七年级数学下课时练习参考答案

合集下载

2023-2024学年人教部编版初中七年级下册数学课时练《5.3.2 命题、定理、证明》(含答案)

2023-2024学年人教部编版初中七年级下册数学课时练《5.3.2 命题、定理、证明》(含答案)

第三课青春的证明 3.2青春有格一、单项选择题:1. 青春,我们敢想敢做,但青春并不意味着放纵,也要懂得选择。

下列有关“选择”的说法不正确的是( ) A. 只要自己愿意,就可作出各种选择 B. “羞恶之心”是我们明确行为选择的理由C. 我们要树立底线意识,违背道德或法律的行为坚决不做D. 要独立思考,明辨是非善恶,不盲目从众,作出正确的选择2. “世界那么大,我想去看看”,但世界又是纷繁复杂的,美丑、善恶交织在一起,这就要求我们“行己有耻”。

引导我们辨别是非、做出正确选择的主要因素是( )A. 恻隐之心B. 辞让之心C. 是非之心D. 羞恶之心3. 很多人觉得自己计划完不成,拖延,生活中养成种种恶习的根源在于自控力不强。

下列增强自控力的合理建议是( )①每天坚持做一些自己力所能及的事情①认真记录一些自己平时不关注的事情①尝试不做某些事情,纠正自己的行为①拒绝一切娱乐活动,专注提高学习成绩A. ①②③B. ①②④C. ①③④D. ②③④4. 后汉东莱太守杨震经过管辖地昌邑县时,县令王密送去十金,并说“暮夜无知者”。

杨震严词拒受,说:“天知,地知,你知,我知,何谓无知?”人们因此称他为“四知太守”。

杨震值得我们当代人学习的品质是( ) A. 自信,要相信自己的能力 B. 自爱,不做有损人格的事C. 自强,有不断进取的精神D. 自负,遇事有自己的主见5. “行己有耻”需要我们磨砺意志,拒绝不良诱惑,不断增强自控力。

我们要做到()①增强“我不要”的力量。

尝试不做某些事情,纠正自己的行为①增强“我想要”的力量。

每天坚持做一些自己未能做到的事情①加强自我监控。

认真记录一些自己平时不关注的事①面对挫折,半途而废A. ①①①B. ①①①C. ①①①D. ①①①6. “行己有耻”出自《论语·子路》。

春秋时期的孔子曾说:“行己有耻,使于四方,不辱君命,可谓士矣。

”下列行为中,没有做到“行己有耻”的是( )①拿别人的缺点、缺陷、姓名开玩笑②经常帮助同学,特别是身体残疾的同学③喜欢散播小道消息,专门讲同学的糗事④上课时给同学讲故事听,逗同学发笑A. ①①①B. ①①①C. ①①①D. ①①①7. 雨果说:“谁虚度了年华,青春就将褪色。

北京课改版数学七年级下册同步课时练习:7.1 观察(word版含答案)

北京课改版数学七年级下册同步课时练习:7.1  观察(word版含答案)

7.1 观察1.认识来源于实践,观察与实验是我们认识事物的重要方法.学习数学同样如此,通过观察与实验,我们可以发现许多规律.2.观察是获得感性认识的重要途径,但观察得到的结果是否正确,还需要经过验证.1.如用数学的眼光欣赏这个蝴蝶案,它的一种数学美体现在蝴蝶案的()A.轴对称性B.用字母表示数C.随机性D.数形结合2.下列四个形中,与其他三个形不同的是()3.将三角形、菱形、正方形、圆四种形(大小不计)组合,如观察并思考最后一对应的数为()A.13B.24C.31D.424.根据规律补全空缺的数字:.5.如示的镜子中看到的号码实际是.6.下表中的每一对x,y的值都是方程y=x+3的一个解:x…-4 -3 -2 -1 0 1 2 …y…-1 0 1 2 3 4 5 …①y的值随着x的增大越来越大;②当x<0时,y的值大于3;③当x<-3时,y的值小于0.上述结论中,所有正确结论的序号是()A.①②B.②③C.①③D.①②③7.最近网上一个烧脑问题的关注度很高(如示),通过观察,分析形,你认为打开水龙头,哪个杯子会先装满水()A.3号杯子B.5号杯子C.6号杯子D.7号杯子8.某个学生的识别案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如,第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生,则表示6班学生的识别案是()答案7.1观察1.A2.C解:B,D选项中的形经过旋转变换都可以转化为A选项中的形,但是C选项中的形是由A选项中的形经过对称变换得到的.3.C4.3解:由可知,每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和, 故空缺的数字是1+2=3.5.32656.C7.A8.B。

人教版七年级下册数学课时练《8.4 三元一次方程组的解法》试卷含答案

人教版七年级下册数学课时练《8.4 三元一次方程组的解法》试卷含答案

人教版七年级数学下册 第八章 二元一次方程组8.4 三元一次方程组的解法 课后练习一、选择题1.下列方程组是三元一次方程组的是( )A .123x y y z z x +=⎧⎪+=⎨⎪-=⎩B .02310x y z x yz y z ++=⎧⎪-=⎨⎪-=⎩C .22154x y y z x z ⎧+=⎪+=⎨⎪-=⎩D .563x y w z z x +=⎧⎪+=⎨⎪+=⎩2.三元一次方程5x y z ++=的正整数解有( )A .2组B .4组C .6组D .8组 3.已知代数式2ax bx c ++,当1x =-时,其值为4;当1x =时,其值为8;当x =2时,其值为25;则当3x =时,其值为( ).A .4B .8C .62D .524.若实数,,x y z 满足41233x y z x y z -+=⎧⎨-+=⎩,则6x y z ++=( ) A .3- B .0 C .3 D .不能确定值 5.已知三个实数a 、b 、c 满足a+b+c =0,a ﹣b+c =0,则下列结论一定成立的是( ) A .a+b≥0 B .a+c >0 C .b+c≥0 D .b 2﹣4ac≥06.如果方程组864x y y z z x +=⎧⎪+=⎨⎪+=⎩的解使代数式kx +2y ﹣3z 的值为8,则k =( )A .13B .﹣13C .3D .﹣37.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).A .11支B .9支C .7支D .5支 8.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后,他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共多少个子女?( )A .1个B .2个C .3个D .4个 9.小明妈妈到文具店购买三种学习用品,其单价分别为2元、4元、6元,购买这些学习用品需要56元,经过协商最后以每种单价均下调0.5元成交,结果只用了50元就买下了这些学习用品,则小明妈妈有几种不同的购买方法.( )A .6B .5C .4D .310.一个宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团25人准备同时租用这三种客房共9间,如果每个房间都住满,则租房方案共有( )A .4种B .3种C .2种D .1种二、填空题11.已知2234x y y z x z +++===-,则2x y z ++=________. 12.已知3203340x y z x y z -+=⎧⎨--=⎩,则::x y z =___________. 13.对于实数x ,y 定义新运算x y ax by cxy ⋅=++其中a ,b ,c 为常数,若123,234⋅=⋅=,且有一个非零常数d ,使得对于任意的x ,恒有x d x ⋅=,则d 的值是____.14.有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,如果放牧16头牛,则__________天可以吃完牧草.15.重庆市举行了中学生足球联赛,共赛17轮(即每队均需比赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.若文德中学足球队的积分为16分,且踢平场数是所负场数的整数倍,且胜、平、负的场数各不相同.则文德中学足球队共负____场.三、解答题16.解方程:(1)11425x y x y z x y z =+⎧⎪++=⎨⎪+-=⎩(2)3743225x y y z x z -=-⎧⎪+=⎨⎪-=-⎩ (3)1151x y z y z x z x y +-=⎧⎪+-=⎨⎪+-=⎩(4)::3:4:536x y z x y z =⎧⎨++=⎩ 17.已知方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式23x y z -+的值等于-10,求a 的值.18.在等式2y ax bx c =++中,当1x =时,2y =-;当1x =-时,20y =;当32x =与13x =时,y 的值相等.求a ,b ,c 的值.19.在等式2y ax bx c =++中,当1x =-时,0y =;当5x =时,60y =;当x =0时,5y =-,求222a ab c ++的值.20.已知y =ax 2+bx +c ,当x =1时,y =8;当x =0时,y =2;当x =﹣2时,y =4. (1)求a ,b ,c 的值;(2)当x =﹣3时,求y 的值.21.阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:18x y =⎧⎨=⎩就是方程3x +y =11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组206x y z x y z -+=⎧⎨++=⎩的一组“好解”. (1)求方程x +2y =5的所有“好解”;(2)关于x ,y ,k 的方程组155327x y k x y k ++=⎧⎨++=⎩有“好解”吗?若有,请求出对应的“好解”;若没有,请说明理由.22.某工程由甲、乙两队合作需6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合作需10天完成,厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23,此时厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)若要不超过15天完成全部工程,问由哪队单独完成此项工程花钱最少?请说明理由.23.若一个四位正整数abcd 满足:a +d =b +c ,我们就称该数是“心想事成数”.比如:对于四位数5263,∵5+3=2+6,∵5263是“心想事成数”,对于四位数1276,∵1+6≠2+7,∵1276不是“心想事成数”.(1)直接写出最小的“心想事成数”和最大的“心想事成数”;(2)判断3625是否为“心想事成数”,并说明理由;(3)若一个“心想事成数”,满足个位上的数字是百位上的数字的两倍,且千位上的数字与十位上的数字之和能被8整除,请求出所有满足条件的“心想事成数”.参考答案1.A 2.C 3.D 4.A 5.D 6.A 7.D 8.C 9.D 10.B 11.-1012.9:5:313.414.1815.1或516.(1)653xyz=⎧⎪=⎨⎪=⎩;(2)2112xyz⎧⎪=-⎪=⎨⎪⎪=⎩;(3)683xyz=⎧⎪=⎨⎪=⎩;(4)91215xyz=⎧⎪=⎨⎪=⎩17.53a=-.18.6113abc=⎧⎪=-⎨⎪=⎩19.2220.(1)731132abc⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩;(2)1221.(1)5xy=⎧⎨=⎩或31xy=⎧⎨=⎩或12xy=⎧⎨=⎩(2)有,96xyk=⎧⎪=⎨⎪=⎩或1014xyk=⎧⎪=⎨⎪=⎩或1122xyk=⎧⎪=⎨⎪=⎩或123xyz=⎧⎪=⎨⎪=⎩22.(1)甲、乙、丙各队单独完成全部工程分别需10天,15天,30天.;(2)由乙队单独完成此工程花钱最少.23.(1)最小的“心想事成数”为1010;最大的“心想事成数”为9999;(2)四位数3625是“心想事成数”,理由见解析;(3)所有满足条件的“心想事成数”有:3254,2468,7294,4040,8080。

