112江苏省高三数学一轮复习备考试题:函数(含答案)112

合集下载

学度高三数学第一轮复习函数试题苏教版

学度高三数学第一轮复习函数试题苏教版

2021 学年度高三数学第一轮复习函数试题(考试时间 :120 分钟 ,总分值 :150 分 )一、选择题〔每题 5 分,共 60 分〕1.如果奇函数 f(x) 在区间 [3 ,7] 上是增函数且最小值为5,那么它在区间 [-7 , -3]上是〔〕〔 A 〕增函数且最小值为 -5 〔 B 〕增函数且最大值为 -5〔 C 〕减函数且最小值为 -5〔 D 〕减函数且最大值为 -52. 假设 -1<x<0 ,那么以下各不等式成立的是〔 〕-xxxxx-x〔 A 〕 〔 B 〕 <2〔 C 〕 0.2 x <2-x <2x〔 D 〕 2x <2-x <0.2 x2 2 时为增函数,那么 a 的取值范围是〔 〕3.函数 y=log a (x -2x-3) 当 x<-1 〔 A 〕 a>1 〔 B 〕-1<a<1 〔 C 〕 -1<a<1 且 a 0 〔D 〕 a>1 或 a<-14.函数 f(x) 的图像与函数g(x)=(1) x 的图像关于直线 y=x 对称,那么 f(2x-x 2) 的单2调减区间为〔〕〔 A 〕〔0, 1〕 〔 B 〕 [1 , + 〕 〔C 〕〔 - ,1] 〔 D 〕 [1 , 2〕5.设函数 f(x) 对 x R 都满足 f(3+x)=f(3-x), 且方程 f(x)=0 恰有 6个不同的实数根,那么这 6 个实根的和为〔 〕〔 A 〕 0 〔 B 〕9 〔 C 〕 12〔D 〕 186. f(x)=log1 x, 那么不等式[f(x)]2>f(x 2) 的解集为〔〕2〔 A 〕〔0, 1〕〔B 〕〔 1, + 〕4〔 C 〕〔 1, 1〕〔D 〕〔 0, 1〕 〔 1, + 〕447.函数 f(x)=log ax1 , 在〔 -1 , 0〕上有 f(x)>0,那么〔 〕〔 A 〕 f(x)(-,0) 上是增函数〔 B 〕 f(x) 在〔 - , 0〕上是减函数〔 C 〕 f(x) 在〔 - ,-1 〕上是增函数〔 D 〕 f(x) 在〔 - , -1 〕上是减函数8.假设函数 f(x) 是定义在 [-6 , 6] 上的偶函数,且在 [-6 , 0] 上单调递减,那么〔 〕〔 A 〕 f(3)+f(4)>0 〔 B 〕 f(-3)-f(-2)<0〔 C 〕 f(-2)+f(-5)<0〔 D 〕 f(4)-f(-1)>02x x 2 (0 x 3)9. .函数 f(x)=x 26x( 2x0) 的值域是〔〕〔 A 〕 R〔B〕[-9,+〕〔C〕[-8,1]〔D〕[-9,1]10.假设 U=R ,A=x ( 1 )( x 2 )( x 3)1 , B=x log 3 ( x a) 2 ,要使式子 AB= 成2立, a 的取 范 是〔 〕(A)-6 a 2(B)-11< a 3(C)a3或a 11(D)-11 a311.由于 子技 的 速 展, 算机的本钱不断降低,假设每隔 5 年 算机的价格降低 1, 在价格 8100元的 算机 15 年后的价格 〔〕3〔 A 〕 300 元〔 B 〕 900 元 〔 C 〕 2400 元 〔 D 〕 3600 元12.某种 菌在培养 程中,每15 分种分裂一次〔由1 个分裂2 个〕, 两小, 1 个 种 菌可以分裂成〔 〕〔 A 〕 255 个〔 B 〕 256 个〔 C 〕 511 个 〔D 〕512 个二、填空 〔每小 4 分,共 16 分〕13.假设 f(x)= ax1在区 〔 -2,+ 〕上是增函数,a 的取 范 是。

高考数学一轮复习讲练测(江苏版):专题2.12函数模型及其应用(讲)(含答案解析)

高考数学一轮复习讲练测(江苏版):专题2.12函数模型及其应用(讲)(含答案解析)

