令?17.如图,在5×5的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A的爬行路线为:B→A(-1,-4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(,),B→D(,),C→ (+1,);(2)若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,-1),(-2,+3),(-1,-2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.18.郑州市区的许多街道习惯用“经几纬几”来表示.小颖所乘的汽车从“经七纬五”出发,经过“经六纬五”到达“经五纬一”.(1)在图上标出“经五纬一”的位置;(2)在图上标出小颖所乘汽车可能行驶的一条路线图.还有其他可能吗?(3)你能说出图中“华美达广场”的位置吗?参考答案1.B2.C3.C4.C5.C6.B7.(3,1)→(2,1)→(2,2)→(2,3)→(1,3)8.()34,9.4层楼3号房; 3层楼4号房10.答案不唯一:如(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4)11.()5,3-; 向西走2米,再向南走6米12.()2,513.码头()4,3,营房()6,2,雷达()9,6,小广场()5,6,哨所1()5,9,哨所2()1,6【解析】根据题图可知,码头()4,3,营房()6,2,雷达()9,6,小广场()5,6,哨所1()5,9,哨所2()1,614.(1)“将”在第9行第5列,“帅”在第1行第5列;(2)第7行第4列【解析】(1)按照图中的表示数字,“将”在第9行第5列,“帅”在第1行第5列; (2)第7行第4列.15.答案见解析.【解析】答案不唯一,如:(1)(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(2)(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3)(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(4)(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(5)(3,5)→(3,4)→(3,3)→(4,3)→(5,3)等.16.(1)画图略(2)指令(3,20°)【解析】(1)如图:(2)给机器人的指令是(3,20°).17.(1)A→C(+3 ,+4 ),B→D(+3 ,-2 ),C→ D (+1,-2 );(2)10;(3)见解析.【解析】解:(1)A→C(+3,+4);B→D(+3,﹣2);C→D(+1,﹣2);(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;(3)甲虫A爬行示意图与点P的位置如图所示:18.(1)“经五纬一”在广播大厦旁边的十字路口;(2)“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”;(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近【解析】解:(1)如图:“经五纬一”在广播大厦旁边的十字路口.(2)如图:从“经七纬五”到达“经五纬一”的路线不唯一.例如,“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”.(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近.。
人教版初一七年级下册数学课时练《5.3.2 命题、定理、证明》试题试卷 含答案

《5.3.2命题、定理、证明》课时练1.下列语句中,不是命题的是()A.两点确定一条直线B.垂线段最短C.同位角相等D.作∠A的平分线2.下列语句中,是命题的是()①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④一个数能被2整除,则它也能被4整除;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤3.命题“两直线平行,内错角相等”的题设是.4.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.5.下列命题中,是真命题的是()A.若|x|=2,则x=2B.平行于同一条直线的两条直线平行C.一个锐角与一个钝角的和等于一个平角D.任何一个角都比它的补角小6.下列命题中,是假命题的是()A.若|x|=3,则x=3B.垂线段最短C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线7.判断命题“如果n<1,那么n2-1<0”是假命题,只需举出一个反例,反例中的n可以为()A.-2 B.-12C.0 D.128.如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.9.如图所示,如果∠1=∠2,那么AB∥CD,这个命题是真命题吗?若不是,请你再添加一个条件,使该命题成为真命题,并说明理由.10.