人教版七年级下册数学平面直角坐标系课时练习(附答案)

人教版七年级下册数学平面直角坐标系课时练习(附答案)

人教版七年级下册数学平面直角坐标系课时练习(附答案)一、单选题1.在平面直角坐标系中,点P(3,-4)到x轴的距离是()A.3B.-3C.4D.-42.在平面直角坐标系中,已知点A(m﹣1,2m﹣2),B(﹣3,2).若直线AB∥y轴,则线段AB的长为()A.2B.4C.6D.83.如果把电影票上“5排3座”记作(5,3),那么(4,9)表示()A.“4排4座”B.“9排4座”C.“4排9座”D.“9排9座”4.若点A(-3,m)在x轴上,那么点B(m+1,m-2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,点P(a,b)在第二象限,则点P(−a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,点A(x,y)在第四象限,且|x|=2,|y|=3,将点A向左平移3个单位长度后得到点A′,则点A′的坐标是()A.(−2,3)B.(5,−3)C.(−1,−3)D.(2,−6)7.已知点A(2x−4,x+3)在第二象限,则x的取值范围是()A.−3<x<2B.x>−3C.x<2D.x>28.在平面直角坐标系中,点A(0,a),点B(0,4﹣a),且A在B的下方,点C(1,2),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0<a≤1C.1≤a<2D.﹣1≤a≤1二、填空题9.在平面直角坐标系中,点M在第四象限,且到x轴y轴的距离分别为6,4,则点M的坐标为.10.若点A(m+3,m−3)在x轴上,则m=.11.点(2,3)在哪个象限.12.已知平面直角坐标系中的点P(a﹣3,2)在第二象限,则a的取值范围是13.已知点P的坐标为(2,﹣5),则P点到x轴的距离为个单位长度.14.在平面直角坐标系中,若点P(m+3,3−m)在y轴上,则m的值是.15.已知点P(-2x,3x+1)是平面直角坐标系中第二象限内的点,且点P到两坐标轴的距离之和为11,则点P的坐标16.点A(m−1,m+2)在x轴上,则此点坐标为;点B(3,a−1)在二、四象限的角分线上,则此点坐标为;点C在x轴下方,距离x轴2个单位长度,距离y轴3个单位长度,则此点的坐标为.17.点P(3+a,a+1)到x轴距离为3,则点P到y轴的距离为.18.如图,李老师家在2街与2巷的十字路口附近,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示李老师从家到学校上班的一条路线.请你用同样的方式写出从家到学校的另外一线:.19.在平面直角坐标系中,若点A(a,−b)在第三象限,则点B(−ab,b)在第象限.20.如图,在平面直角坐标系中,一个质点P从点P1(−1,0)出发,运动到点P2(−1,−1),运动到点P3(1,−1),运动到点P4(1,1),运动到点P5(−2,1),运动到点P6(−2,−2)……按照上述规律运动下去,则点P2022的坐标为.三、作图题21.对于边长为6的等边三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.22.如图,是由边长为1个单位长度的小正方形组成的网格图.⑴请在图中建立平面直角坐标系,使A、B两点的坐标分别为A(2,3)、B(﹣2,0);⑴正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图中画出格点⑴ABC使得AB=AC,请写出在⑴中所建坐标系内所有满足条件的点C的坐标.四、解答题23.如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.24.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜.答案1.C 2.D 3.C 4.D 5.A 6.C 7.A 8.B 9.(4,﹣6)10.3 11.第一象限12.a<3 13.5 14.-3 15.(-4,7)16.(−3,0);(3,−3);(−3,−2)或(3,−2)17.1或518.答案不唯一:如(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4)19.一20.(-506,-506)21.解:以BC边所在直线为x轴,BC边的垂直平分线为y轴建立如图所示的直角坐标系.OA=√AC2−OC2=√62−32=√27=3√3∴各顶点坐标分别为:A(0,3√3),B(−3,0),C(3,0).22.解:⑴如图所示:⑴如图所示,点C即为所求,其坐标为(﹣3,3)或(﹣1,﹣1)或(2,﹣2)或(5,﹣1)或(6,0)或(7,3).23.解:答案不唯一,如:⑴(3,5)→(4,5)→(4,4)→(5,4)→(5,3);⑴(3,5)→(4,5)→(4,4)→(4,3)→(5,3);⑴(3,5)→(3,4)→(4,4)→(5,4)→(5,3);⑴(3,5)→(3,4)→(4,4)→(4,3)→(5,3);⑴(3,5)→(3,4)→(3,3)→(4,3)→(5,3)等.24.解:∵白棋已经有三个在一条直线上,∴甲必须在(5,3)或(1,7)位置上落子,才不会让乙马上获胜.。

七年级数学下册第7章 7.5 多边形的内角和与外角和 课时练习(含答案解析)

七年级数学下册第7章 7.5 多边形的内角和与外角和 课时练习(含答案解析)

