七下数学同步练习册答案参考
2020七年级数学下全册同步练习(含答案)

第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( )12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C的距离分别为PA =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC 与∠BOD的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.图2 图3 图43.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角 (B)∠1与∠3是同位角(C)∠2与∠3是同旁内角 (D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC . 证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。
人教版数学七年级下全册同步练习(答案全)

第五章相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF(D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60° (B)∠1=∠3=90°,∠2=∠4=30° (C)∠1=∠3=90°,∠2=∠4=60° (D)∠1=∠3=90°,∠2=60°,∠4=30° 三、判断正误10.如果两个角相等,那么这两个角是对顶角.( )11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( )12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角. ( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a ,b ,c 两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( ) 12.平面内,过线段AB外一点有且只有一条直线与AB垂直.( ) 13.连接直线l外一点到直线l上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( )16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α (C)α2190+︒(D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm(B)小于3cm(C)不大于3cm(D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m(D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ). (A)0(B)1(C)2(D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条(D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a ,b 被直线c 所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______; (3)∠1与∠5是_______;(4)∠5与∠3是______; (5)∠5与∠4是_______;(6)∠8与∠4是______; (7)∠4与∠6是_______;(8)∠6与∠3是______; (9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B 和∠ECD 可看成是直线AB 、CE 被直线______所截得的_______角; (2)∠A 和∠ACE 可看成是直线_______、______被直线_______所截得的______角. 4.如图4所示,(1)∠AED 和∠ABC 可看成是直线______、______被直线______所截得的_______角;图2 图3 图4(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3. 求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( ) ∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________) 即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。
七下数学全册同步练习、单元检测(含答案,100页)

七下数学全册同步练习、单元检测(含答案,100页)七下数学同步练习、单元检测第五章相交线与平⾏线5.1.1 相交线复习检测(5分钟):1、如图所⽰,∠1和∠2是对顶⾓的图形有( )A.1个B.2个C.3个 D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是⼀把剪⼑,其中?=∠401,则=∠2 ,其理由是。