【最新考纲解读】要求备注内容A B C对知识的考察要求挨次分为认识、理解、掌握三个层次(在表中分别用 A 、B、C 表示) .函数概认识:要求对所列知识的含义有最基本的认识,并能解念与基√决有关的简单问题.本初等函数模型及其应用理解:要求对所列知识有较深刻的认识,并能解决有一函数Ⅰ定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.【考点深度分析】解答应用问题的程序归纳为“四步八字”,即①审题:弄清题意,分清条件和结论,理顺数目关系,初步选择模型;②建模:把自然语言转变为数学语言,将文字语言转变为符号语言,利用数学知识,成立相应的数学模型;③求模:求解数学模型,得出数学结论;④复原:将数学结论复原为实质问题的意义.【判一判】判断正误 (在括号内打“√”或“×”)(1) 函数 y= 2x的函数值比y= x2的函数值大 .()(2)“指数爆炸”是指数型函数y= ab x+ c(a≠ 0, b>0, b≠ 1)增加速度愈来愈快的形象比喻 .()(3) 幂函数增加比直线增加更快.()(4)f(x) = x2, g(x)= 2x, h(x) = log2x,当x∈ (4,+∞)时,恒有h(x) < f(x) <g(x).()答案只有 (4) 对【练一练】小明骑车上学,开始时匀速行驶,途中因交通拥塞逗留了一段时间后,为了赶时间加迅速度行驶,则以下图象与以上事件符合得最好的是________( 填序号 ).答案③分析小明匀速运动时,所得图象为一条直线,且距离学校愈来愈近,清除①.因交通拥塞逗留了一段时间,与学校的距离不变,清除④.以后为了赶时间加迅速度行驶,清除②.故③切合 .【经典例题精析】考点 1一次函数与二次函数模型【 1-1 】某电信企业推出两种手机收费方式: A 种方式是月租20 元, B 种方式是月租0 元.一个月的当地网内通话时间t( 分钟 )与电话费s(元 )的函数关系如图所示,当通话150 分钟时,这两种方式电话费相差_________ 元.【答案】 10【 1-2 】将进货单价为 80 元的商品按 90 元销售时,能卖出400 个.若该商品每个涨价 1 元,其销售量就减少20 个,为了赚取最大的收益,售价应定为每个_________元.【答案】 95【基础知识】1.几种常有的函数模型函数模型函数分析式一次函数模型f(x)= ax+b(a, b 为常数, a≠0)二次函数模型f(x)= ax2+ bx+ c(a, b, c 为常数, a≠0)指数函数模型f(x)= ba x+ c(a, b,c 为常数, a>0 且 a≠1, b≠0)对数函数模型f(x)= blog a x+ c(a, b,c 为常数, a>0 且 a≠1, b≠ 0)幂函数模型f(x)= ax n+ b(a,b, n 为常数, a≠0, n≠0)2.三种函数模型性质比较y= a x(a>1)y= log a x(a>1)y= x n (n>0)在 (0,+∞)上的增函数增函数增函数单一性增加速度愈来愈快愈来愈慢相对安稳随 x 值增大,图像与 y随 x 值增大,图像与 x随 n 值变化而不图像的变化轴靠近平行轴靠近平行同【思想方法】(1)二次函数的最值一般利用配方法与函数的单一性解决,但必定要亲密注意函数的定义域,不然极易犯错;(2)确立一次函数模型时,一般是借助两个点来确立,常用待定系数法;(3)解决函数应用问题时,最后要复原到实质问题.【温馨提示】1.易忽视实质问题的自变量的取值范围,需合理确立函数的定义域.2.注意问题反应.在解决函数模型后,一定考证这个数学结果对实质问题的合理性.考点 2分段函数模型【2-1】提升过江大桥的车辆通行能力可改良整个城市的交通状况.在一般状况下,大桥上的车流速度 v(单位:千米 /小时 )是车流密度 x(单位:辆 /千米 )的函数.当桥上的车流密度达到 200 辆 /千米时,造成拥塞,此时车流速度为0 千米 /小时;当车流密度不超出20 辆/千米时,车流速度为60 千米 / 小时.研究表示:当次函数.20≤x≤200时,车流速度v 是车流密度x 的一(1)当 0≤x≤ 200时,求函数 v(x)的表达式.(2) 当车流密度 x为多大时,车流量(单位时间内经过桥上某观察点的车辆数,单位:辆/小时 )f(x)= x·v(x)能够达到最大,并求出最大值(精准到 1 辆 /小时 ).60, 0≤x≤ 20,【答案】 (1) v(x)=(2)当 x= 100 时,f(x) 在区间 (20,200] 上获得最大值.200-x, 20<x≤200.3综上,当x= 100 时,f(x)在区间[0,200] 上获得最大值f(x)max= 10 000≈ 3 333,即当车流密度为3100 辆 /千米时,车流量能够达到最大,最大值约为 3 333辆 /小时.【 2-2】某企业研制出了一种新产品,试制了一批样品分别在国内和外国上市销售,而且价格依据销售状况不停进行调整,结果40 天内所有销完.企业对销售及销售收益进行了调研,结果如下图,此中图①(一条折线 )、图② (一条抛物线段)分别是外国和国内市场的日销售量与上市时间的关系,图③是每件样品的销售收益与上市时间的关系.(1)分别写出外国市场的日销售量f(t)与上市时间t 的关系及国内市场的日销售量g(t)与上市时间 t 的关系;(2)外国和国内的日销售收益之和有没有可能恰巧等于 6 300 万元?如有,请说明是上市后的第几日;若没有,请说明原因.2t, 0≤t≤ 30,g(t)=-3t2+6t(0 ≤t≤40). (2) 上市后的第30 天.【答案】 (1) f(t)=- 6t+ 240, 30<t≤40.203t , 0≤t≤ 20,(2) 每件样品的销售收益h(t)与上市时间t 的关系为h(t)=60, 20<t≤ 40.故外国和国内的日销售收益之和F(t)与上市时间t 的关系为3 23t -t + 8t , 0≤t≤20,F(t)=60 -203t2+ 8t , 20<t≤30,60-32, 30<t≤40.20t + 24032932当 0≤t≤20时, F(t)= 3t -20t + 8t =-20t + 24t,27227∴ F′(t)=-20t + 48t =t48-20t ≥0,∴ F( t)在 [0,20] 上是增函数,∴ F( t)在此区间上的最大值为F(20)= 6 000<6 300.当 20<t≤30时, F(t)= 60 -3t2+ 8t . 20由 F(t)= 6 300,得 3t2- 160t+ 2 100= 0,70解得 t=3 (舍去 )或 t= 30.当 30<t≤40时, F(t)= 60 -3t2+ 240 . 20由 F(t)在 (30,40] 上是减函数,得 F(t)<F(30)= 6 300.故外国和国内的日销售收益之和能够恰巧等于 6 300 万元,为上市后的第30 天.【基础知识】1.几种常有的函数模型函数模型函数分析式一次函数模型f(x)= ax+b(a, b 为常数, a≠0)二次函数模型f(x)= ax2+ bx+ c(a, b, c 为常数, a≠0)指数函数模型f(x)= ba x+ c(a, b,c 为常数, a>0 且 a≠1, b≠0)对数函数模型f(x)= blog a x+ c(a, b,c 为常数, a>0 且 a≠1, b≠ 0)幂函数模型f(x)= ax n+ b(a,b, n 为常数, a≠0, n≠0)2.三种函数模型性质比较y= a x(a>1)y= log a x(a>1)y= x n (n>0)在 (0,+∞)上的增函数增函数增函数单一性增加速度愈来愈快愈来愈慢相对安稳图像的变化随 x 值增大,图像与 y随 x 值增大,图像与 x随 n 值变化而不轴靠近平行轴靠近平行同【思想方法】(1)实质问题中有些变量间的关系不可以用同一个关系式给出,而是由几个不一样的关系式组成,如出租车票价与行程之间的关系,应建立分段函数模型求解.(2)分段函数的最值是各段的最大 (最小 )者的最大者 (最小者 ).【温馨提示】结构分段函数时,要力争正确、简短,做到分段合理、不重不漏.考点 3 指数函数模型【 3-1】一片丛林本来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍10 年,为保护生态环境,丛林面积起码要保存原面积的1伐到面积的一半时,所用时间是4,2已知到今年为止,丛林节余面积为本来的2 .(1)求每年砍伐面积的百分比;(2)到今年为止,该丛林已砍伐了多少年?(3)此后最多还可以砍伐多少年?【答案】 (1) x= 1-1101(2) 5. (3)15. 2【 3-2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停 (每次上升 10%) ,又经历了n 次跌停 (每次下跌10%) ,判断该股民这支股票的盈亏状况(不考虑其余花费 ).【答案】略有损失【分析】设该股民购这支股票的价钱为 a,则经历 n 次涨停后的价钱为 a(1+10%) n=a×1.1n,经历n 次跌停后的价钱为 a×1.1n×(1- 10%)n= a×1.1n×0.9n=a×(1.1 ×0.9)n= 0.99n·a<a,故该股民这支股票略有损失.【基础知识】1.几种常有的函数模型函数模型函数分析式一次函数模型二次函数模型指数函数模型对数函数模型幂函数模型f(x)= ax+b(a, b 为常数, a≠0)f(x)= ax2+ bx+ c(a, b, c 为常数, a≠0)xf(x)= ba + c(a, b,c 为常数, a>0 且 a≠1, b≠0)f(x)= blog a x+ c(a, b,c 为常数, a>0 且 a≠1, b≠ 0) nf(x)= ax + b(a,b, n 为常数, a≠0, n≠0)2.三种函数模型性质比较y= a x(a>1)y= log a x(a>1)y= x n (n>0)在 (0,+∞)上的增函数增函数增函数单一性增加速度愈来愈快愈来愈慢相对安稳图像的变化随 x 值增大,图像与 y随 x 值增大,图像与 x随 n 值变化而不轴靠近平行轴靠近平行同【思想方法】(1)指数函数模型,常与增加率相联合进行考察,在实质问题中有人口增加、银行利率、细胞分裂等增加问题能够利用指数函数模型来解决.(2)应用指数函数模型时,重点是对模型的判断,先设定模型,再将已知有关数据代入考证,确立参数,进而确立函数模型.(3)y= a(1 +x) n往常利用指数运算与对数函数的性质求解.【温馨提示】解指数不等式时,必定要化为同底,且注意对应函数的单一性.【易错题型大揭秘】数学实质应用问题,必定要正确理解题意,选择适合的函数模型;合理确立实质问题中自变量的取值范围;一定考证答案对实质问题的合理性.如:如下图,在矩形CD 中,已知 a , C b( a b ).在、 D 、CD、C上分别截取、、CG、CF都等于x,当x为什么值时,四边形FG的面积最大?求出这个最大面积.【分析】设四边形FG的面积为S,则S F S D G1 a x b x ,S S CFG21x 2 , S ab 2 1x 21a xb x22x 2a b x2 xa b 22 24 a2a bbx b .0 ba ,0 b8 ,由图形知函数的定义域为x 0,若2a 2a b b ,即 a 3b 时,xa b,使面积 S 获得最大值b;若abb ,即 a 3b8444时 , 函 数 S x在0,b 上 是 增 函 数 , 此 时 当 xb时,S 有最大值为2a 22 ba b b48ab b 2.综上可知,若a 3b ,当 xa b时,四边形 FG的面积获得最大值4a b2;若 a3b ,当 xb 时,四边形 FG 的面积获得最大值ab b 2 .8【易错点】忽视实质问题中自变量的取值范围,造成与实质问题不相切合的错误结论.【练一练】某村计划建筑一个室内面积为800 m 2 的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保存1 m 宽的通道, 沿前侧内墙保存 3 m 宽的空地, 当矩形温室的边长各为多少时,蔬菜的栽种面积最大?最大面积是多少?【答案】当矩形温室的边长各为 40 m ,20 m 时,蔬菜的栽种面积最大, 最大面积是 648 m 2 .。