7.5 多边形的内角和与外角和一.选择题1.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°2.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.193.过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.把一副三角板按如图叠放在一起,则∠α的度数是()A.165°B.160°C.155° D.150°5.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°7.正多边形的一个内角为135°,则该多边形的边数为()A.5 B.6 C.7 D.88.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α9.(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.(2017•临沂)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形11.(2017•台湾)如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3 B.∠1=∠3>∠2 C.∠2>∠1=∠3 D.∠3>∠1=∠2 12.(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°13.(2017•郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360° D.270°14.(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形二.填空题15.(2017•广东)一个n边形的内角和是720°,则n=.16.(2017•西宁)若正多边形的一个外角是40°,则这个正多边形的边数是.17.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.18.(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.19.(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为.20.(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.21.(2017•南京)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.三.解答题22.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE.(1)当∠BAC=40°时,∠BPC=,∠BQC=;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC 的度数.23.(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°理由:连接A1A4∵∠1+∠2+∠A1OA4=180°∠A5+∠A6+∠A5OA6=180°又∵∠A1OA4=∠A5OA6∴∠1+∠2=∠A5+∠A6∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°即S=360°(2)延伸探究:①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明②如图3是二环五边形,可得S=,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S=度.(用含n的代数式表示最后的结果)24.分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n边形的边数n表示对角线总条数S的式子:.(2)从十五边形的一个顶点可以引出条对角线,十五边形共有条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.25.请你裁定,你一定要主持公道啊!小明和小方分别设计了一种求n边形的内角和(n为大于2的整数)的方案:(1)小明是在n边形内任取一点P,然后分别连接PA1,PA2,…,PA n(如图①);(2)小方是在n边形的一边A2A3上任取一点P,然后分别连接PA1,PA4,…,PA n(如图②).请你评判这两种方案是否可行;如果不可行,请你说明理由;如果可行,请你分别沿着两种方案的设计思路,求出n边形的内角和.26.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.27.问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=.请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,并说明理由;解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P与∠B、∠D的关系为.28.△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图1,求证:∠AIB=∠ADI;(2)如图2,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.29.如图1,已知△ABC,射线CM∥AB,点D是射线CM上的动点,连接AD.(1)如图2,若∠ACB=∠ABC,∠CAD的平分线与BC的延长线交于点E.①若∠BAC=40°,AD∥BC,则∠AEC的度数为;②在点D运动的过程中,探索∠AEC和∠ADC之间的数量关系;(2)若∠ACB=n∠ABC,∠CAD内部的射线AE与BC的延长线交于点E,∠CAE=n ∠EAD,那么∠AEC和∠ADC之间的数量关系为.30.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论.小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB=180°(平角定义),∴∠A+∠B+∠ACB=180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.31.(1)如图①,你知道∠BOC=∠1+∠2+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=;x=(3)如图③,一个六角星,其中∠BOD=80°,求∠A+∠B+∠C+∠D+∠E+∠F的度数.参考答案与试题解析一.选择题1.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°【分析】先求出∠2,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选B.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.2.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.19【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点评】此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.3.过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】根据n边形从一个顶点出发可引出(n﹣3)条对角线,可组成n﹣2个三角形,依此可得n的值.【解答】解:根据n边形从一个顶点出发可引出(n﹣3)条对角线,可组成n﹣2个三角形,∴n﹣2=5,即n=7.故选C.【点评】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.4.把一副三角板按如图叠放在一起,则∠α的度数是()A.165°B.160°C.155° D.150°【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再求出∠α即可.【解答】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选:A.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【分析】利用“设k法”求出最大角的度数,然后作出判断即可.【解答】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.【点评】本题考查了三角形的内角和定理,利用“设k法”表示出三个内角求解更加简便.6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°【分析】根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点评】此题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解决问题的关键.7.正多边形的一个内角为135°,则该多边形的边数为()A.5 B.6 C.7 D.8【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数,根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:∵正多边形的一个内角为135°,∴外角是180﹣135=45°,∵360÷45=8,则这个多边形是八边形,故选D.【点评】本题考查了外角和的大小与多边形的边数无关,由外角和求正多边形的边数,难度适中.8.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:B.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,关键是先求出∠ABC+∠BCD的度数.9.(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.10.(2017•临沂)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n ﹣2)•180°.11.(2017•台湾)如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3 B.∠1=∠3>∠2 C.∠2>∠1=∠3 D.∠3>∠1=∠2【分析】根据多边形的内角和与外角和即可判断.【解答】解:∵(180°﹣∠1)+∠2=360°﹣90°﹣90°=180°∴∠1=∠2∵(180°﹣∠2)+∠3=360°﹣85°﹣90°=185°∴∠3﹣∠2=5°,∴∠3>∠2∴∠3>∠1=∠2故选(D)【点评】本题考查多边形的内角与外角,解题的关键是熟练运用多边形的内角和与外角和,本题属于基础题型.12.(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,∴x=30°,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.13.(2017•郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360° D.270°【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.14.(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.二.填空题15.(2017•广东)一个n边形的内角和是720°,则n=6.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.16.(2017•西宁)若正多边形的一个外角是40°,则这个正多边形的边数是9.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.【点评】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单.17.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.18.(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.19.(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为15°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.20.