下列说法正确的是()A.“作线段CD=AB”是一个命题B.过一点作已知直线的平行线有且只有一条C.命题“若x=1,则x2=1”是真命题D.所含字母相同的项是同类项11.下列命题是假命题的是()A.同角的余角相等B.内错角相等C.两点之间,线段最短D.同旁内角互补,两直线平行12.对于下列假命题,各举一个反例写在横线上.(1)“如果ac=bc,那么a=b”是一个假命题.反例:;(2)“如果a2=b2,那么a=b”是一个假命题.反例:.13.下列命题中,①若|a|=b,则a=b;②若直线l1∥l2,l1∥l3,则l2∥l3;③同角的补角相等;④同位角相等,是真命题的有(填序号).14.把下列命题写成“如果……那么……”的形式,并判断其真假.(1)等角的补角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.15.如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM ∥FN.求证:AB∥CD.16.如图,下列三个条件:①AB∥CD;②∠B=∠C;③∠E=∠F.从中任选两个作为条件,另一个作为结论组成一个真命题,并进行证明.17.(1)如图,DE∥BC,∠1=∠3,CD⊥AB,求证:FG⊥AB;(2)若把(1)中的“DE∥BC”与结论“FG⊥AB”对调,所得的命题是否为真命题?试说明理由;(3)若把(1)中的“∠1=∠3”与结论“FG⊥AB”对调呢?参考答案1.D2.A3.两条平行线被第三条直线所截,结论是内错角相等.4.(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同角的补角,那么它们相等.题设:两个角是同角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.5.B6.A7.A8.证明:∵BD平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.∴CD∥AB(同旁内角互补,两直线平行).9.解:假命题,添加BE∥DF.∵BE∥DF,∴∠EBD=∠FDN(两直线平行,同位角相等).∵∠1=∠2,∴∠EBD-∠1=∠FDN-∠2.∴∠ABD=∠CDN.∴AB∥CD(同位角相等,两直线平行).10.C11.B12.(1)3×0=(-2)×0;(2)32=(-3)2.13.②③.14.解:(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.(3)如果两个角相等,那么这两个角是内错角.是假命题.15.证明:∵EM∥FN,∴∠FEM=∠EFN.又∵EM平分∠BEF,FN平分∠CFE,∴∠BEF=2∠FEM,∠EFC=2∠EFN.∴∠FEB=∠EFC.∴AB∥CD.16.解:答案不唯一,如:已知:AB∥CD,∠B=∠C,求证:∠E=∠F.证明:∵AB∥CD,∴∠B=∠CDF.又∵∠B=∠C,∴∠CDF=∠C.∴EC∥BF.∴∠E=∠F.17.解:(1)证明:∵DE∥BC,∴∠1=∠2.又∵∠1=∠3,∴∠2=∠3.∴CD∥FG.∴∠BFG=∠CDB.∵CD⊥AB,∴∠CDB=90°.∴∠BFG=90°.∴FG⊥AB.(2)真命题.理由如下:∵CD⊥AB,FG⊥AB,∴CD∥FG.∴∠2=∠3.∵∠1=∠3,∴∠1=∠2.∴DE∥BC.(3)真命题.理由如下:同(2)可得∠2=∠3.∵DE∥BC,∴∠1=∠2.∴∠1=∠3.。
【★】人教版七年级下册数学课时练《5-4 平移》(含答案)

《5.4 平移》课时练1.下面生活中的物体的运动情况可以看成平移的是()A.摆动的钟摆B.在笔直的公路上行驶的汽车C.随风摆动的旗帜D.汽车玻璃上雨刷的运动2.如图,在一块长方形草地上原有一条等宽的笔直小路,现在要把这条小路改为同样宽度的等宽弯曲小路,则下列结论正确的有()A.改造后小路的长度不变B.改造后小路的长度变小C.改造后草地部分的面积变小D.改造后草地部分的面积不变3.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的()A.B.C.D.4.如图,将直线CD向上平移到AB的位置,若∠1=130°,则D的度数为()A.130°B.50°C.45°D.35°5.如图,将△ABC向右平移acm(a>0)得到△DEF,连接AD,若△ABC的周长是36cm,则四边形ABFD的周长是()A.(36+a)cm B.(72+a)cm C.(36+2a)cm D.(72+2a)cm 6.如图,用平移三角尺的方法可以检验出图中平行线共有()A.3对B.4对C.5对D.6对7.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.8.将周长为8的△ABC沿BC方向右移2个单位长度得到△DEF,则四边形ABFD的周长为()A.12 B.14 C.10 D.169.如图,一块形状为长方形ABCD的场地,长AB=98米,宽AD=46米,A、B两处入口E小路宽都为1米,两小路汇合处路口宽2米,其余部分种植草坪,那么草坪的面积为()A.4320平方米B.4410平方米C.4416平方米D.4508平方米10.下面的每组图形中,左面的图形平移后可以得到右面图形的是()A.B.C.D.11.