(江苏专版)高考数学一轮复习 第二章 函数 2.1 函数的概念讲义-人教版高三全册数学试题

(江苏专版)高考数学一轮复习 第二章 函数 2.1 函数的概念讲义-人教版高三全册数学试题

word§2.1函数的概念命题探究答案:解析:易知函数f(x)的定义域为R,关于原点对称. ∵f(x)=x3-2x+e x -,∴f(-x)=(-x)3-2(-x)+e-x -=-x3+2x+-e x=-f(x),∴f(x)为奇函数,又f '(x)=3x2-2+e x +≥3x2-2+2=3x2≥0(当且仅当x=0时,取“=”),所以f(x)在R上单调递增,所以f(a-1)+f(2a2)≤0⇔f(a-1)≤f(-2a2)⇔-2a2≥a-1,解得-1≤a≤.考纲解读考点内容解读要求五年高考统计常考题型预测热度2013 2014 2015 2016 20171.函数的基本概念1.求定义域或值域2.函数关系判断B5题5分填空题★★☆2.函数的表示方法1.求函数值2.求函数解析式B11题5分填空题解答题★☆☆3.分段函数1.求函数值2.求参数3.解不等式B填空题解答题★★★分析解读函数的概念是学习函数的基础,重点考查函数定义域和值域的求法,一般和常见的初等函数综合命题.五年高考考点一函数的基本概念1.(2017某某理改编,1,5分)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=.答案[-2,1)2.(2016某某,5,5分)函数y=的定义域是.答案[-3,1]3.(2016课标全国Ⅱ改编,10,5分)函数y=10lg x的定义域和值域分别是,.答案(0,+∞);(0,+∞)4.(2014某某改编,2,5分)函数f(x)=ln(x2-x)的定义域为.答案(-∞,0)∪(1,+∞)5.(2014某某改编,3,5分)函数f(x)=的定义域为.答案∪(2,+∞)6.(2013某某理改编,1,5分)设全集为R,函数f(x)=的定义域为M,则∁R M为.答案(-∞,-1)∪(1,+∞)考点二函数的表示方法1.(2016某某,11,5分)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=其中a∈R.若f=f,则f(5a)的值是.答案-2.(2015某某,10,6分)已知函数f(x)=则f(f(-3))=,f(x)的最小值是.答案0;2-33.(2015某某改编,10,5分)设函数f(x)=则满足f(f(a))=2f(a)的a的取值X围是.答案4.(2014某某改编,3,5分)已知函数f(x)=5|x|,g(x)=ax2-x(a∈R).若f [g(1)]=1,则a=.答案 1考点三分段函数1.(2017课标全国Ⅲ文,16,5分)设函数f(x)=则满足f(x)+f>1的x的取值X围是.答案2.(2017某某文改编,9,5分)设f(x)=若f(a)=f(a+1),则f=.答案 63.(2015课标Ⅱ改编,5,5分)设函数f(x)=则f(-2)+f(log212)=.答案94.(2014某某,12,5分)设f(x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=则f=.答案 1教师用书专用(5)5.(2014某某,15,5分)设函数f(x)=若f(f(a))≤2,则实数a的取值X围是.答案(-∞,]三年模拟A组2016—2018年模拟·基础题组考点一函数的基本概念1.(2017某某某某沛县中学第一次质检,4)函数y=lg(3x+1)+的定义域是.答案2.(2017某某某某二中期初,6)函数y=的值域为.答案{y∈R|y≠3}3.(苏教必1,二,3,8,变式)函数f(x)=+的定义域为.答案(-3,0]4.(2017某某某某、某某、某某、某某、宿迁、某某六市联考,8)函数f(x)=的定义域是.答案[-2,2]5.(2017某某前黄高级中学上学期第二次学情调研,1)函数y=的定义域为A,值域为B,则A∪B=.答案[-4,3]考点二函数的表示方法6.(2018某某某某、宿迁高三期中)已知函数f(x)与g(x)的图象关于原点对称,且它们的图象拼成如图所示的“Z”形折线段ABOCD,不含A(0,1),B(1,1),O(0,0),C(-1,-1),D(0,-1)五个点.则满足题意的f(x)的一个解析式为.答案f(x)=7.(苏教必1,二,11,变式)已知函数f(x)的定义域为(0,+∞),且f(x)=2f·-1,则f(x)=.答案+8.(苏教必1,二,11,变式)已知函数f(x)满足f=log2,则f(x)的解析式是.答案f(x)=-log2x考点三分段函数9.(2018某某天一中学调研)f(x)是定义在R上的奇函数,当x>0时,f(x)=则f的值为.答案-10.(2018某某某某高三期中)若函数f(x)=则f(5)=.答案 211.(2018某某常熟期中)若函数f(x)=(a>0,且a≠1)的值域为[6,+∞),则实数a的取值X围是.答案(1,2]12.(2016某某某某中学期初质检,6)设函数f(x)=则f=.答案 1B组2016—2018年模拟·提升题组(满分:20分时间:10分钟)填空题(每小题5分,共20分)1.(2018某某金陵中学月考)已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值X围是.答案0<k<1或1<k<22.(苏教必1,二,1,13,变式)已知函数f(x)=-1的定义域是[a,B](a,B∈Z),值域是[0,1],则满足条件的整数数对(a,B)共有个.答案 53.(2016某某某某海安期末,14)在平面直角坐标系xOy中,将函数y=(x∈[0,2])的图象绕坐标原点O按逆时针方向旋转角θ,若∀θ∈[0,α],旋转后所得曲线都是某个函数的图象,则α的最大值是.答案4.函数f(x)=的值域为.答案C组2016—2018年模拟·方法题组方法1 求函数的定义域1.若函数y=的定义域为R,则实数a的取值X围是.答案[0,3)方法2 求函数解析式的常用方法2.设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)的表达式. 解析解法一:令x=y,则由f(x-y)=f(x)-y(2x-y+1),得f(0)=f(x)-x(2x-x+1).∵f(0)=1,∴f(x)-x(2x-x+1)=1,即f(x)=x2+x+1.解法二:令x=0,得f(0-y)=f(0)-y(-y+1),即f(-y)=1-y(-y+1).再令-y=x,代入上式,得f(x)=1-(-x)(x+1)=1+x(x+1).则f(x)=x2+x+1.方法3 分段函数的相关问题3.已知f(x)=其中i是虚数单位,则f(f(1-i))=. 答案 3。