4、如图三条直线AB,CD,EF 相交于⼀点O, ∠AOD 的对顶⾓是_____,12121221∠AOC 的邻补⾓是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____. OF E D CBA5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,?求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba34125.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补⾓都相等.( )2、⼀条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个⾓中,如果有三个⾓相等,那么这两条直线互相垂直.( )4、两条直线相交有⼀组对顶⾓互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂⾜,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂⾜,直线CD 过点O,且∠BOD=2∠AOC,则E (3)O D C B A(2)O D CB A (1)O DC B A ∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________.8、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.9、如图,AC ⊥BC,C 为垂⾜,CD ⊥AB,D 为垂⾜,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.⼩明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对⼩明的说法,你认为对吗?11、⽤三⾓尺画⼀个是30°的∠AOB,在边OA 上任取⼀点P ,过P 作PQ ⊥OB, 垂⾜为Q,量⼀量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位⾓、内错⾓、同旁内⾓复习检测(5分钟): E O DC BA F E D CB A DCBA1、如图(4),下列说法不正确的是()A.∠1与∠2是同位⾓B.∠2与∠3是同位⾓C.∠1与∠3是同位⾓D.∠1与∠4不是同位⾓2、如图(5),直线AB、CD被直线EF所截,∠A和是同位⾓,∠A和是内错⾓,∠A和是同旁内⾓.3、如图(6), 直线DE截AB, AC, 构成⼋个⾓:①、指出图中所有的同位⾓、内错⾓、同旁内⾓.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪⼀条直线截哪两条直线⽽成的什么⾓?4、如图(7),在直⾓ ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位⾓、内错⾓和同旁内⾓.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平⾏线复习检测(5分钟):1、在同⼀平⾯内,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1//L,那么L2与L()3、在同⼀平⾯内,⼀条直线和两条平⾏线中⼀条直线相交,那么这条直线与平⾏线中的另⼀边必__________.4、两条直线相交,交点的个数是________,两条直线平⾏,交点的个数是_____个.判断题5、6、7、85、不相交的两条直线叫做平⾏线.( )6、如果⼀条直线与两条平⾏线中的⼀条直线平⾏, 那么它与另⼀条直线也互相平⾏.( )7、过⼀点有且只有⼀条直线平⾏于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a、b互相垂直,点P是直线a、b外⼀点,过P点的直线c垂直于直线b.(2)判断直线a、c的位置关系,并借助于三⾓尺、直尺验证.65ca34129、试说明三条直线的交点情况,进⽽判定在同⼀平⾯内三条直线的位置情况.5.2.2平⾏线的判定复习检测(10分钟):1、如图1所⽰,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4) 2、如图2所⽰,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF34DCBA21FE D CBA 876543219654321DCB A3、下列说法错误的是( )A.同位⾓不⼀定相等B.内错⾓都相等C.同旁内⾓可能相等D.同旁内⾓互补,两直线平⾏ 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明 a∥b的条件序号为()(5)A.①②B.①③C.①④D.③④5、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD. 7、在同⼀平⾯内,若直线a,b,c 满⾜a ⊥b,a ⊥c,则b 与c 的位置关系是______.8、如图所⽰,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________. (2)由∠CBE=∠C 可以判断______∥______,根据是_________. 9、已知直线a 、b 被直线c 所截,且∠1+∠试判断直线a 、b 的位置关系,并说明理由.EDCB AD CBA2110、如图,已知DG∠,2=∠AEM∠,试问EF是否平⾏GH,并说明理1∠=由.11、如图所⽰,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.12、如图所⽰,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提⾼训练:如图所⽰,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平⾏吗??