如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为()A.3 B.4 C.5 D.612.如图,将△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,点C的对应点F在BC的延长线上,连接AD.下列结论一定正确的是()A.∠B=∠F B.AC⊥DE C.BC=DF D.AC平分DE 13.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.16 cm B.18 cm C.20 cm D.21 cm14.如图图形中,把△ABC平移后能得到△DEF的是()A.B.C.D.15.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米16.一个长方形花园,长为a,宽为b,中间有两条互相垂直的宽为c的路,则可种花的面积为.17.如图,将Rt△ABC沿BC方向平移得到Rt△DEF,如果AB=12cm,BE=5cm,DH=4cm,则图中阴影部分面积为cm2.18.白云宾馆在装修时,准备在主楼梯上铺上红地毯.已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图所示,则购买这种地毯至少需要元.19.如图,一块长方形草地,长为20米,宽为10米,草地上有一条弯曲的小路(小路任何地方的宽度都是2米),请你写出小路部分所占的面积是米2.20.如图,边长为8cm的正方形ABCD先向上平移4cm,再向右平移2cm,得到正方形A′B′C′D′,此时阴影部分的面积为.21.如图,将三角形ABC水平向右平移得到三角形DEF,A,D两点的距离为1,CE=2,∠A=72°,则:(1)AC和DF的关系式为,.(2)∠1=(度);(3)BF=.22.作图:△DEF是△ABC平移后的图形,F是C的对应点,画出△ABC.(保留画图痕迹)23.如图1,直线CB∥OA,∠A=∠B=120°,E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(1)求∠AOB及∠EOC的度数;(2)如图2,若平行移动AC,那么∠OCB:∠OFB的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;参考答案1.B 2.D 3.C 4.B 5.C 6.D 7.D 8.A 9.A 10.D 11.A 12.D 13.C 14.A 15.C16.ab﹣ac﹣bc+c2.17.50.18.504.19.20.20.24cm2.21.AC=DF,AC∥DF;108°;4.22.解:如图所示:△ABC即为所求.23.解:(1)∵CB∥OA∴∠BOA+∠B=180°,∴∠BOA=180°﹣120°=60°,∵∠FOC=∠AOC,OE平分∠BOF∴∠EOC=∠EOF+∠FOC=∠BOF+∠FOA=(∠BOF+∠FOA)=×60°=30°;(2)不变.∵CB∥OA∴∠OCB=∠COA,∠OFB=∠FOA,∵∠FOC=∠AOC∴∠COA=∠FOA,即∠OCB:∠OFB=1:2.。
数学课时练七年级下册答案人教版2020

数学课时练七年级下册答案人教版2020题型:选择题1.下列哪个小数是无限循环小数?A.0.12345B.0.131313…C.0.232323…D.0.1432182.若6m-2n=10,2m+n=11,则m的值为A. 3B. 1C. 2D. 43.在下列四个数中,与其它三个数的平均数不相等的是A. 20B. 18C. 15D. 124.一个长方形的长是3a,宽是4b,则它的周长为A. 5aB. 7aC. 12aD. 7b5.有两个数,它们的和是15,差是9,则这两个数分别为A.7和8B.6和3C.12和3D.9和6答案:1.B2.C3.C4.C5.D题型:填空题1.某班共50人,其中男生占(2/5),则女生人数为\_\_\_\_\_\_人。
2.小明买了一部手机,原价是2000元,还打了8折,他需要支付的钱数是\_\_\_\_\_\_元。
3.一列火车长180米,以每秒72千米的速度通过隧道,需要通过多长的时间?4.一个4位数,各位数字之和为9,千位数减个位数等于3,则这个数是\_\_\_\_\_\_。
5.如图,矩形面积是20cm^2,则b=\_\_\_\_\_\_。
\begin{flushright}\includegraphics[scale=0.4]{geometry.png}\end{flushright}答案:1.302.16003.2.5秒4.10355.4题型:解答题1.解方程:(3/x)=(2/3)+(1/2x)2.画一张平行四边形ABCD,其中AB=10cm,BC=6cm,将其平移得到平面上的图形A'B'C'D',其中AA'=5cm,A'B'与AB平行,B'C'与BC平行,求A'D'的长。