江苏省2019届高三数学一轮复习典型题专题训练:函数

江苏省2019届高三数学一轮复习典型题专题训练:函数

江苏省2019届高三数学一轮复习典型题专题训练:函数1、函数f(x)=log2(x-1)的定义域为{x|x>1}。

2、设函数f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=x,当x不属于集合D={x|x=n-1或n,n∈N*}时,f(x)=x2.则方程f(x)-log2x=0的解的个数是1.3、已知函数y=3-2x-x3的定义域是R。

4、已知函数f(x)是定义在R上的奇函数,且在(-∞,0]上为单调增函数。

若f(-1)=-2,则满足f(2x-3)≤2的x的取值范围是[-1,0]。

5、若f(x)是定义在R上的周期为3的函数,且f(x)=2(x+x2+a),当x∈[1,2];f(x)=-6x+18,当x∈(2,3]。

则f(a+1)的值为-4.6、已知函数f(x)是定义在R上的周期为2的奇函数,当|x|<1时,f(x)=8x。

则f(-19/3)的值为-16.7、已知函数f(x)=(e4x,x≥1;x+1,x<1)。

若函数y=f(x)的最小值是4,则实数a的取值范围为(-∞,1)。

8、已知函数f(x)=|x+3|+1,当x≤8;f(x)=2lnx,当x>a。

若存在实数a<b<c,满足f(a)=f(b)=f(c),则af(a)+bf(b)+cf(c)的最大值为2ln8+4.9、已知函数f(x)=x2+abx+a+2b。

若f(0)=4,则f(1)的最大值是5.10、若函数f(x)=fx-3,当x>3;f(x)=1-x,当x≤3.则f(5)=-2.11、已知函数f(x)=ex-e-x+1.若f(2x-1)+f(4-x)>2,则实数x 的取值范围为(0,1)。

12、函数y=lg(4-3x-x2)的定义域为{x|x-3}。

13、已知函数$f(x)=x^2-kx+4$,对于任意$x\in[1,3]$,不等式$f(x)\geq$恒成立,则实数$k$的最大值为多少?14、函数$f(x)$满足$f(x+4)=f(x)(x\in R)$,且在区间$(-2,2]$上,$f(x)=\begin{cases} \cos x。