为什么?d ecb a 34125.3.1平⾏线的性质复习检测(10分钟):1、如图1所⽰,AB ∥CD,则与∠1相等的⾓(∠1除外)共有( )DCBAOFED C BADCB A 187654321DCBAGF EDCBA 12A.5个B.4个C.3个D.2个(1) (2) (3)2、如图2所⽰,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( )A.35°B.30°C.25°D.20°3、如图3所⽰,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______, ∠ACD=?_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠_______=∠_______,∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.(4)(5)E21DCB(6)5、如图5,在甲、⼄两地之间要修⼀条笔直的公路, 从甲地测得公路的⾛向是南偏西56°,甲、⼄两地同时开⼯,若⼲天后公路准确接通, 则⼄地所修公路的⾛向是_________,因为____________.6、河南)如图6所⽰,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG?平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的⼀个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?NMG F EDCB A9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.10、如图所⽰,把⼀张长⽅形纸⽚ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所⽰,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°.证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,()⼜∵ AE 平分∠BAC ,CE 平分∠ACD ,()∴112B A C ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=?=.即∠1+∠2=90°.结论:若两条平⾏线被第三条直线所截,则⼀组同旁内⾓的平分线互相 .推⼴:若两条平⾏线被第三条直线所截,则⼀组同位⾓的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟): 1、判断下列语句是不是命题(1)延长线段AB ()(2)两条直线相交,只有⼀交点()(3)画线段AB 的中点()(4)若|x|=2,则x=2()(5)⾓平分线是⼀条射线() 2、下列语句不是命题的是() A.两点之间,线段最短B.不平⾏的两条直线有⼀个交点C.x 与y 的和等于0吗?D.对顶⾓不相等.3、下列命题中真命题是() A.两个锐⾓之和为钝⾓B.两个锐⾓之和为锐⾓C.钝⾓⼤于它的补⾓D.锐⾓⼩于它的余⾓4、命题:①对顶⾓相等;②垂直于同⼀条直线的两直线平⾏;③相等的⾓是对顶⾓;④同位⾓相等.其中假命题有() A.1个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a ∥b,b ∥c,那么a ∥c (2)同旁内⾓互补,两直线平⾏ 6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定⼀条直线;(2)等⾓的补⾓相等;(3)内错⾓相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下⾯各⼩题的推理填上适当的根据:(1)∵a ∥b,∴∠1=∠3( ); (2)∵∠1=∠3,∴a ∥b( ); (3)∵a ∥b,∴∠1=∠2( ); (4) ∵a ∥b,∴∠1+∠4=180o ( ) (5)∵∠1=∠2,∴a ∥b( );(6)∵∠1+∠4=180o,∴a ∥b( ).8、已知:如图AB ⊥BC,BC ⊥CD 且∠1=∠2,求证:BE ∥CF 证明:∵AB ⊥BC,BC ⊥CD (已知)∴ = =90°()∵∠1=∠2(已知)∴ = (等式性质)ab 1 23c4C A BD EF1 2∴BE ∥CF () 9、已知:如图,AC ⊥BC,垂⾜为C,∠BCD 是∠B 的余⾓. 求证:∠ACD=∠B 证明:∵AC ⊥BC (已知)∴∠ACB=90°()∴∠BCD 是∠ACD 的余⾓∵∠BCD 是∠B 的余⾓(已知)∴∠ACD=∠B ()5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的()BD2、如图所⽰,△FDE 经过怎样的平移可得到△ABC.( )A.沿射线EC 的⽅向移动DB 长;B.沿射线EC 的⽅向移动CD 长C.沿射线BD 的⽅向移动BD 长;D.沿射线BD 的⽅向移动DC 长3、下列四组图形中,?有⼀组中的两个图形经过平移其中⼀个能得到-BDACFBA另⼀个,这组图形是( )4、如图所⽰,△DEF 经过平移可以得到△ABC,那么∠C的对应⾓和ED 的对应边分-别是( )A.∠F,ACB.∠BOD,BA;C.∠F,BAD.∠BOD,AC 5、在平移过程中,对应线段( ) A.互相平⾏且相等; B.