(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.21.(2017•南京)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=425°.【分析】根据补角的定义得到∠AED=115°,根据五边形的内角和即可得到结论.【解答】解:∵∠1=65°,∴∠AED=115°,∴∠A+∠B+∠C+∠D=540°﹣∠AED=425°,故答案为:425.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.三.解答题22.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE.(1)当∠BAC=40°时,∠BPC=70°,∠BQC=125°;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC 的度数.【分析】(1)根据三角形的外角性质分别表示出∠DBC与∠BCE,再根据角平分线的性质可求得∠CBP+∠BCP,最后根据三角形内角和定理即可求解;根据角平分线的定义得出∠QBC=∠PBC,∠QCB=∠PCB,求出∠QBC+∠QCB的度数,根据三角形内角和定理求出即可;(2)根据平行线的性质得到∠MBC+∠NCB=180°,依此求解即可;(3)根据题意得到∠MBC+∠NCB,再根据三角形外角的性质和三角形内角和定理得到∠BOC的度数.【解答】解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=∠PBC,∠QCB=∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;故答案为:70°,125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∴(∠DBC+∠BCE)=180°,即(180°+∠BAC)=180°,解得∠BAC=60°;(3)∵∠BAC=120°,∴∠MBC+∠NCB=(∠DBC+∠BCE)=(180°+α)=225°,∴∠BOC=225°﹣180°=45°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.23.(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°理由:连接A1A4∵∠1+∠2+∠A1OA4=180°∠A5+∠A6+∠A5OA6=180°又∵∠A1OA4=∠A5OA6∴∠1+∠2=∠A5+∠A6∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°即S=360°(2)延伸探究:①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明②如图3是二环五边形,可得S=1080,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S=360(n﹣2)度.(用含n的代数式表示最后的结果)【分析】在(1)的基础上类似作辅助线,把要求的所有角转换到一个多边形中,再根据多边形的内角和定理进行求解.【解答】解:(1)如图所示,则S=∠A1+∠A2+…+∠A8=S=∠A1+∠A2+…+∠A5+∠M+∠1+∠2=(6﹣2)×180°=720°.(2)依此类推,得是二环五边形时,则S=1080°;推而广之,二环n边形(n≥3的整数)时,S=360(n﹣2).【点评】此题主要是巧妙构造辅助线把要求的角能够构造到一个多边形中.n边形的内角和是(n﹣2)×180°.24.分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n边形的边数n表示对角线总条数S的式子:S=n(n﹣3).(2)从十五边形的一个顶点可以引出12条对角线,十五边形共有90条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.【分析】(1)根据多边形对角线的条数的公式即可求解;(2)根据多边形对角线的条数的公式代值计算即可求解;(3)根据等量关系:一个多边形对角线的条数与它的边数相等,列出方程计算即可求解.【解答】解:如图所示:(1)用n边形的边数n表示对角线总条数S的式子:S=n(n﹣3);(2)十五边形从一个顶点可引出对角线:15﹣3=12(条),共有对角线:×15×(15﹣3)=90(条);(3)设多边形有n条边,则n(n﹣3)=n,解得n=5或n=0(应舍去).故这个多边形的边数是5.故答案为:S=n(n﹣3);12,90.【点评】本题主要考查了多边形对角线的条数的公式总结,熟记公式对今后的解题大有帮助.25.请你裁定,你一定要主持公道啊!小明和小方分别设计了一种求n边形的内角和(n为大于2的整数)的方案:(1)小明是在n边形内任取一点P,然后分别连接PA1,PA2,…,PA n(如图①);(2)小方是在n边形的一边A2A3上任取一点P,然后分别连接PA1,PA4,…,PA n(如图②).请你评判这两种方案是否可行;如果不可行,请你说明理由;如果可行,请你分别沿着两种方案的设计思路,求出n边形的内角和.【分析】两种方案都是可行的,方案一可按照思路:n个三角形的内角和减去一个周角的度数,方案二按照思路:(n﹣1)个三角形的内角和减去一个平角的度数.【解答】解:小明和小方的方案均可行.理由如下:小明的方案:n边形的内角和等于n个三角形的内角和减去一个周角,即n边形的内角和为n×180°﹣360°为(n﹣2)×180°;小方的方案:n边形的内角和等于(n﹣1)个三角形的内角和减去一个平角,即n边形的内角和为(n﹣1)×180°﹣180°为(n﹣2)×180°.【点评】本题考查了多边形的内角和,解答本题关键是仔细观察所给图形,利用三角形的内角和定理解答.26.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).【点评】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.27.问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为∠AOC=∠A+∠C+∠P.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“外角的性质”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=∠B+∠C.请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,并说明理由;解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P与∠B、∠D的关系为∠P=90°+(∠B+∠D).【分析】问题1:根据三角形的外角的性质即可得到结论;问题2:根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;解决问题1:根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;解决问题2:根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.【解答】解:问题1:连接PO并延长.则∠1=∠A+∠2,∠3=∠C+∠4,∵∠2+∠4=∠P,∠1+∠3=∠AOC,∴∠AOC=∠A+∠C+∠P;故答案为:∠AOC=∠A+∠C+∠P;问题2:如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∵∠2+∠B=∠3+∠P,∠1+∠P=∠4+∠D,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(28°+48°)=38°;解决问题1:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,在四边形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°﹣(∠B+∠D);解决问题2:如图4,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+(∠B+∠D).故答案为:∠P=90°+(∠B+∠D).解法二:如图3,∵AP平分△AOB的外角∠FAD,CP平分△COD的外角∠BCE,∴∠1=∠2,∠3=∠4,分别作∠BAD、∠BCD的角平分线交于点M,则∠5=∠6,∵∠1+∠2+∠5+∠6=180°,∴∠2+∠6=90°,即∠PAM=90°,同理:∠PCM=90°,∴在四边形APCM中,∠P+∠M=180°,由问题2,得∠M=(∠B+∠D).∴∠P=180°﹣(∠B+∠D).如图4中,作∠BCD的角平分线,交AP的延长线于点N,则∠1=∠2,由问题2,得∠N=(∠B+∠D).∵CP平分△COD的外角∠BCE,∴∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠1+∠4=90°,即∠PCN=90°,∵∠APC=∠PCN+∠N∴∠APC=90°+(∠B+∠D).【点评】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8字形”的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.28.△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图1,求证:∠AIB=∠ADI;(2)如图2,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.【分析】(1)只要证明∠AIB=90°+∠ACB,∠ADI=90°+∠ACB即可;(2)①只要证明∠IDC=∠DCF即可;②首先求出∠ACE﹣∠ABC=∠BAC=70°,再证明∠F=∠ACE﹣∠ABC=(∠ACE ﹣∠ABC)即可解决问题;【解答】(1)证明:∵AI、BI分别平分∠BAC,∠ABC,∴∠BAI=∠BAC,∠ABI=∠ABC,∴∠BAI+∠ABI=(∠BAC+∠ABC)=(180°﹣∠ACB)=90°﹣∠ACB,∴在△ABI中,∠AIB=180°﹣(∠BAI+∠ABI)=180°﹣(90°﹣∠ACB)=90°+∠ACB,∵CI平分∠ACB,∴∠DCI=∠ACB,∵DI⊥IC,∴∠DIC=90°,∴∠ADI=∠DIC+∠DCI=90°+∠ACB,∴∠AIB=∠ADI.(2)①解:结论:DI∥CF.理由:∵∠IDC=90°﹣∠DCI=90°﹣∠ACB,∵CF平分∠ACE,∴∠ACF=∠ACE=(180°﹣∠ACB)=90°﹣∠ACB,∴∠IDC=∠ACF,∴DI∥CF.②解:∵∠ACE=∠ABC+∠BAC,∴∠ACE﹣∠ABC=∠BAC=70°,∵∠FCE=∠FBC+∠F,∴∠F=∠FCE﹣∠FBC,∵∠FCE=∠ACE,∠FBC=∠ABC,∴∠F=∠ACE﹣∠ABC=(∠ACE﹣∠ABC)=35°【点评】本题考查三角形的内角和定理、三角形的外角的性质、平行线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.29.如图1,已知△ABC,射线CM∥AB,点D是射线CM上的动点,连接AD.(1)如图2,若∠ACB=∠ABC,∠CAD的平分线与BC的延长线交于点E.①若∠BAC=40°,AD∥BC,则∠AEC的度数为35°;②在点D运动的过程中,探索∠AEC和∠ADC之间的数量关系;(2)若∠ACB=n∠ABC,∠CAD内部的射线AE与BC的延长线交于点E,∠CAE=n ∠EAD,那么∠AEC和∠ADC之间的数量关系为∠AEC=∠ADC.【分析】(1)①先根据三角形的内角和求∠ACB=70°,由平行线的性质得:∠DAC=70°,利用角平分线得:∠DAE=35°,最后利用平行线的内错角相等得结论;②设∠CAE=x,∠BAC=y,在△ACD和△ABE中根据三角形内角和表示∠ADC和∠AEC,可得结论;(2)如图3,设∠ABC=x,∠EAD=y,则∠ACB=nx,∠CAE=ny,在△ACE中根据外角的性质得:∠AEC=nx﹣ny=n(x﹣y),在△ADC中,根据三角形内角和可得∠ADC的度数,由此可得结论.【解答】解:(1)①如图2,∵∠BAC=40°,∴∠ACB+∠ABC=180°﹣40°=140°,∵∠ACB=∠ABC,∴∠ACB=70°,∵AD∥BC,∴∠DAC=∠ACB=70°,∵AE平分∠DAC,∴∠DAE=∠DAC=×70°=35°,∵AD∥BC,∴∠AEC=∠DAE=35°,故答案为:35°;②∠ADC=2∠AEC,理由是:设∠CAE=x,∠BAC=y,则∠EAD=x,∠ABC=,∵AB∥CM,∴∠ACM=∠BAC=y,∴∠ADC=180﹣2x﹣y,△ABE中,∠AEC=180﹣x﹣y﹣=90﹣x﹣,。