高考一轮江苏数学文练习第章 热点探究课 函数的图象与性质 含答案

高考一轮江苏数学文练习第章 热点探究课 函数的图象与性质 含答案

热点探究课(一) 函数的图象与性质[命题解读] 函数是中学数学的核心概念,函数的图象与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以填空题为主,既重视三基,又注重思想方法的考查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数与方程思想、数形结合思想、分类讨论思想的应用意识.热点1 函数图象的应用利用函数图象研究方程的解、不等式的解集等是高考的热点,多以填空题的形式出现,属中档题目,主要考查学生的数形结合意识以及用图象解答问题的能力.已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎪⎨⎪⎧cos πx ,x ∈⎣⎢⎡⎦⎥⎤0,12,2x -1,x ∈⎝ ⎛⎭⎪⎫12,+∞,则不等式f (x -1)≤12的解集为________. 【导学号:62172064】⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74 [画出函数f (x )的图象,如图,当0≤x ≤12时,令f (x )=cos πx ≤12,解得13≤x ≤12;当x >12时,令f (x )=2x -1≤12,解得12<x ≤34, 故有13≤x ≤34.因为f (x )是偶函数,所以f (x )≤12的解集为⎣⎢⎡⎦⎥⎤-34,-13∪⎣⎢⎡⎦⎥⎤13,34,故f (x -1)≤12的解集为⎣⎢⎡⎦⎥⎤14,23∪⎣⎢⎡⎦⎥⎤43,74.][迁移探究1] 在本例条件下,若关于x 的方程f (x )=k 有2个不同的实数解,求实数k 的取值范围.[解] 由函数f (x )的图象(图略)可知,当k =0或k >1时,方程f (x )=k 有2个不同的实数解,即实数k 的取值范围是k =0或k >1.[迁移探究2] 在本例条件下,若函数y =f (x )-k |x |恰有两个零点,求实数k 的取值范围.[解] 函数y =f (x )-k |x |恰有两个零点,即函数y =f (x )的图象与y =k |x |的图象恰有两个交点,借助函数图象(图略)可知k ≥2或k =0,即实数k 的取值范围为k =0或k ≥2.[规律方法] 1.利用函数的图象研究函数的性质,一定要注意其对应关系,如:图象的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.2.有关方程解的个数问题常常转化为两个熟悉的函数图象的交点个数;利用此法也可由解的个数求参数值或范围.3.有关不等式的问题常常转化为两个函数图象的上、下关系来解. [对点训练1] (2017·镇江期中)已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2,x +22x ,x ≥2,若0<a<b <c ,满足f (a )=f (b )=f (c ),则abf (c )的范围是________. (1,2) [如图所示,∵0<a <b <c ,且f (a )=f (b )=f (c ), ∴-log 2a =log 2b ,即ab =1, 又由图可知12<f (c )<1, 故1<1f (c )<2, ∴ab f (c )=1f (c )∈(1,2).] 热点2 函数性质的综合应用对函数性质的考查,以单调性、奇偶性和周期性为主,同时融合函数的零点问题,重在考查学生的等价转化能力及数形结合意识,难度中等.熟练掌握上述性质是解此类题的关键.☞角度1 单调性与奇偶性结合(2016·天津高考改编)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.⎝ ⎛⎭⎪⎫12,32 [因为f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增,所以f (-x )=f (x ),且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32.] ☞角度2 奇偶性与周期性结合(2017·南通二模)已知f (x )是定义在R 上的偶函数,且对于任意的x∈[0,+∞),满足f (x +2)=f (x ),若当x ∈[0,2)时,f (x )=|x 2-x -1|,则函数y =f (x )-1在区间[-2,4]上的零点个数为________.7 [由f (x +2)=f (x )可知,f (x )在[0,+∞)上是周期为2的函数,又x ∈[0,2)时,f (x )=|x 2-x -1|,且f (x )为偶函数,故f (x )在[-2,4]上的图象如图所示.由图可知y =f (x )与y =1有7个交点,故函数y =f (x )-1在区间[-2,4]上有7个零点.]☞角度3单调性、奇偶性与周期性结合已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25),f(11),f(80)的大小关系为________.f(-25)<f(80)<f(11)[因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).因为f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,所以f(x)在区间[-2,2]上是增函数,所以f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).][规律方法]函数性质综合应用问题的常见类型及解题方法(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.热点3函数图象与性质的综合应用函数的零点、方程的根和函数图象的交点横坐标之间的等价转化思想和数形结合思想是解答此类问题的关键所在.因此在处理此类问题时,务必要结合题设信息实现知识转化.以填空题压轴题据多,求解时务必细心.(2015·江苏高考)已知函数f(x)=|ln x|,g(x)=⎩⎨⎧0,0<x≤1,|x2-4|-2,x>1,则方程|f(x)+g(x)|=1实根的个数为______.4[令h(x)=f(x)+g(x),则h(x)=⎩⎪⎨⎪⎧-ln x,0<x≤1,-x2+ln x+2,1<x<2,x2+ln x-6,x≥2,当1<x<2时,h′(x)=-2x+1x=1-2x2x<0,故当1<x<2时h(x)单调递减,在同一坐标系中画出y=|h(x)|和y=1的图象如图所示.由图象可知|f(x)+g(x)|=1的实根个数为4.][规律方法]解决分段函数与函数零点的综合问题的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式求解零点,注意取值范围内的大前提,以及函数性质和数形结合在判断零点个数时的强大功能.[对点训练2]已知函数f(x)=⎩⎨⎧2-x-1,x≤0,f(x-1),x>0,若方程f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是________.【导学号:62172065】(-∞,1) [函数f (x )=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x >0的图象如图所示,当a <1时,函数y =f (x )的图象与函数f (x )=x +a 的图象有两个交点,即方程f (x )=x +a 有且只有两个不相等的实数根.]热点探究训练(一)A 组 基础达标 (建议用时:30分钟)一、填空题1.(2017·镇江期中)函数f (x )=12-lg x 的定义域是________.(0,10] [由12-lg x ≥0得lg x ≤12,即0<x ≤10.]2.(2017·常州期末)函数f (x )=log 2(-x 2+22)的值域为________.【导学号:62172066】⎝ ⎛⎦⎥⎤-∞,32 [∵-x 2+22≤22,且y =log 2x 在(0,22]上单调递增,故log 2x ≤log 222=log 2232=32.]3.(2017·如皋中学高三第一次月考)若函数f (x )=x 2(e x +m )e x -1(e 为自然对数的底数)是奇函数,则实数m 的值为________.1 [由f (-x )=-f (x )得x 2(e -x +m )e -x -1=-x 2(e x +m )e x -1,即1+m e x =e x +m ,故m =1.]4.若函数f (x )=a sin 2x +b tan x +1,且f (-3)=5,则f (π+3)=________.【导学号:62172067】-3 [令g (x )=a sin 2x +b tan x ,则g (x )是奇函数,且最小正周期是π,由f (-3)=g (-3)+1=5,得g (-3)=4,则g (3)=-g (-3)=-4,则f (π+3)=g (π+3)+1=g (3)+1=-4+1=-3.]5.已知函数f (x )是(-∞,+∞)上的奇函数,当x ∈[0,2)时,f (x )=x 2,若对于任意x ∈R ,都有f (x +4)=f (x ),则f (2)-f (3)的值为________.1 [由题意得f (2)=f (-2+4)=f (-2)=-f (2), ∴f (2)=0.∵f (3)=f (-1+4)=f (-1)=-f (1)=-1, ∴f (2)-f (3)=1.]6.已知函数f (x )=⎩⎨⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是________.[-1,2) [由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a .因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解.由x =2,得a <2. 由x 2+3x +2=0,得x =-1或x =-2, 由x ≤a ,得a ≥-1.综上,a 的取值范围为[-1,2).]7.