互相垂直且相等 C.互相平⾏(或在同⼀条直线上)且相等 6、在平移过程中,平移后的图形与原来的图形________和_________都相同,?因-此对应线段和对应⾓都________.7、如图所⽰,平移△ABC 可得到△DEF,如果∠A=50°, ∠C=60°,那么∠E=?____-度,∠EDF=_______度, ∠F=______度,∠DOB=_______度.8、将正⽅形ABCD 沿对⾓线AC ⽅向平移,且平移后的图形的⼀个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的⾯积是原正⽅形⾯积的_______OF ECB ADABCDOFECB AD9、直⾓△ABC中,AC=3cm,BC=4cm,AB=5cm,将△ABC沿CB⽅向平移3cm,则边AB所经过的平⾯⾯积为____cm2。
2022-2023学年全国初中七年级下数学新人教版同步练习(含解析)

2022-2023学年全国七年级下数学同步练习考试总分:33 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1. 已知的半径为,为线段的中点,若点在上,则的长( )A.等于B.等于C.小于D.大于2. 按照图的方式摆放一副三角板,画出 再按照图的方式摆放一副三角板,画出射线,则的大小为( )A.B.C.D.3. 如图,,且,则 的度数为 ( )⊙O 6cm P OA P ⊙O OA 6cm12cm6cm12cm1∠AOB 2OC ∠AOC 70∘75∘60∘65∘AB =,BC =AC =A 1B 1B 1C 1A 1C 1∠A =,∠B =110∘40∘∠C 1110∘A.B.C.D.4. 如图, ,则的度数为(( )A.B.C.D.AD / 人 2 →卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )5. 如图,已知 点,在边上, ,点是边上的点,若使点,,构成等腰三角形的点恰好只有一个,则的取值范围是________.6. 如图,四边形是平行四边形,若________(添加一个条件),四边形是菱形.7. 如图用一张长方形纸条折成的.如果 ,那么的度数是________.8. 如图,在中,、是的弦,,则的度数是__________.110∘40∘30∘20∘∠1=,∠B =65∘65∘∠C =80∘∠2BL65∘80∘115∘100∘1AE BL C∠AOB =30∘M N OA OM =x,ON =x +2P OB P M N P x ABCD ABCD ∠1=100∘∠2⊙O AD BC ⊙O OA ⊥BC,∠AOB =,CE ⊥AD 52∘∠DCE9. 如图,已知,为的中点,若,则________.三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )10. 如图所示,直线,连接,直线、及线段把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分,当动点落在某部分时连接、,构成,,三个角(提示:有公共端点的两条重合的射线所组成的角是角).当动点落在第①部分时, 、 、 之间有什么关系?并说明理由;当动点落在第②部分时,中结论是否依然成立?(直接回答成立或不成立)当动点落在第③部分时,全面探究之间的关系,直接写出动点的具体位置和相应的结论.11. 如图,已知,,垂足分别为,,,试说明.将下面的解答过程补充完整,并填空.证明:∵,(已知),∴ (垂直定义),∴________________(同位角相等,两直线平行),∴(________)又∵ (已知),∴ (________)∴________________(两直线平行,内错角相等),∴(________).AB//CF E DF AB =8,CF =5BD =AC//BD AB AC BD AB P PA PB ∠PAC ∠APB ∠PBD 0∘(1)P ∠PAC ∠APB ∠PBD (2)P (1)(3)P ∠PAC,∠APB,∠PBD P CD ⊥AB EF ⊥AB D F ∠B +∠BDG =180∘∠BEF =∠CDG CD ⊥AB EF ⊥AB ∠BFE =∠BDC =90∘//∠BEF =∠BCD ∠B +∠BDG =180∘BC//DG =∠CDG =∠BEF参考答案与试题解析2022-2023学年全国七年级下数学同步练习一、 选择题 (本题共计 4 小题 ,每题 3 分 ,共计12分 )1.【答案】B【考点】圆的有关概念【解析】点在圆上,则=;点在圆外,;点在圆内,(即点到圆心的距离,即圆的半径).【解答】根据点和圆的位置关系,得=,再根据线段的中点的概念,得==.2.【答案】B【考点】角的计算【解析】此题暂无解析【解答】解:,,.故选.3.【答案】C【考点】d r d >r d <r d r OP 6OA 2OP 12∵∠AOB =+=60∘90∘150∘∠BOC =+=45∘30∘75∘∴∠AOC =−=150∘75∘75∘B平行线的性质【解析】由三角形内角和定理求出=,再由证明,即可得出结果.【解答】解:∵在中,=,=,∴==.在和中,,∴.∴==;故选.4.【答案】D【考点】平行线的判定与性质【解析】此题暂无解析【解答】略二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )5.【答案】或【考点】含30度角的直角三角形等腰三角形的判定与性质【解析】此题暂无解析∠C 30∘SSS △ABC ≅△A 1B 1C 1△ABC ∠A 110∘∠B 40∘∠C −∠A −∠B 180∘30∘△ABC △A 1B 1C 1 AB =A 1B 1BC =B 1C 1AC =A 1C1△ABC ≅△(SSS)A 1B 1C 1∠C ∠C 130∘C x >4x =2【解答】解:6.