2023-2024学年人教部编版初中七年级下册数学课时练《7.2.1 用坐标表示地理位置》(含答案)

2023-2024学年人教部编版初中七年级下册数学课时练《7.2.1 用坐标表示地理位置》(含答案)

人教版七年级下册数学《7.2.1用坐标表示地理位置》课时练学校:___________姓名:___________班级:___________一、选择题1.小明向同学介绍自己家的位置,下列表述最恰当的是()A.在学校的东南方向B.在东南方向900米处C.距学校900米处D.在学校东南方向900米处2.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )A.(3,2) B.(1,3)C.(0,3) D.(-3,3)3.小张和小陈都在电影院看电影,小张的位置用(a,b)表示,小陈的位置用(x,y)表示,我们约定“排数在前,列数在后”,若小张恰在小陈的正前方,则( )A.a=x B.b=y C.a=y D.b=x4.如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A可用(2,3)表示,如果小惠不想因点到地雷而结束游戏的话,下列选项中,她应该点()A.(7,2) B.(2,6) C.(7,6) D.(4,5)5.如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)( )A.(2,2)→(2,5)→(5,6)B.(2,2)→(2,5)→(6,5)C.(2,2)→(6,2)→(6,5)D.(2,2)→(2,3)→(6,3)→(6,5)6.下列数据不能确定物体位置的是()A.电影票5排8号B.东经118北纬40C.希望路25号D.北偏东307.海事救灾船前去救援某海域失火货轮,需要确定( )A.方位B.距离C.方位和距离D.失火轮船的国籍二、填空题8.某人从A点沿北偏东60︒的方向走了100米到达点B,再从点B沿南偏西10︒的方向走了100米到达点C,那么点C在点A的南偏东__度的方向上.9.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(-1,-2)表示,小军的位置用(1,-1)表示,那么你的位置可以表示成________.10.对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+kb,ka+b)(其中k为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.11.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______); (2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.12.如图,以灯塔A 为观测点,小岛B 在灯塔A 的北偏东45°方向上,距灯塔A 20 km 处. 若以小岛B 为观测点,则灯塔A 在小岛B 的 方向上,距小岛B km 处.三、解答题13.小兰和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图(如图),可是她忘记了在图中标出原点和x 轴、y 轴,只知道游乐园的位置D 的坐标为(2,-2),你能帮她求出其他各景点所在位置的坐标吗?14.图中标明了李明同学家附近的一些地方,已知李明同学家位于(-2,-1).(1)建立平面直角坐标系,写出学校,邮局的坐标;(2)某星期日早晨,李明同学从家里出发,沿着(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过的地方;(3)连接他在(2)中经过的地点,你能得到什么图形?15.如图,对于平面直角坐标系中的任意两点A,B给出如下定义:过点A作直线m⊥x轴,过点B作直线n⊥y轴,直线m,n交于点C,我们把BC叫做A,B两点之间的水平宽,记作d1(A,B),即d1(A,B)=|x A﹣x B|,把AC叫做A,B两点之间的铅垂高,记作d2(A,B),即d2(A,B)=|y A﹣y B|.特别地,当AB⊥x轴时,规定A,B两点之间的水平宽为0,即d1(A,B)=0,A,B两点之间的铅垂高为线段AB的长,即d2(A,B)=|y A﹣y B|;当AB⊥y轴时,规定A,B两点之间的水平宽为线段AB的长,即d1(A,B)=|x A﹣x B|,A,B两点之间的铅垂高为0,即d2(A,B)=0;(1)已知O为坐标原点,点P(2,﹣1),则d1(O,P)=,d2(O,P)=.(2)已知点Q(3t,﹣2t+2).①若点D(0,2),d1(Q,D)+d2(Q,D)=5,求t的值;②若点D(﹣2t,3t),直接写出d1(Q,D)+d2(Q,D)的最小值.16如图,一只乌鸦从其巢(点O)飞出,飞向其巢东6km北10km的一点A,在该点它发现有一个稻草人,所以就转向,再向东8km北4km的地方B飞去.在那里它吃了一些谷物后立即返巢O,假设乌鸦总是沿直线飞行的,则乌鸦所飞的路径构成了一个三角形OAB(1)若点O的坐标为(0,0),点A的坐标为(6,10),写出点B的坐标.(2)试求三角形OAB的面积.17.如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.(3)汽车行驶到什么位置时,距离两村的和最短?请在图中画出这个位置,并求出此时汽车到两村距离的和.参考答案1.D 2.B 3.B 4.D 5.A 6.B 7.B8.559.(3,1)10.±511.3+ 4+ 2+ 0 D 2- ()2,2--12.答案为:南偏西45°,20.13. 解:由题意可知,是以点F 为坐标原点(0,0),射线FA 为y 轴的正半轴建立的平面直角坐标系,则音乐台的位置A(0,4),湖心亭的位置B(-3,2),望春亭的位置C(-2,-2),牡丹园的位置E(3,3)14.(1)学校(1,3),邮局(0,-1);(2)商店,公园,汽车站,水果店,学校,游乐场,邮局;(3)像一艘帆船15.(1)2,1;(2)①±1;②2.16.(1)(14,14);(2)228km .17.(1)汽车行驶到点(2,0)时离A 村最近,坐标是(2,0);(2)汽车行驶到点(7,0)时离B 村最近,点的坐标是(7,0);(3)汽车行驶到C (113,0)时,距离两村的和最短,。

8.2.1 不等式的解集 华东师大版数学七年级下册课时练习(含解析)

8.2.1 不等式的解集 华东师大版数学七年级下册课时练习(含解析)

8.2.1不等式的解集一、选择题(共10小题)1.下列说法正确的是()A.x=2是不等式3x>5的一个解B.x=2是不等式3x>5的解集C.x=2是不等式3x>5的唯一解D.x=2不是不等式3x>5的解2.下列各数中,不是不等式2(x﹣3)+3<0的一个解的是()A.﹣3B.C.D.23.不等式﹣2≤x<3中的整数解的个数是()A.3个B.4个C.5个D.6个4.如果有一个数不超过a,那么这个数的取值范围在数轴上表示正确的是()A.B.C.D.5.如图表示的是不等式的解集,其中错误的是()A.x≤2B.x>1C.x≠0D.x<06.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.7.如图所示的不等式组的解集为()A.﹣1<x<2B.﹣1≤x<2C.﹣1<x≤2D.﹣1≤x≤2 8.对于不等式x+2>5,下列说法正确的是()A.x=3,x=﹣2都是它的解B.x=3,x=5,x=7是它的全部解C.x=5是它的解,x=7不是它的解D.x>3就是x+2>5的解集9.下列说法中,错误的是()A.不等式x<5的整数解有无数个B.不等式x>﹣5的负整数解为有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解10.下列说法中,错误的是()A.不等式x<2的正整数解只有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3D.不等式x<10的整数解有无数个二、填空题(共4小题)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是.12.如图表示的不等式的解集是.13.如图,数轴上表示关于x的不等式组的解集是.14.下列数值中能使1﹣2x>0成立的数有个.三、解答题(共3小题)15.写出下列数轴所表示的不等式的解集.16.把下列不等式的解集在数轴上表示出来:(1)x<2:(2)x≥﹣1;(3)x≤﹣1.5;(4)x>3.总结:小于向画,大于向画;无等号画圆圈,有等号画圆点.17.在数轴上表示下列不等式的解集:(1)x<4;(2)x≤﹣2;(3)x>﹣1;(4)x≥﹣4;(5)x<﹣50;(6)﹣1<x≤3.8.2.1不等式的解集参考答案与试题解析一、选择题(共10小题)1.下列说法正确的是()A.x=2是不等式3x>5的一个解B.x=2是不等式3x>5的解集C.x=2是不等式3x>5的唯一解D.x=2不是不等式3x>5的解【解答】解:3x>5,解得x>,A、x=2是不等式3x>5的一个解,故A正确;B、x=2是不等式3x>5的解,故B错误;C、x=2是不等式3x>5的唯一解,故C错误;D、x=2不是不等式3x>5的解,故D错误;故选:A.2.下列各数中,不是不等式2(x﹣3)+3<0的一个解的是()A.﹣3B.C.D.2【解答】解:2(x﹣3)+3<0,去括号得,2x﹣6+3<0,移项得,2x<6﹣3,合并同类项得,2x<3,把x的系数化为1得,x<.∵,∴2不是不等式2(x﹣3)+3<0的解.故选:D.3.不等式﹣2≤x<3中的整数解的个数是()A.3个B.4个C.5个D.6个【解答】解:不等式﹣2≤x<3的整数解有:﹣2、﹣1、0、1、2,共5个.故选:C.4.如果有一个数不超过a,那么这个数的取值范围在数轴上表示正确的是()A.B.C.D.【解答】解:设这个数是x,∵这个数不超过a,∴x≤a.故选:B.5.如图表示的是不等式的解集,其中错误的是()A.x≤2B.x>1C.x≠0D.x<0【解答】解:A、x≤2应该从表示2的点出发,实心圆点向左画折线,正确;B、x>1应该从表示1的点出发,空心圆点向右画折线,错误;C、x≠0应该从表示0的点出发,空心圆点向右和向左画2条折线,正确;D、x<0应该从表示0的点出发,空心圆点向左画条折线,正确.故选:B.6.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【解答】解:∵此不等式不包含等于号,∴可排除B、D,∵此不等式是小于号,∴应向左化折线,∴A错误,C正确.故选:C.7.如图所示的不等式组的解集为()A.﹣1<x<2B.﹣1≤x<2C.﹣1<x≤2D.﹣1≤x≤2【解答】解:由图可知不等式的解集是﹣1及﹣1与2之间的数,故应表示为:﹣1≤x<2.故选:B.8.对于不等式x+2>5,下列说法正确的是()A.x=3,x=﹣2都是它的解B.x=3,x=5,x=7是它的全部解C.x=5是它的解,x=7不是它的解D.x>3就是x+2>5的解集【解答】解:x+2>5,解得x>3.故选项D符合题意.故选:D.9.下列说法中,错误的是()A.不等式x<5的整数解有无数个B.不等式x>﹣5的负整数解为有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【解答】解:A、正确;B、不等式x>﹣5的负整数解有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选:C.10.下列说法中,错误的是()A.不等式x<2的正整数解只有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3D.不等式x<10的整数解有无数个【解答】解:A、不等式x<2的正整数解只有一个,不符合题意;B、﹣2是不等式2x﹣1<0,即x<的一个解,不符合题意;C、不等式﹣3x>9的解集是x<﹣3,符合题意;D、不等式x<10的整数解有无数个,不符合题意.故选:C.二、填空题(共4小题)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是x>﹣2.【解答】解:观察数轴可得该不等式的解集为x>﹣2.故答案为:x>﹣2.12.如图表示的不等式的解集是x<1.【解答】解:图中不等式的解集是x<1,故答案为:x<1.13.如图,数轴上表示关于x的不等式组的解集是﹣1<x≤3.【解答】解:从图可知,不等式组的解集为﹣1<x≤3,故答案为﹣1<x≤3.14.下列数值中能使1﹣2x>0成立的数有3个.【解答】解:∵1﹣2x>0,∴﹣2x>﹣1,∴x<,满足x<的有﹣、﹣1、0,共3个,故答案为:3.三、解答题(共3小题)15.写出下列数轴所表示的不等式的解集.【解答】解:(1)∵4处是实心点且折线向左,∴不等式的解集为:x≤4;(2)∵3处是空心点且折线向右,∴x>3.16.把下列不等式的解集在数轴上表示出来:(1)x<2:(2)x≥﹣1;(3)x≤﹣1.5;(4)x>3.总结:小于向左画,大于向右画;无等号画空心圆圈,有等号画实心圆点.【解答】解:(1)x<2:(2)x≥﹣1:(3)x≤﹣1.5:(4)x>3:.总结:小于向左画,大于向右画;无等号画空心圆圈,有等号画实心圆点.故答案为:左;右;空心;实心.17.在数轴上表示下列不等式的解集:(1)x<4;(2)x≤﹣2;(3)x>﹣1;(4)x≥﹣4;(5)x<﹣50;(6)﹣1<x≤3.【解答】解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:(5)如图所示:(6)如图所示:.。