(2017·南通第一次学情检测)已知f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=2x -2,则不等式f (x -1)≤6的解集是________. 【导学号:62172068】[-2,4] [∵f (x )为R 上的偶函数, ∴当x <0时,-x >0, ∴f (-x )=2-x -2, 即f (x )=2-x -2. ∵f (x -1)≤6,∴当x -1≥0,即x ≥1时, 2x -1-2≤6, 解得1≤x ≤4;当x -1<0,即x <1时,21-x -2≤6, 解得-2≤x <1.综上可知,f (x -1)≤6的解集为[-2,4].]8.已知函数f (x ),g (x )分别是定义在R 上的偶函数与奇函数,且g (x )=f (x -1),则f (2 019)的值为________.0 [g (-x )=f (-x -1),由f (x ),g (x )分别是偶函数与奇函数,得g (x )=-f (x +1),∴f (x -1)=-f (x +1),即f (x +2)=-f (x ),∴f (x +4)=f (x ),故函数f (x )是以4为周期的周期函数,则f (2 019)=f (505×4-1)=f (-1)=g (0)=0.]9.已知函数y =f (x +2)的图象关于直线x =-2对称,且当x ∈(0,+∞)时,f (x )=|log 2x |,若a =f (-3),b =f ⎝ ⎛⎭⎪⎫14,c =f (2),则a ,b ,c 的大小关系是________.b >a >c [由函数y =f (x +2)的图象关于直线x =-2对称,得函数y =f (x )的图象关于y 轴对称,即y =f (x )是偶函数.当x ∈(0,1)时,f (x )=f ⎝ ⎛⎭⎪⎫1x =|log 2x |,且x ∈[1,+∞)时,f (x )=log 2x 单调递增,又a =f (-3)=f (3),b =f ⎝ ⎛⎭⎪⎫14=f (4),所以b >a >c .]10.(2017·南京一模)设f (x )是定义在R 上的奇函数,且f (x )=2x +m2x ,设g (x )=⎩⎨⎧f (x ),x >1,f (-x ),x ≤1,若函数y =g (x )-t 有且只有一个零点,则实数t 的取值范围是________.⎣⎢⎡⎦⎥⎤-32,32 [由f (x )为R 上的奇函数可知,f (0)=0,即1+m =0,m =-1, ∴f (x )=2x -12x ,∴g (x )=⎩⎪⎨⎪⎧2x -12x ,x >1,12x -2x,x ≤1.又当x >1时,g (x )为增函数, ∴g (x )>g (1)=2-12=32, 当x ≤1时,g (x )为减函数, ∴g (x )≥g (1)=-⎝ ⎛⎭⎪⎫2-12=-32.要使g (x )-t =0有且只有一解,即函数y =g (x )与y =t 的图象只有一个交点(图略),故-32≤t ≤32.]二、解答题11.(2017·镇江期中)已知函数f (x )=log 2x4log 22x . (1)解不等式f (x )>0;(2)当x ∈[1,4]时,求f (x )的值域.[解] (1)函数f (x )=log 2x 4·log 22x =(log 2x -log 24)(log 22+log 2x ) =(log 2x )2-log 2x -2,x ∈(0,+∞).令f (x )=(log 2x )2-log 2x -2>0,则log 2x >2或log 2x <-1,故x >4或0<x <12. (2)若x ∈[1,4],则0≤log 2x ≤2,f (x )=(log 2x )2-log 2x -2=⎝ ⎛⎭⎪⎫log 2x -122-94, 当log 2x =12即x =2时,f (x )min =-94;当log 2x =2即x =4时,f (x )max =0. 故f (x )值域为⎣⎢⎡⎦⎥⎤-94,0.12.(2017·启东中学高三第一次月考)已知函数f (x )=-2x +m2x +1+n (其中m ,n 为参数).(1)当m =n =1时,证明:f (x )不是奇函数; (2)如果f (x )是奇函数,求实数m ,n 的值;(3)已知m >0,n >0,在(2)的条件下,求不等式f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0的解集.[解] 证明:(1)f (x )=-2x +12x +1+1,∴f (1)=-2+122+1=-15, f (-1)=-12+12=14,∵f (-1)≠-f (1),∴f (x )不是奇函数. (2)由f (x )是奇函数得f (-x )=-f (x ),即-2-x +m 2-x +1+n =--2x +m 2x +1+n 对定义域内任意实数x 都成立,化简整理得关于x 的恒等式(2m -n )·22x +(2mn -4)·2x +(2m -n )=0,∴⎩⎪⎨⎪⎧ 2m -n =0,2mn -4=0,即⎩⎪⎨⎪⎧ m =-1,n =-2或⎩⎪⎨⎪⎧m =1,n =2. (3)由题意得m =1,n =2,∴f (x )=-2x +12x +1+2=12⎝ ⎛⎭⎪⎫-1+22x +1,易判断f (x )在R 上递减,∵f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0, ∴f (f (x ))<-f ⎝ ⎛⎭⎪⎫14=f ⎝ ⎛⎭⎪⎫-14, ∴f (x )>-14,∴2x <3,∴x <log 23,即所求不等式的解集为(-∞,log 23).B 组 能力提升(建议用时:15分钟)1.已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为________. ⎝ ⎛⎭⎪⎫1e ,e [f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),所以⎪⎪⎪⎪⎪⎪f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x 2=|f (ln x )+f (ln x )|2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),所以-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,所以-1<ln x <1,解得1e <x <e.]2.(2017·泰州中学高三摸底考试)对于函数y =f (x ),若存在区间[a ,b ],当x ∈[a ,b ]时的值域为[ka ,kb ](k >0),则称y =f (x )为k 倍值函数.若f (x )=ln x +x 是k 倍值函数,则实数k 的取值范围是________.⎝ ⎛⎭⎪⎫1,1+1e [由题意得ln x +x =kx 有两个不同的解,k =ln x x +1,则k ′=1-ln x x 2=0⇒x =e ,因此当0<x <e 时,k ∈⎝ ⎛⎭⎪⎫-∞,1+1e ,当x >e 时,k ∈⎝ ⎛⎭⎪⎫1,1+1e ,从而要使ln x +x =kx 有两个不同的解,需k ∈⎝ ⎛⎭⎪⎫1,1+1e .] 3.函数f (x )=m +log a x (a >0且a ≠1)的图象过点(8,2)和(1,-1).(1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值.[解] (1)由⎩⎪⎨⎪⎧ f (8)=2,f (1)=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x .(2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)]=log 2x 2x -1-1(x >1). ∵x 2x -1=(x -1)2+2(x -1)+1x -1=(x -1)+1x -1+2≥2(x -1)·1x -1+2=4. 当且仅当x -1=1x -1,即x =2时,等号成立. 而函数y =log 2x 在(0,+∞)上单调递增,则log 2x 2x -1-1≥log 24-1=1, 故当x =2时,函数g (x )取得最小值1.4.已知函数f (x )=x 2-1,g (x )=a |x -1|.(1)若当x ∈R 时,不等式f (x )≥g (x )恒成立,求实数a 的取值范围;(2)求函数h (x )=|f (x )|+g (x )在区间[0,2]上的最大值.[解] (1)不等式f (x )≥g (x )对x ∈R 恒成立,即x 2-1≥a |x -1|(*)对x ∈R 恒成立.①当x =1时,(*)显然成立,此时a ∈R ;②当x ≠1时,(*)可变形为a ≤x 2-1|x -1|,令φ(x )=x 2-1|x -1|=⎩⎪⎨⎪⎧ x +1,x >1,-(x +1),x <1. 因为当x >1时,φ(x )>2,当x <1时,φ(x )>-2, 所以φ(x )>-2,故此时a ≤-2.综合①②,得所求实数a 的取值范围是(-∞,-2].(2)h (x )=⎩⎪⎨⎪⎧ -x 2-ax +a +1,0≤x <1,0,x =1,x 2+ax -a -1,1<x ≤2.①当-a 2≤0,即a ≥0时,(-x 2-ax +a +1)max =h (0)=a +1,(x 2+ax -a -1)max =h (2)=a +3.此时,h (x )max =a +3.②当0<-a 2≤1,即-2≤a <0时,(-x 2-ax +a +1)max=h ⎝ ⎛⎭⎪⎫-a 2=a 24+a +1,(x 2+ax -a -1)max =h (2)=a +3.此时h (x )max =a +3. ③当1<-a 2≤2,即-4≤a <-2时,(-x 2-ax +a +1)max =h (1)=0,(x 2+ax -a -1)max =max{h (1),h (2)}=max{0,3+a }=⎩⎪⎨⎪⎧ 0,-4≤a <-3,3+a ,-3≤a <-2.此时h (x )max =⎩⎪⎨⎪⎧0,-4≤a <-3,3+a ,-3≤a <-2.④当-a 2>2,即a <-4时,(-x 2-ax +a +1)max =h (1)=0, (x 2+ax -a -1)max =h (1)=0. 此时h (x )max =0.综上:h (x )max =⎩⎪⎨⎪⎧3+a ,a ≥-3,0,a <-3.。