【答案】【考点】菱形的判定平行四边形的性质【解析】根据菱形的判定方法即可判断.【解答】解:当时,根据对角线互相垂直的平行四边形是菱形,可得四边形是菱形.故答案为:.7.【答案】【考点】平行线的性质【解析】根据折叠的性质可得,根据平行线的性质可得,最后根据即可求出的度数.【解答】解:如图所示:根据折叠的性质可得.AC ⊥BDAC ⊥BD ABCD AC ⊥BD 50∘∠2=∠3∠4=80∘∠2+∠3+∠4=180∘∠2∠2=∠3ABCD∵四边形是长方形,∴.∴.∴.∵,∴.解得.故答案为:.8.【答案】【考点】平行线的判定与性质【解析】此题暂无解析【解答】此题暂无解答9.【答案】【考点】全等三角形的性质与判定平行线的性质【解析】根据平行线的性质得出 ,进而利用全等三角形的判定与性质得出答案.【解答】解:因为,所以,,在△和中,,∴Δ(),,∴.ABCD AD//BC ∠1+∠4=180∘∠4=−∠1=−=180∘180∘100∘80∘∠2+∠3+∠4=180∘2∠2+=80∘180∘∠2=50∘50∘64∘3∠A =∠ACF ∠AED =∠CEF AB//CF ∠A =∠ACF ∠AED =∠CEF AED △CEF ∠A =∠ACF∠AED =∠CEF DE =DFAED ≅△CEF AAS FC =AD =5ED =AB −AD =8−5=3故答案为:.三、 解答题 (本题共计 2 小题 ,每题 3 分 ,共计6分 )10.【答案】解:如图,过点作,∴,∵,∴,∴,∴.不成立.理由如下:如图,过点作,∵,∴,∴,,,∴,则中结论不成立.①当动点在的右侧时,结论是:.②当动点在上,3(1)P FP//AC ∠PAC =∠APF AC//BD FP//BD ∠FPB =∠PBD ∠APB =∠APF +∠FPB =∠PAC +∠PBD (2)P PF//AC AC//BD PF//BD ∠PAC +∠APF =180∘∠PBD +∠BPF =180∘∠APB =∠APF +∠BPF ∠PAC +∠PBD=−∠APF +(−∠BPF)180∘180∘=−∠APB 360∘(1)(3)P BA ∠PBD =∠PAC +∠APB P BA结论是:.③当动点在的左侧时,结论是:.【考点】平行线的判定与性质【解析】()如图,延长交直线于点,由,可知.由,可知;()过点作的平行线,根据平行线的性质解答;()根据的不同位置,分三种情况讨论.【解答】解:如图,过点作,∴,∵,∴,∴,∴.不成立.理由如下:如图,过点作 ,∠PBD =∠PAC +∠APB P BA ∠PAC =∠APB +∠PBD 11BP AC E AC//BD ∠PEA =∠PBD ∠APB =∠PAE +∠PEA ∠APB =∠PAC +∠PBD 2P AC 3P (1)P FP//AC ∠PAC =∠APF AC//BD FP//BD ∠FPB =∠PBD ∠APB =∠APF +∠FPB =∠PAC +∠PBD (2)P PF//AC∵,∴,∴,,,∴,则中结论不成立.①当动点在的右侧时,结论是:.②当动点在上,结论是:.③当动点在的左侧时,结论是:.11.【答案】,,两直线平行,同位角相等,同旁内角互补,两直线平行,,,等量代换【考点】AC//BD PF//BD ∠PAC +∠APF =180∘∠PBD +∠BPF =180∘∠APB =∠APF +∠BPF ∠PAC +∠PBD=−∠APF +(−∠BPF)180∘180∘=−∠APB 360∘(1)(3)P BA ∠PBD =∠PAC +∠APB P BA ∠PBD =∠PAC +∠APB P BA ∠PAC =∠APB +∠PBD EF CD ∠CDG ∠BCD平行线的判定与性质【解析】根据平行线的判定与性质即可完成证明过程.【解答】证明:, (已知),∴ (垂直定义),∴ (同位角相等,两直线平行),∴ (两直线平行,同位角相等),又∵ (已知),∴ (同旁内角互补,两直线平行),∴ (两直线平行,内错角相等),∴ (等量代换).故答案为:;;两直线平行,同位角相等;同旁内角互补,两直线平行; ;;等量代换.∵CD ⊥AB EF ⊥AB ∠BFE =∠BDC =90∘EF//CD ∠BEF =∠BCD ∠B +∠BDG =180∘BC//DG ∠CDG =∠BCD ∠CDG =∠BEF EF CD ∠CDG ∠BCD。
七年级下册数学同步练习册答案

七年级下册数学同步练习册答案【第一章:有理数】1. 判断题:(1)正确。
有理数包括整数和分数。
(2)错误。
0是整数,也是最小的自然数。
2. 选择题:(1)C。
-1的相反数是1。
(2)B。
-3和5的和是2。
3. 填空题:(1)-3是负数。
(2)0是正数和负数的分界点。
4. 计算题:(1)-4 + 7 = 3(2)-3 - 5 = -85. 应用题:(1)小明有5个苹果,又得到了3个,现在他有多少个苹果?答:小明现在有8个苹果。
【第二章:代数初步】1. 判断题:(1)正确。
代数式可以表示数量关系。
(2)错误。
代数式中的字母可以代表任意数。
2. 选择题:(1)A。
2x + 3y = 5x - 6y + 9的解是x = 3,y = 1。
(2)C。
如果3x = 9,那么x = 3。
3. 填空题:(1)2x + 5 = 3x - 1的解是x = 6。
(2)如果3a + 2b = 8,那么a = 2。
4. 计算题:(1)2x + 3y = 11,3x - 4y = 2,解得x = 3,y = 1。