人教版数学七年级下册:《5.3.2命题、定理、证明》课时练习含答案

人教版数学七年级下册:《5.3.2命题、定理、证明》课时练习含答案

5.3.2命题、定理、证明 课时练习一、单选题(共15小题)1.下列说法错误..的是( ) A .所有的命题都是定理.B .定理是真命题.C .公理是真命题.D .“画线段AB =CD ”不是命题. 答案:A知识点:命题与定理 解析:解答:A :定理是真命题,但假命题不是定理,所以错误,B 、C 、D 均正确,所以本题选择A .分析:辨析命题、定理、公理的关系,明确逻辑意义,是做这类选择题的有效途径. 2.下列语句中,不是命题的是( )A .内错角相等B .如果0=+b a ,那么a 、b 互为相反数C .已知42=a ,求a 的值D .玫瑰花是红的 答案:C知识点:命题与定理解析:解答:A 、B 、D 都是判断一件事情的语句,并且由题设和结论构成,C 不是构成一件事情的语句,故选C .分析:明确判断一件事情的语句,且由题设和结论两部分构成的是命题.3.下列命题中,不正确的是( )A .在同一平面内,过一点有而且只有一条直线与已知直线垂直B .经过直线外一点,有而且只有一条直线与这条直线平行C .垂直于同一直线的两条直线垂直D .平行于同一直线的两条直线平行答案:C知识点:平行公理及推论解析:解答:在同一平面内垂直于同一直线的两条直线平行,故C 错误;A 、B 、D 正确;故选C .分析:利用垂线的性质、平行的性质分别判断后即可得到正确的选项.4.下列命题是假命题的是( )A. 互补的两个角不能都是锐角B. 两直线平行,同位角相等C. 若a ∥b ,a ∥c ,则b ∥cD. 同一平面内,若a ⊥b ,a ⊥c ,则b ⊥c 答案:D 知识点:平行公理及推论;平行线的性质解析:解答:A .互补的两个角不能是锐角,正确,是真命题;B .两直线平行,同位角相等,正确,是真命题;C .根据平行线的传递性可以判断该命题为真命题;D .同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ,故原命题为假命题,故选D .分析:利用互补的定义、平行线的性质及垂线的性质分别进行判断后即可得到正确的选项.5.下列命题:①同旁内角互补;②若n <1,则n2-1<0;③直角都相等;④相等的角是对顶角. 其中,真命题的个数有( )A .1个B .2个C .3个D .4个 答案:A知识点:命题与定理解析:解答:①同旁内角互补,错误,是假命题;②若n <1,则n 2-1<0,错误,是假命题;③直角都相等,正确,是真命题;④相等的角是对顶角,错误,是假命题,故选A .分析:能够运用已学的知识判断命题的真假,是要求学生综合应用数学知识的一个有效方法.6.如图,直线c 与a 、b 相交,且a ∥b ,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠2=∠3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(下)课时练习参考答案8.1 角的表示一、选择题1.C 2.A 3.C二、填空题4.绕着它的端点从起始位置旋转到终止位置所成;始边;终边。

5.当角的终边与始边恰成一条直线是,所成的角;当射线旋转一周回到起始位置时,所成的角6.∠O,∠α,∠AOB;O;OA与OB 7.2三、解答题8.∠BAD;∠B;∠ACB;∠ACD; ∠D;∠CAD 9.(1)3 (2)6 (3)10 (4)288.2 角的比较一、选择题1.D 2.C 3.C二、填空题4.(1)∠AOC (2)∠AOD (3)∠BOC (4)∠BOD 5.90°6.70°三、解答题7.解:与题意可知∠AOB为平角即∠BOC+∠AOC=180°又∠BOC=2∠AOC,那么∠BOC=120°,又OD、OE三等分∠BOE那么∠BOC=3∠BOE,∠BOE=40°8.解:由题意知:∠AOB=∠AOC+∠BOC,又∠AOC=30°;∠BOC=50°那么∠AOB=80°,由题意知OD是∠AOB的平分线,那么∠BOD=12∠AOB=40°,又∠COD=∠BOC-∠BOD,所以∠COD=10°8.3 角的度量(1)一、选择题1.D 2.C 3.B 4.C二、填空题5.60;60 6.30°;6°7.37.5°8.25°19′三、解答题9.(1)32°15′36″ (2)35.43°10.(1)56°20′ (2)46°42′8.3 角的度量(2)一、选择题1.B 2.C 3.C 4.C二、填空题5.互余;互补6.14°7.90°8.50°三、解答题9.(1)32°(2)148°10.(1)∠AOB;∠COD(2)∠AOB=∠DOC因为同一个角的余角相等(3)有,∠BOE8.4 对顶角一、选择题1.B 2.B 3.D 4.C二、填空题5.∠AOD;∠3;∠COE 6.50°;130°7.135°;135°;45°;135°8.180°三、解答题9.∠BOC=105°10.∠AOM=40°8.5 垂直一、选择题1.C 2.D 3.D二、填空题4.(1)一;(2)垂线段5.∠1+∠2=90°6.(1)BE;CD (2)DC;BE三、解答题7.∠AOD=150°8.∠COE=27°第八章综合练习一、选择题1.B 2.B 3.B 4.B二、填空题5.(1)63°7′ (2)46°36′45″ 6.30°7.120°;30°8.180°三、解答题9.∠COE=145°10.∠EOG=59°9.1 同位角、内错角、同旁内角一、选择题1.B 2.D 3.A 4.B二、填空题5.AB;CE;BD;同位角;AB;AC;BC;同旁内角6.∠4,∠3,∠3 7.1;1;4 三、解答题8.∠1和∠E是同位角;∠2和∠3是内错角;∠3和∠E是同旁内角;第二步略。