推荐2019年人教版江苏省高三数学一轮复习备考试题:函数(含答案)Word版

推荐2019年人教版江苏省高三数学一轮复习备考试题:函数(含答案)Word版

高考一轮复习备考试题(附参考答案)函数一、填空题1、(2014年江苏高考)已知函数,若对于任意,都有成立,则实数的取值范围是▲. 2、(2014年江苏高考)已知是定义在上且周期为3的函数,当时,在区间上有10个零点(互不相同),则实数的取值范围是▲.3、(2013年江苏高考)已知是定义在上的奇函数。

当时,,则不等式的解集用区间表示为。

4、(2012年江苏高考)函数的定义域为▲.5、(2012年江苏省高考)设是定义在上且周期为2的函数,在区间上,其中.若,则的值为▲.6、(2012年江苏省5分)已知函数的值域为,若关于x 的不等式的解集为,则实数c 的值为▲.7、(2015届江苏南京高三9月调研)设f (x )=x 2-3x +a .若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为▲8、(2015届江苏南通市直中学高三9月调研)已知函数若在R 上为增函数,则实数的取值范围是▲9、(2015届江苏苏州高三9月调研)已知函数为奇函数则实数的值为▲10、(南京市2014届高三第三次模拟)已知函数f (x )=⎩⎨⎧x ,x≥0,x2,x <0,,则关于x 的不等式f (x 2)>f (3-2x )的解集是▲11、(南通市2014届高三第三次调研)已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是▲.12、(苏锡常镇四市2014届高三5月调研(二))函数的定义域为A ,函数的定义域为B ,则AB = ▲13、(苏锡常镇四市2014届高三5月调研(二))已知奇函数是上的单调函数,若函数只有一个零点,则实数k 的值是▲.14、(徐州市2014届高三第三次模拟)已知函数是定义在上的奇函数,且当时,,则不等式的解集是▲15、(徐州市2014届高三第三次模拟)已知函数.若存在实数,,使得的解集恰为,则的取值范围是▲16、(南京、盐城市2014届高三第二次模拟(淮安三模))函数f(x)=ln x+1-x的定义域为▲17、(南京、盐城市2014届高三第二次模拟(淮安三模))已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1).若直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,则实数k的值为▲18、(2014江苏百校联考一)函数的所有零点之和为.19、(南京、盐城市2014高三第一次模拟)若函数是定义在上的偶函数,且在区间上是单调增函数.如果实数满足时,那么的取值范围是20、(苏锡常镇四市2014届高三3月调研(一))已知函数,若函数恰有两个不同的零点,则实数的取值范围为▲21、(南通市2014届高三上学期期末考试)设函数是定义域为R,周期为2的周期函数,且当时,;已知函数则函数和的图象在区间内公共点的个数为.22、(苏州市2014届高三1月第一次调研)已知,则不等式的解集是▲23、(泰州市2014届高三上学期期末考试)设函数(都是实数).则下列叙述中,正确的序号是▲.(请把所有叙述正确的序号都填上)①对任意实数,函数在上是单调函数;②存在实数,函数在上不是单调函数;③对任意实数,函数的图像都是中心对称图形;④存在实数,使得函数的图像不是中心对称图形.24、(江苏省扬州中学2014届高三上学期12月月考)设,,且,则▲25、、(江苏省诚贤中学2014届高三12月月考)在用二分法...求方程的一个近似解时,现在已经将一根锁定在区间(1,2),则下一步可断定该根所在的区间为▲.26、(江苏省东海县第二中学2014届高三第三次学情调研)已知函数,如果关于的方。

江苏专用2024年高考数学一轮复习考点11函数与方程必刷题含解析

考点11 函数与方程1.(江苏省连云港市2025届高三上学期期中考试)已知为正常数,,若使,则实数的取值范围是_______.【答案】(2,+∞)【解析】由于,函数在上单调递增,当时有最小值为.在时,函数为增函数,要使存在,使得,则需,解得.2.(江苏省徐州市2025届高三上学期期中质量抽测)已知函数,若有三个零点,则实数的取值范围是______.【答案】【解析】(1)=0时,,只有一个零点,不合题意;(2)<0时,,>0,在R上单调递增,所以,不行能有3个解,也不合题意。