3.解如下一组不等式:\begin{cases}x+2y>6 \\y-2x<2\end{cases}4.求解下列方程:4(a-1)+5=17-3(a+4)5.如图,AB=AC,\angle A=90^\circ,AE是BC的中线,BD=8cm,求DE的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年度初一年下学期期末质量检测数 学 试 题(满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分).在答题卡上相应题目的答题区域内作答. 1.方程63-=x 的解是( )A .2-=xB .6-=xC .2=xD .12-=x 2.若a >b ,则下列结论正确的是( ).A.55-<-b aB. b a 33>C. b a +<+22D.33ba <3.下列图案既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.现有3cm 、4cm 、5cm 、7cm 长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是( ) A . 1 B . 2 C . 3 D . 4 5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购 其中某一种地砖镶嵌地面,可供选择的地砖共有( ) A .1种 B .2种 C .3种 D .4种6.一副三角板如图方式摆放,且∠1的度数比∠2的度数大50°,设1,2x y ︒︒∠=∠=,则可得方程组为( )50.180x y A x y =-⎧⎨+=⎩ 50.180x y B x y =+⎧⎨+=⎩ 50.90x y C x y =+⎧⎨+=⎩ 50.90x y D x y =-⎧⎨+=⎩7.已知,如图,△ABC 中,∠B =∠DAC ,则∠BAC 和∠ADC 的关系是( )A .∠BAC <∠ADCB .∠BAC =∠ADC C . ∠BAC >∠ADCD . 不能确定 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若25x y -+=,则________=y (用含x 的式子表示). 9.一个n 边形的内角和是其外角和的2倍,则n = . 10.不等式93-x <0的最大整数....解是 . 第6题图 第7题图11.三元一次方程组⎪⎩⎪⎨⎧=+=+=+895x z z y y x 的解是 .12.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 .13.如图,在△ABC 中,∠B =90°,AB =10.将△ABC 沿着BC 的方向平移至△DEF ,若平移的距离是3,则图中阴影部分的面积为 .14.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE =______度.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了 道题.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB ′C ′D ′的位置,旋转角为α (90<<αo ),若∠1=110°,则α=______°.17.如图所示,小明从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……,照这样下去,他第一次回到出发地A 点时,(1)左转了 次;(2)一共走了 米。
三、解答题(9小题,共89分)在答题卡上相应题目的答题区域内作答.18.(9分)解方程:62221+-=--y y y 19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来.20.(9分)解方程组:⎩⎨⎧=+=-16323y x y x21.(9分)解不等式组: 338213(1)8x x x-⎧+≥⎪⎨⎪--<-⎩(注:必须通过画数轴求解集)22.(9分)如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =30°,将△ABD沿AD 折叠得到△AED ,AE 与BC 交于点F . (1)填空:∠AFC = 度; (2)求∠EDF 的度数.23.(9分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得||2PC PA -的值最大.第16题 ACDB E FDE AB CE DB C A第12题图 第13题图 第14题图第17题图24.(9分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图中的图⑴);⑵过一条边的四等分点作这边的垂线段(图⑵)(图⑵中两个图形的分割看作同一方法).请你按照上述三个要求,分别在图⑶、图⑷两个正方形中画出另外两种不同的分割方法.............(正确画图,不写画法)25.(13分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A :月销售件数200件,月总收入2400元; 营业员B :月销售件数300件,月总收入2700元; 假设营业员的月基本工资为x 元,销售每件服装奖励y 元. (1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件? (3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点D .①当70α=时,BDC ∠度数= 度(直接写出结果); ②BDC ∠的度数为 (用含α的代数式表示);(2)如图2,若ABC ∠的平分线与ACE ∠角平分线交于点F ,求BFC ∠的度数(用含α的代数式表示).