9.∠1和∠3是同位角;∠1和∠4是内错角;∠2和∠3是同旁内角;∠2和∠4是同旁内角;第二步略9.2 平行线和它的画法一、选择题1.C 2.A 3.C 4.C二、填空题5.AB∥CD;直线AB平行直线CD 6.平行7.CD;C′D′;A′B′三、解答题8.略9.3 平行线的性质一、选择题1.D 2.B 3.D 4.C二、填空题5.∠2=70°6.2 7.AE;AF 8.70°三、解答题9.∠2=118°;∠3=62°10.∠A=∠C;∠B=∠D,因为AD∥BC,所以∠A+∠B=180°因为AB∥CD,所以∠B+∠C=180°,所以∠A=∠C,同理可证∠B=∠D 11.20°9.4 平行线的判定(1)一、选择题1.A 2.A 3.D 二、填空题4.(1)AC ∥DF ;同位角相等两直线平行; (2)DE ∥BC ,内错角相等两直线平行; (3)DE ∥BC ,同位角相等两直线平行;(4)DF ∥AC 同旁内角互补两直线平行。

5.60° 6.DE ∥BC 三、解答题 7.略 8.略9.4 平行线的判定(2) 一、选择题1.B 2.C 3.B 4.C 二、填空题 5.122° 6.AB ;DO 7.30° 三、解答题8.平行,理由略 9.略第九章 综合练习一、选择题1.D 2.C 3.D 4.D 二、填空题 5.20° 6.∠A ;AC ∥DF 7.42° 8.70° 三、解答题9.略 10.∠E=35° 11.平行。

理由略10.1 认识二元一次方程组一、选择题1.B 2.A 3.A 4.B 二、填空题5.-2 6.①②; ②③;② 7.-1 8.2;-1 三、解答题 9.k =110.解:设从A 地到B 地的路程为x 千米,原计划行驶的时间为y 小时,根据题意得:0.5450.550xy x y ⎧=+⎪⎪⎨⎪=-⎪⎩ 10.2 二元一次方程组的解法(1)一、选择题1.C 2.D 3.B 4.A 二、填空题 5.②;y ;x ;11x y =⎧⎨=⎩6.22x y =⎧⎨=⎩ 7.21a b =⎧⎨=-⎩ 8.-1三、解答题9.解:(1)25(2)53x xy y==⎧⎧⎨⎨==⎩⎩10.解:2545ab⎧=⎪⎪⎨⎪=-⎪⎩10.2 二元一次方程组的解法(2)一、选择题1.B 2.B 3.C 二、填空题4.12xy=⎧⎨=⎩5.34k=6.35xy=⎧⎨=⎩三、解答题7.解:(1)221(2)31x xy y==⎧⎧⎨⎨==⎩⎩8.1,3k m=-=10.4 列方程解应用题(1)一、选择题1.C 2.D 3.A二、填空题4.20 6.2 ,16 6.220,260 三、解答题7.解:设A型、B型洗衣机的售价分别为x元,y元,根据题意得:500 13%()351 y xx y=+⎧⎨+=⎩解之得:11001600xy=⎧⎨=⎩(2)1100×(1-13%)=957(元)1600×(1-13%)=1392(元)答:小李和小王购买洗衣机除财政补贴外实际分别付款957元、1392元。

8.解:设西红柿x千克,豆角y千克,根据题意得:401.2 1.660x yx y+=⎧⎨+=⎩解之得:1030xy=⎧⎨=⎩10×(1.8-1.2)+30×(2.5-1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元。

10.4 列方程解应用题(2)一、选择题1.D 2.B 3.B 4.A二、填空题5.12 6.153()16236x y xx y+-=⎧⎨+=⎩7.551046x yx y=+⎧⎨=⎩8.5445x yx y+=⎧⎨=⎩三、解答题9.解:设甲、乙两人每天分别做x个、y个,根据题意得:6442093420x yy x+=⎧⎨+=⎩解之得:5030xy=⎧⎨=⎩答:甲、乙两人每天分别做50个、30个10.解:本题答案不唯一,下列解法供参考。

解:方法1问题:普通公路和高速公路各为多少千米?设普通公路长为x千米,高速公路长为y千米。

根据题意,得2 2.260100x yx y=⎧⎪⎨+=⎪⎩ 解得60120x y =⎧⎨=⎩ 答:普通公路长为60千米,高速公路长为120千米。

方法2: 问题:汽车在普通公路和高速公路上各行驶了多少小时?设汽车在普通公路上行驶了x 小时,在高速公路上行驶了y 小时根据题意,得 2.2602100x y x y +=⎧⎨⨯=⎩,解得11.2x y =⎧⎨=⎩答:汽车在普通公路上行驶了1小时,高速公路上行驶了1.2小时。

第十章 综合练习一、选择题1.D 2.B 3.C 4.D 二、填空题5.0 6.1 7.25、0 8.125三、解答题9.解:97267x y ⎧=-⎪⎪⎨⎪=⎪⎩10.解:设调整后职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元。

则可得方程:20018001801700x y x y +=⎧⎨+=⎩,解方程组得:8005x y =⎧⎨=⎩答:调整后职工的月基本保障工资为800元,销售每件产品的奖励金额为5元。