(2)4a - 3b = 5,a + 2b = 3,解得a = 1,b = 1。
5. 应用题:(1)如果一个长方形的长是宽的两倍,且面积是24平方厘米,求长和宽。
答:设宽为x,则长为2x。
根据面积公式,2x * x = 24,解得x = 2√6,长为4√6。
【第三章:几何初步】1. 判断题:(1)正确。
线段有两个端点。
(2)错误。
直线没有端点。
2. 选择题:(1)B。
直角三角形的两个锐角之和是90度。
(2)A。
等腰三角形的底角相等。
3. 填空题:(1)直角三角形的斜边最长。
(2)等边三角形的三个角都相等。
4. 计算题:(1)已知直角三角形的两条直角边分别为3和4,求斜边。
答:根据勾股定理,斜边c = √(3² + 4²) = 5。
5. 应用题:(1)一个等边三角形的边长是6厘米,求其面积。
答:等边三角形的高h = √3 * 边长/ 2 = 3√3厘米。
七年级下册数学同步练习册参考答案.doc

七年级下册数学同步练习册参考答案这篇七年级下册数学同步练习册参考答案的文章,是特地为大家整理的,希望对大家有所帮助!第6章一元一次方程§6.1 从实际问题到方程一、1.D 2. A 3. A二、1. x = - 6 2. 2x-15=25 3. x =3(12-x)三、1.解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米,可列方程为:5.8-x=3x+0.62.解:设苹果买了x千克, 则可列方程为: 4x+3(5-x)=173.解:设原来课外数学小组的人数为x,则可列方程为:§6.2 解一元一次方程(一)一、1. D 2. C 3.A二、1.x=-3,x= 2.10 3. x=5三、1. x=7 2. x=4 3. x= 4. x= 5. x=3 6. y=§6.2 解一元一次方程(二)一、1. B 2. D 3. A二、1.x=-5,y=3 2. 3. -3三、1. (1)x= (2)x=-2 (3)x= (4) x=-4 (5)x = (6)x=-22. (1)设初一(2)班乒乓球小组共有x人, 得:9x-5=8x+2.解得:x=7 (2)48人3. (1)x=-7 (2)x=-3§6.2 解一元一次方程(三)一、1. C 2. D 3. B 4. B二、1. 1 2. 3. 10三、1. (1) x=3 (2) x=7 (3)x=–1 (4)x= (5) x=4 (6) x=2. 3( x-2) -4(x- )=4 解得 x=-33. 3元§6.2 解一元一次方程(四)一、1. B 2.B 3. D二、1. 5 2. , 3. 4. 15三、1. (1)y = (2)y =6 (3)(4)x=2. 由方程3(5x-6)=3-20x 解得x= ,把x= 代入方程a- x=2a+10x,得a =-8.∴ 当a=-8时,方程3(5x-6)=3-20x与方程a- x=2a+10x有相同的解.3. 解得:x=9§6.2 解一元一次方程(五)一、1.A 2. B 3. C二、1.2(x +8)=40 2. 4,6,8 3.2x+10=6x+5 4. 15 5. 160元三、1. 设调往甲处x人, 根据题意,得27+x=2[19+(20-x)]. 解得:x=172. 设该用户5月份用水量为x吨,依题意,得1.2×6+2(x-6)=1.4 x.解得 x=8. 于是1.4x=11.2(元) .3. 设学生人数为x人时,两家旅行社的收费一样多. 根据题意,得240+120x=144(x+1),解得 x=4.§6.3 实践与探索(一)一、1. B 2. B 3. A二、1. 36 2. 3. 42,270三、1. 设原来两位数的个位上的数字为x,根据题意,得10x+11-x=10(11-x)+x+63. 解得 x=9. 则原来两位数是29. 2.设儿童票售出x张,则成人票售出(700-x)张.依题意,得30x+50(700-x)=29000 . 解得:x=300, 则700-x=700-300=400人. 则儿童票售出300张,成人票售出400张. §6.3 实践与探索(二)一、1. A 2. C 3. C二、1. x+ x+1+1=x 2. 23.75% 3. 2045三、1. 设乙每小时加工x个零件,依题意得,5(x+2)+4(2x+2)=200 解得x=14.则甲每小时加工16个零件,乙每小时加工14个零件.2. 设王老师需从住房公积金处贷款x元,依题意得,3.6%x+4.77%(250000-x)=10170. 解得 x=150000.则王老师需从住房公积金处贷款150000元,普通住房贷款100000元.3. 设乙工程队再单独做此工程需x个月能完成,依题意,得解得 x = 14. 小时第7章二元一次方程组§7.1 二元一次方程组和它的解一、1. C 2. C 3. B二、1. 2. 5 3.三、1. 设甲原来有x本书、乙原来有y本书,根据题意,得2. 设每大件装x罐,每小件装y罐,依题意,得 .3. 设有x辆车,y个学生,依题意§7.2二元一次方程组的解法(一)一、1. D 2. B 3. B二、1. 2.略 3. 20三、1. 2. 3. 4.§7.2二元一次方程组的解法(二)一、1. D 2. C 3. A二、1. , 2. 18,12 3.三、1. 2. 3. 4.四、设甲、乙两种蔬菜的种植面积分别为x、y亩,依题意可得:解这个方程组得§7.2二元一次方程组的解法(三)一、1. B 2.A3.B 4. C二、1. 2. 9 3. 180,20三、1. 2. 3.四、设金、银牌分别为x枚、y枚,则铜牌为(y+7)枚,依题意,得解这个方程组, , 所以 y+7=21+7=28.§7.2二元一次方程组的解法(四)一、1. D 2. C 3. B二、1. 