(3)在(2)的条件下,将FBC ∆以直线BC 为对称轴翻折得到GBC ∆,GBC ∠的角平分线与GCB ∠的角平分线交于点M (如图3),求BMC ∠的度数(用含α的代数式表示).AFAA2015-2016学年度初一年下学期期末质量检测数学试卷参考答案说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面得分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完涉及应得的累计分数. 一、选择题(每题3分,共21分)1.A2.B3.D4.C5.C6.C7.B 二、填空题(每题4分,共40分)8.52+x ;9.6;10.2; 11.⎪⎩⎪⎨⎧===632z y x ;12.4;13.30;14.15;15.5;16.20; 17.(1)11;(2)120.三、解答题:(89分) 18.(9分)解: 62221+-=--y y y )2(12)1(36+-=--y y y ………………3分 212336--=+-y y y ………………5分 321236--=+-y y y74=y …………………………8分 47=y …………………………9分 19.(9分)解不等式3315+≤-x x ,并把解集在数轴上表示出来. 解:1335+≤-x x ……………………2分 42≤x ………………………4分 2≤x ………………………6分它在数轴上的表示(略)(数轴正确1分,实心及方向2分)………………9分 20.(9分)解方程组:⎩⎨⎧⋯⋯=+⋯⋯⋯⋯=-)()(2163213y x y x21.(9分)解:由(1)得13≥x ……………………3分 由(2)得2->x ……………………6分 方法一:用代入法解的得分步骤解:由(1)得 3+=y x (3)……3分 把(3)代入(2) 得1633(2=++y y )解得2=y ………6分把2=y 代入(3) 得5=x ……8分方法二:用加减法解的得分步骤解:由(2)-(1)×2得 105=y …………………4分 2=y ……………6分 把2=y 代入(1)得5=x ……………………8分在数轴上表示两个解集(略)………7分所以原不等式组的解是:13≥x …………9分 22.(9分)解:(1)110; ………………………………………… 3分(2)解法一:∵∠B=50°,∠BAD=30°,∴∠ADB=180°-50°-30°=100°, ……… 5分 ∵△AED 是由△ABD 折叠得到,∴∠ADE=∠ADB=100°, …………………… 7分 ∴∠EDF=∠EDA+∠BDA-∠BDF=100°+100°-180°=20°. … 9分解法二: ∵∠B=50°,∠BAD=30°, ∴∠ADB=180°-50°-30°=100°, ……………………………………… 5分 ∵△AED 是由△ABD 折叠得到, ∴∠ADE=∠ADB=100°, …………………………………………………… 6分 ∵∠ADF 是△ABD 的外角, ∴∠ADF=∠BAD+∠B=50°+30°=80°,…………………………………… 7分 ∴∠EDF=∠ADE-∠ADF=100°-180°=20°. ……………………………… 9分(注:其它解法按步给分) 23.(9分)解:作图如下:24.(9分)答案不惟一.(注:画对一个得5分,两个得9分)25.(13分)解:(1)依题意得⎩⎨⎧=+=+27003002400200y x y x ………………………3分解得⎩⎨⎧==31800y x即x 的值为1800,y 的值为3.…………………………………………5分 (2)设他当月要卖服装m 件,由题意得:310031800≥+m ………………………………………………………8分 解得31433≥m ……………………………………………………………9分 ∵只能为正整数 ∴m 最小为434答:他当月至少要卖434件.………………………………………………10分 (3)设一件甲为a 元,一件乙为b 元,一件丙为c 元,则PACD BEF (1)正确画出△A 1B 1C 1. ………………3分 (2)正确画出△A 2B 2C 2. ………………6分 (3)正确画出点P . ……………………9分⎩⎨⎧=++=++3703235023c b a c b a …………………………………………………………11分 将两等式相加得720444=++c b a 则180=++c b a答:购买一件甲、一件乙、一件丙共需180元.………………………………13分 26.(13分)解:(1)①125;②α2190+;………………………………4分 (2)∵BF 和CF 分别平分ABC ∠和ACE ∠ ∴ABC FBC ∠=∠21,ACE FCE ∠=∠21……………5分 ∴FBC FCE BFC ∠-∠=∠……………………………6分 )(21ABC ACE ∠-∠= A ∠=21……………………………………………7分 即α21=∠BFC ………………………………………………8分 (3)由轴对称性质知:α21=∠=∠BFC BGC ………………10分 由(1)②可得BGC BMC ∠+=∠2190………………12分 ∴α4190+=∠BMC .……………………………………13分。