11.1 同底数幂的乘法一、选择题1.D 2.D 3.A 4.B 二、填空题5.3 6.8 7.(1)a 8 (2)a 15 (3)-a 11 (4)(m -n )5 (5)-(b -a)10 8. n =17 三、解答题9.24 10.(1)a 6 (2)2a 3+2a 5+2a 411.2 积的乘方与幂的乘方(1)一、选择题1.C 2.D 3.D 4.A 二、填空题5.17x 4 6.1 7.145- 8.27a 3三、解答题9.(1)x 4y 4 (2)-32y 5 (3) 332221(4)98m n a b c 10.-7 11.1511.2 积的乘方与幂的乘方(2)一、选择题1.D 2.C 3.B 4.A二、填空题5.a 12b 16c 8 6.6 7.216 8.64 三、解答题9.(1)-a 11 (2)81a 12b 8c 4 (3)-x 16 10.(1)12 (2)8 11.3910000π(cm 2) 12. 8×102911.3 单项式的乘法(1)一、选择题1.C 2.B 3.C 4.A 二、填空题5.-24a 3b 4c 2 6.-28x 2n+2y 7.x 6y 4 8.65112n n x y ++-三、解答题9.(1) 6618x y - (2) 5412n a b c + (3) 3352()x y b a - 10.(1) 2324x y (2)0 11.1.248×1021(千克)11.3 单项式的乘法(2)一、选择题1.C 2.B 3.A 4.B 二、填空题5.326312x x x -+- 6.34ax 7.4333281284x x y x y x y --+ 8.76 三、解答题9.解:(1)43236482 (2)206x y x y x x --+ 10.(1)29(2)-611.9abc 2-18a 2c 2-6a 2bc11.4 多项式乘多项式(1) 一、选择题1.B 2.B 3.B 4.B 二、填空题5.211x + 6.12 7.9 8.2262a ab b +- 三、解答题9.解:(1)22672a ab b ++ (2)32581215a a a +++ 10.(1)0 (2)-6 11.略11.4 多项式乘多项式(2) 一、选择题1.C 2.C 3.B 4.C 二、填空题5.29 6.331(278)2a b + 7.2;1;-2三、解答题8.(1)12 (2)43261351x x x x +++- (3)2231818x xy y ++ 9.(1)-21 (2)a=4 52b =-11.5 同底数幂的除法一、选择题1.D 2.D 3.B 4.C 二、填空题5.22m x + 6.2 7.4 8.100 三、解答题9.解:(1)3()a - (2)-a (3) 3x - (4) 3(3)y x - 10.解:(1)5()m n - (2)-2b 11.106倍11.6 零指数幂与负整数指数幂(1) 一、选择题1.C 2.B 3.C 4.D 二、填空题5.3x ≠ 6.1,1,1 7.588.12三、解答题9.解:x =-3 10.解:(1)52(2)0 11.5x ≠11.6 零指数幂与负整数指数幂(2)一、选择题1.B 2.B 3.A 4.B 二、填空题5.(1)15 (2)13- (3)16 (4)12 6.0 7.-2 8.5三、解答题9.解:(1)214- (2)-16 (3)114 (4)1610.b c a << 11.811.6 零指数幂与负整数指数幂(3) 一、选择题1.D 2.C 3.C 4.C 二、填空题5.1a6.11()x - 7.m 5 8.3()b a -三、解答题9.(1) 1a (2) 42(3)13x11.6 零指数幂与负整数指数幂(4)一、选择题1.B 2.B 3.D 4.D 二、填空题5.(1) 53.410--⨯ (2) 673.0410 (3)7.2110--⨯⨯ 6.0.000039米 7.72.410-⨯ 8.64.510-⨯ 0.0000045 三、解答题9.解:2.657×10-15 10.解:2.97×10-23 11.0.1cm第十一章 综合练习一、选择题1.D 2.C 3.D 4.C 二、填空题5.7.5×10-5 6.33x y - 7.22216x y xy + 8.2725三、解答题9.解:(1)3352()x y a b -- (2)223293x y x y -- 10.解:(1)40 (2)-6 11.3.40×102(m/s) 12. 12m 2+11mn +2n 212.1 平方差公式 一、选择题1.C 2.C 3.A 4.B 二、填空题5.(1)x ;4 (2) ; 34b a- 6.(1)3y -x (2)-a -1 7.(1)a +b ; 1 (2) a 2;b 28.(1)0.9999 (2)99.96 三、解答题9.(1) 222214 (2)9n b a x y -- (3) 2255m n -- (4) 422a b - (5)8096 (6)99484910.1512.2 完全平方公式(1) 一、选择题1.D 2.D 3.B 4.C 二、填空题5.(1)2n ; 9m 4 ;4n 2 (2)4n 2+12mn +9n 2 6.(1) 211; (2)126; 742y y ab a -; 7.(1)4ab (2)2ab ;-2ab 三、解答题8.0 9.(1)91 (2)7,1 (3)49212.2 完全平方公式(2)一、选择题1.C 2.D 3.C 4.D 二、填空题5.2 6.222222a b c ab ac bc ++-+- 7.22244a b c bc --+ 8.42242a a b b -+ 三、解答题9.(1)2m +8 (2)75 10.5 11.略12.3 用提公因法进行因式分解 一、选择题1.C 2.B 3.D 二、填空题4.-5a 5.a -1 6.-31.4三、解答题7.(1) 224(47)m n m m --+ (2) 3()(3) (3)2(2)(43)b a by ay x y x y ⨯--+--(4)a(b-a)(a 2-b 3-2b) 8.(1)-10100 (2)201312.4 用公式法进行因式分解(1) 一、选择题1.B 2.C 3.C 二、填空题4.(21)(21)x x -+ 5.9 6.2(2)m n +- 三、解答题7.(1)21(213)(213) (2)(2)2x y x y a b +-+ (3) 2(0.125)(0.125) (4)(4)m n m n ab c -+-(5) (5a-1)(5a+1) (6) –(m+n)212.4 用公式法进行因式分解(2) 一、选择题1.B 2.C 3.A 4.D 二、填空题5.21()2x x - 6.2 7.22()()a b a b -+三、解答题8.(1)22223(2)(2) (2)() (3)(1)(1) (4)(1)a x x a x a ab a b ab a b a a +-++++--+--2(5)(2) (6)(5)(5)a x y x y x y +--- 9.(1)-18 (2) 2132第十二章 综合练习 一、选择题1.A 2.C 3.C 4.C 二、填空题5.3223(4)x x -- 6.4224168m m n n -+ 7.(1)()()a x y x y -+- 8.224961x y y --- 三、解答题9.(1)2(332) (2)(7)(7)x y m n m n ---+- 10.(1)13 (2)1313.1 三角形(1) 一、选择题1.D 2.D 3.B 4.C 二、填空题5.相等;腰;底边;顶角;底角 6.相等;正三角形 7.∠AED 8.17 三、解答题 9.略13.1 三角形(2) 一、选择题1.B 2.A 3.C 4.C 二、填空题 5.8 6.2;4;5 7.75 8.24 三、解答题9.(1)6cm; 6cm (2)6cm; 4cm 或5cm; 5cm(3)7cm; 7cm; 2cm或4cm; 6cm; 6cm或5cm; 5cm; 6cm13.1 三角形(3)一、选择题1.C 2.D 3.A 4.B二、填空题5.∠BAE; ∠DAC; 30°6.2cm 7.108°三、解答题8.略9.解:腰为10cm,底边长4cm\13.1 三角形(4)一、选择题1.C 2.C 3.C二、填空题4.55°5.96°6.95°三、解答题7.∠DAF=83°;∠B=52°13.2 多边形(1)一、选择题1.D 2.B 3.B 4.D二、填空题5.5;20 6.35 7.24三、解答题8.(1)略(2)10个三角形,13.2 多边形(2)一、选择题1.C 2.A 3.C 4.A二、填空题5.十边形6.三角形7.220°8.90三、解答题9.1260°10.1260°;九边形11.不能实现13.3 圆的初步认识(1)一、选择题1.C 2.A 3.D 4.B二、填空题5.弦AB;弦CD;CD AC DB ACD CDB6.4 7.上;外8.2.5cm或6.5cm三、解答题9.略13.3 圆的初步认识(2)一、选择题1.C 2. C 3.B二、填空题4.无数;同心圆5.等圆6.8;4 7.2π三、解答题8.4-π 9.28.26cm2第十三章综合练习一、选择题1.B 2.B 3.C 4.A二、填空题5.25π 6.13cm 7.正方形(答案不唯一)8.十二三、解答题9.33°10.∠ABC=∠ACB,理由略11.14cm或16cm14.1 用有序数对表示位置一、选择题1.C 2.C 3.B 4.D二、填空题5.(-3,1)6.(F,1)(D,4)7.(2,1)8.略三、解答题9.(1)(3,2)(2)小惠(3)不同分别表示小明、小亮的座位(4)能10.从A到B有3种走法,从A到C有9种走法14.2 平面直角坐标系一、选择题1.A 2.B 3.B 4.C二、填空题5.A(3,0),C(0,-2),6 6.-3,A(0,8)7.-2三、解答题8.A(3,2)B(2,-1)C(0,-3)D(-4,0)E(-3,3)14.3 直角坐标系中的图形(1)一、选择题1.A 2.C 3.B 4.B二、填空题5.-2 6.3 7.±4 8.15 2三、解答题9.(1)略(2)9414.3 直角坐标系中的图形(2)一、选择题1.A 2.D 3.B 4.C二、填空题5.一6.7 7.(-3,7)三、解答题9.(1)A′(-3,-1),B′(6,-1),C′(4,4) (2) 45 214.4 用方向和距离描述两个物体的相对位置一、选择题1.C 2.D 3.D二、填空题4.在点O的北偏东32°方向距点O6km处5.在超市的南偏西60°方向距超市500米处6.商场,政府,学校三、解答题7.(1)敌舰A,小岛(2)正东(3)略8.略、第十四章综合练习一、选择题1.D 2.D 3.B 4.B二、填空题5.(-3,-1)6.北偏西,5km 7.(7,-2)或(-3,-2)8.8三、解答题9.(1)(16,3)(32,0)(2)(2n,3)(2n+1,0) (3)3 10.7 2。

相关文档
最新文档