2. 3, 3. -13三、1. 1. 2. 3. 4. 5. 6.四、设小明预订了B等级、C等级门票分别为x张和y张. 依题意,得解这个方程组得§7.2二元一次方程组的解法(五)一、1. D 2. D 3. A二、1. 24 2. 6三、1. (1)加工类型项目精加工粗加工加工的天数(天)获得的利润(元)6000x 3. 28元,20元8000y(2)由(1)得:解得∴ 答:这批蔬菜共有70吨.2.设A种篮球每个元,B种篮球每个元,依题意,得解得3.设不打折前购买1件A商品和1件B商品需分别用x元,y 元,依题意,得解这个方程组,得因此50×16+50×4-960=40(元). §7.3实践与探索(一)一、1. C 2. D3.A二、1. 72 2. 3. 14万,28万三、1.设甲、乙两种商品的原销售价分别为x元,y元,依题意,得解得2. 设沙包落在A区域得分,落在B区域得分,根据题意,得解得∴ 答:小敏的四次总分为30分.3.(1)设A型洗衣机的售价为x元,B型洗衣机的售价为y 元,则据题意,可列方程组解得(2)小李实际付款:(元);小王实际付款:(元).§7.3实践与探索(二)一、1. A 2. A 3.D二、1. 55米/分, 45米/分 2. 20,18 3.2,1三、1. 设这个种植场今年“妃子笑”荔枝收获x千克,“无核Ⅰ号”荔枝收获y千克.根据题意得解这个方程组得2.设一枚壹元硬币克,一枚伍角硬币克,依题意得:解得:3.设原计划生产小麦x吨,生产玉米y吨,根据题意,得解得10×(1+12%)=11.2(吨),8×(1+10%)=8.8(吨).4. 略5. 40吨第8章一元一次不等式§8.1 认识不等式一、1.B 2.B 3.A二、1. <;>;> ; > 2. 2x+3<5 3. 4. ω≤50三、1.(1)2 -1>3;(2)a+7<0;(3)2+ 2≥0;(4)≤-2;(5)∣ -4∣≥ ;(6)-2<2 +3<4. 2.80+20n>100+16n; n=6,7,8,…§8.2 解一元一次不等式(一)一、1.C 2.A 3.C二、1.3,0,1,,- ;,,0,1 2. x≥-1 3. -2<x<2 4. x <三、1.不能,因为x<0不是不等式3-x>0的所有解的集合,例如x=1也是不等式3-x>0的一个解. 2.略§8.2 解一元一次不等式(二)一、1. B 2. C 3.A二、1.>;<;≤ 2. x≥-3 3. >三、1. x>3;2. x≥-2 3.x< 4. x>5四、x≥-1 图略五、(1) (2) (3)§8.2 解一元一次不等式(三)一、1. C 2.A二、1. x≤-3 2. x≤- 3. k>2三、1. (1)x>-2 (2)x≤-3 (3)x≥-1 (4)x<-2 (5)x≤5 (6) x≤-1 (图略)2. x≥3.八个月§8.2 解一元一次不等式(四)一、1. B 2. B 3.A二、1. -3,-2,-1 2. 5 3. x≤1 4. 24三、1. 解不等式6(x-1)≤2(4x+3)得x≥-6,所以,能使6(x-1)的值不大于2(4x+3)的值的所有负整数x的值为-6,-5,-4,-3,-2,-1.2. 设该公司最多可印制x张广告单,依题意得80+0.3x≤1200,解得x≤3733.答:该公司最多可印制3733张广告单.3. 设购买x把餐椅时到甲商场更优惠,当x>12时,得200×12+50(x-12)<0.85(200×12+50x),解得x<32 所以12<x <32; 当0<x≤12时,得200×12<0.85(200×12+50x)解得x> ,所以<x ≤12 其整数解为9,10,11,12.所以购买大于或等于9张且小于32张餐椅时到甲商场更优惠.§8.3 一元一次不等式组(一)一、1. A 2. B二、1. x>-1 2. -1<x≤2 3. x≤-1三、1. (1) x≥6 (2) 1<x<3 (3)4≤x<10 (4) x>2 (图略)2. 设幼儿园有x位小朋友,则这批玩具共有3x+59件,依题意得1≤3x+59-5(x-1)≤3,解得30.5≤x≤31.5,因x为整数,所以x=31,3x+59=3×31+59=152(件)§8.3 一元一次不等式组(二)一、1. C 2. B. 3.A二、1. m≥2 2. <x<三、1. (1)3<x<5 (2)-2≤x<3 (3)-2≤x<5 (4) x≥13(图略)2×3+2.5x<204×3+2x>202. 设苹果的单价为x元,依题意得解得4<x<5,因x恰为整数,所以x=5(元)(答略)3. -2<x≤3 正整数解是1,2,34. 设剩余经费还能为x名山区小学的学生每人购买一个书包和一件文化衫,依题意得350≤1800-(18+30)x≤400,解得29≤x≤30,因人数应为整数,所以x=30.5.(1)这批货物有66吨 (2)用2辆载重为5吨的车,7辆载重为8吨的车.。
数学同步练习册七年级下册参考答案 福建版

为$%&%&/$$/!!*"3-.$ $*%%&$$$$%-.* $)%%&$$$/%4 -.1 $ !1&$"%
解得 %&$$%/% 1$$"
第%章!一次方程组
!%!"!二元一次方程组和它的解
变式 变式 释疑引学!
!"'$#*!
#"$*$*
, 或 反馈促 学 !!" .!#" (!$" !%",!&" *")+%!'"%!("*!
" $#%% , $#$%
, , "
$#*% !)"
"!*"
解$因
为
甲
看
错
了
方
程
中 !$"
的
得 '%
到
方
程
组
的
解
为
, $#*
故 " $#)%
, $#$%
, 仍是方程 的解 把, 代入方程 可得 即 "$#)%
!*"
" $#)% !
!*"% ,%!#)"#)%!#$"$#*% #$*
, $#$
, $#$
)"&
得 解得 *( $/"&$ )$#*(&*( $/$#*(&$
(
$
$ *
课时$!一元一次方程的概念
变式 释疑引学! !"( 解 将 代入方程 反馈促学!!"(!#" '!$"(!%"&!&" '!'"(!("$"!)" " $$
七年级数学下同步练习册答案人教版

七年级数学下同步练习册答案人教版七年级学生要仔细做人教版数学同步练习册的习题,出错要少,检查要多。
小编整理了关于人教版七年级数学下册同步练习册的答案,希望对大家有帮助!七年级数学下同步练习册答案人教版(一)平方根第2课时基础知识1、 2、 3、 4、B C B B5、47、±58、±11 13/8 ±13/10 -0.59、比较大小能力提升解得x=2 2x+5=2×2+5=9 所以2x+5的算数平方根为311、解:6.75÷1.2=5.625 5.625的算数平方根约等于2.37cm12、解:设宽是x(x>0),长为4x 则4x²=25解得x=2.5 所以4x=10七年级数学下同步练习册答案人教版(二)同位角、内错角、同旁内角基础知识1、B2、C3、∠1 ∠3 ∠2 ∠6 AB CD EF4、∠C 内错∠BAE5、AB 内错6、题目略(1)∠ADC ∠EBG ∠HEB ∠DCG(2)∠ADC ∠ABE ∠AEB ∠ACD能力提升7、题目略(1)AB CD BE(2)AD BC AB(3)AB CD BC(4)AB CD BE8、∠A和∠B ∠A和∠D ∠D和∠C ∠B和∠C 共4对9、题目略(1)∠DEA同位角是∠C,内错角是∠BDE,同旁内角是∠A、∠ADE(2)∠ADE同位角是∠B,内错角是∠CED,同旁内角是∠A、∠AED探索研究10、证明:∵∠2=∠4(互为对顶角)∴∠1=∠2∴∠1=∠4∵∠2+∠3=180° ∠1=∠2∴∠1+∠3=180°∴∠1和∠3互补七年级数学下同步练习册答案人教版(三)平行线的判定第2课时基础知识1、C2、C3、题目略(1)AB CD 同位角相等,两直线平行(2)∠C 内错角相等,两直线平行(3) ∠EFB 内错角相等,两直线平行4、108°5、同位角相等,两直线平行6、已知∠ABF ∠EFC 垂直的性质 AB 同位角相等,两直线平行已知 DC 内错角相等,两直线平行 AB CD 平行的传递性能力提升7、B 8、B9、平行已知∠CDB 垂直的性质同位角相等,两直线平行三角形内角和为180° 三角形内角和为180° ∠DCB 等量代换已知∠DCB 等量代换 DE BC 内错角相等,两直线平行10、证明:(1)∵CD是∠ACB的平分线(已知)∴∠ECD=∠BCD∵∠EDC=∠DCE=25°(已知)∴∠EDC=∠BCD=25°∴DE∥BC(内错角相等,两直线平行)(2)∵DE∥BC∴∠BDE+∠B=180° 即∠EBC+∠BDC+∠B=180°∵∠B=70° ∠EDC=25°∴∠BDC=180°-70°-25°=85°11、平行∵BD⊥BE∴∠DBE=90°∵∠1+∠2+∠DBE=180°∴∠1+∠2=90°∵∠1+∠C=90°∴∠2=∠C∴BE∥FC(同位角相等,两直线平行)探索研究12、证明:∵MN⊥AB EF⊥AB∴∠ANM=90° ∠EFB=90°∵∠ANM+∠MNF=180° ∠NFE+∠EFB=180°∴∠MNF=∠EFB=90°∴MN∥FE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七下数学同步练习册答案参考
第五章相交线与平行线
1.公共,反向延长线. 2.公共,反向延长线. 3.对顶角相
等. 4.略.
5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.
6.A. 7.D. 8.B. 9.D.
10.×,11.×,12.×,13.√,14.√,15.×.
16.∠2=60°. 17.∠4=43°.
18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.
19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的
大小后,就可知道∠AOB的度数.
20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,
∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,
又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,
∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.
21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.
(3)有m(m-1)对对顶角,2m(m-1)对邻补角.
1.互相垂直,垂,垂足.
2.有且只有一条直线,所有线段,垂线段.
3.垂线段的长度.
4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度. 5~8.略.
9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.
17.B. 18.B. 19.D. 20.C. 21.D.
22.30°或150°. 23.55°.
24.如图所示,不同的垂足为三个或两个或一个.这是因为:
(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.
(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.
(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.
25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.。