(3)>0时,,得画出函数:的图象,如图:当时有三个零点,其中有唯一的零点,有两个零点,即在有两个零点.,=0,得x=x 在(0,)递减,在(,)递增,<0,解得:3.(江苏省南通市2025届高三模拟练习卷)已知()f x 是定义在R上且周期为32的周期函数,当30,2x ⎛⎤∈ ⎥⎝⎦时,()121f x x =--.若函数()log a y f x x =-(1a >)在()0,∞+上恰有4个互不相同的零点,则实数a的值__. 【答案】72【解析】当30,2x ⎛⎤∈ ⎥⎝⎦时,得12,02()1211322,22x x f x x x x ⎧<<⎪⎪=--=⎨⎪-≤≤⎪⎩ ,且()f x 是定义在R 上且周期为32的周期函数, 函数()log a y f x x =-(a >1)在(0,+∞)上恰有4个互不相同的零点,∴函数()y f x =与log a y x =(a >1)在(0,+∞)上恰有4个不同的交点,分别画出两函数图象如图所示,由图可知,当x =72时,有72log a =1,所以a =72.故答案为:724.(江苏省镇江市2025届高三考前三模)已知函数ln ,0()21,0xx x f x x >⎧=⎨+≤⎩,若函数()y f x x a =+-有且只有一个零点,则实数a 的取值范围为_______. 【答案】()2,+∞【解析】由()0y f x x a =+-=得:()f x x a =-+∴函数()0y f x x a =+-=有且只有一个零点等价于:()y f x =与y x a =-+的图象且只有一个交点画出函数()ln ,021,0x x x f x x >⎧=⎨+≤⎩的图象如下图:y x a =-+的图象经过点()0,2A 时有2个交点,平移y x =-,由图可知,直线与y 轴的交点在A 点的上方时,两图象只有1个交点, 在A 点下方时,两图象有2个交点2a ∴>,即()2,a ∈+∞本题正确结果:()2,+∞5.(2024年江苏省高考数学试卷)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当(0,2]x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.【答案】12,34⎡⎫⎪⎢⎪⎣⎭.【解析】当(]0,2x ∈时,()2()11,f x x =--即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x =在(0,9]上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点(-2,0)的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心(1,0)到直线20kx y k -+=的距离为1,2211k kk +=+,得24k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点(1,1)时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =. 综上可知,满意()()f x g x =在(0,9]上有8个实根的k 的取值范围为1234⎡⎫⎪⎢⎪⎣⎭,. 6.(江苏省扬州中学2025届高三4月考试)已知函数31,0()2,0ax x f x x ax x x -≤⎧=⎨-+->⎩的图象恰好经过三个象限,则实数a 的取值范围______. 【答案】0a <或2a >【解析】(1)当0a <时,()f x 在(,0]-∞上单调递减,又(0)1f =-,所以函数()f x 的图象经过其次、三象限,当0x >时,33(1)2,2()(1)2,02x a x x f x x a x x ⎧---=⎨-++<<⎩,所以223(1),2()3(1),,02x a x f x x a x ⎧--=⎨-+<<⎩',①若1a -时,()0f x '>恒成立,又当0x +→时,()2f x →,所以函数()f x 图象在0x >时,经过第一象限,符合题意;②若10a -<<时,()0f x '>在[2,)+∞上恒成立,当02x <<时,令()0f x '=,解13x =<,所以()f x 在⎛ ⎝上单调递减,在2⎫⎪⎪⎭上单调递增,又(2210f a ⎛=+=-> ⎝ 所以函数()f x 图象在0x >时,经过第一象限,符合题意;(2)当0a =时,()f x 的图象在(,0)-∞上,只经过第三象限,()0f x '>在(0,)+∞上恒成立,所以()f x 的图象在(0,)+∞上,只经过第一象限,故不符合题意;(3)当0a >时,()f x 在(,0)-∞上单调递增,故()f x 的图象在(,0)-∞上只经过第三象限,所以()f x 在(0,)+∞上的最小值min ()0f x <,当02x <<时,令()0f x '=,解得x =2<时,即11a <时,()f x 在(0,)+∞上的最小值为21f ⎛= ⎝,令2102211f a a ⎛=<⇒>∴<< ⎝.211a ≥⇒≥时,则()f x 在02x <<时,单调递减,当2x ≥时,令()0f x '=,解得x =21113a <⇒≤<,()f x 在(2,)+∞上单调递增,故()f x 在(0,)+∞上的最小值为(2)82f a =-,令8204a a -<⇒>,所以1113a ≤<;若12133a a -≥⇒≥,()f x 在12,3a ⎛⎫- ⎪ ⎪⎝⎭上单调递减,在1,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增,故()f x 在(0,)+∞上的最小值为12(1)12333a a a f ⎛⎫---=-- ⎪ ⎪⎝⎭, 明显2(1)12033a a ----<,故13a ≥;结上所述:0a <或2a >.7.(江苏省七市2025届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三其次次调研考试)定义在R 上的奇函数满意,且在区间上,则函数的零点的个数为___.【答案】5 【解析】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个 故答案为58.(江苏省南通市通州区2024-2025学年第一学期高三年级期末考试)已知函数若函数有且只有一个零点,则实数k 的取值范围是______.【答案】【解析】由数有且只有一个零点,等价为数,即有且只有一个根,即函数与,只有一个交点,作出函数的图象如图:,,要使函数与,只有一个交点,则,故答案为:.9.(江苏省南通市基地学校2025届高三3月联考)已知函数有三个不同的零点,则实数m的取值范围是____.【答案】【解析】当时,且在上单调递增有且仅有一个零点当时,须要有两个零点当时,当时,恒成立,即单调递增,不合题意;当时,令,解得:当时,,此时单调递增;当时,,此时单调递减,本题正确结果:.10.(江苏省南通市三县(通州区、海门市、启东市)2025届高三第一学期期末联考)函数有3个不同零点,则实数a的取值范围____【答案】【解析】解:当x<﹣1时,由f(x)=0得x2﹣2ax=0,得a,∵x<﹣1,∴a且此时函数f(x)只有一个零点,要使f(x)有3个不同零点,则等价为当x≥﹣1时,f(x)=0有且只有2个不同的零点,由f(x)=e x﹣|x﹣a|=0得e x=|x﹣a|,作出函数g(x)=e x和h(x)=|x﹣a|在x≥﹣1的图象如图,当x≥a时,h(x)=x﹣a,当h(x)与g(x)相切时,g′(x)=e x,由g′(x)=e x=1得x=0,此时g(0)=1,即切点坐标为A(0,1),此时h(0)=0﹣a=1,得a=﹣1,当x=﹣1时,g(﹣1),当直线h(x)=x﹣a经过点B(﹣1,)时,﹣1﹣a,则a=﹣1,要使e x=|x﹣a|在x≥﹣1时,有两个不同的交点,则直线h(x)=x﹣a应当在过A和B的直线之间,则﹣1a<﹣1,即实数a的取值范围是[﹣1,﹣1),故答案为:[﹣1,﹣1).11.(江苏省扬州市2024-2025学年度第一学期期末检测试题)已知函数有且仅有三个零点,并且这三个零点构成等差数列,则实数a的值为_______.【答案】或【解析】函数0,得|x+a|a=3,设g(x)=|x+a|a,h(x)=3,则函数g(x),不妨设f(x)=0的3个根为x1,x2,x3,且x1<x2<x3,当x>﹣a时,由f(x)=0,得g(x)=3,即x3,得x2﹣3x﹣4=0,得(x+1)(x﹣4)=0,解得x=﹣1,或x=4;若①﹣a≤﹣1,即a≥1,此时x2=﹣1,x3=4,由等差数列的性质可得x1=﹣6,由f(﹣6)=0,即g(﹣6)=3得62a=3,解得a,满意f(x)=0在(﹣∞,﹣a]上有一解.若②﹣1<﹣a≤4,即﹣4≤a<1,则f(x)=0在(﹣∞,﹣a]上有两个不同的解,不妨设x1,x2,其中x3=4,所以有x1,x2是﹣x2a=3的两个解,即x1,x2是x2+(2a+3)x+4=0的两个解.得到x1+x2=﹣(2a+3),x1x2=4,又由设f(x)=0的3个根为x1,x2,x3成差数列,且x1<x2<x3,得到2x2=x1+4,解得:a=﹣1(舍去)或a=﹣1.③﹣a>4,即a<﹣4时,f(x)=0最多只有两个解,不满意题意;综上所述,a或﹣1.12.(江苏省苏州市2025届高三上学期期末学业质量阳光指标调研)设函数,若对随意(,0),总存在[2,),使得,则实数a的取值范围_______.【答案】【解析】由题意,对随意(,0),总存在[2,),使得,即当随意(,0),总存在[2,),使得,当时,,当时,函数,当,此时,符合题意;当时,时,,此时最小值为0,而当时,的导数为,可得为微小值点,可得的最小值为或,均大于0,不满意题意;当时,时,的最小值为0或,当时,的导数为,可得为微小值点,且为最小值点,可得的最小值为,由题意可得,解得,综上可得实数的范围是.13.(江苏省苏州市2025届高三上学期期末学业质量阳光指标调研)设函数,若方程有三个相异的实根,则实数k的取值范围是_______.【答案】【解析】由题意,若方程,即有三个相异的实根,即函数和的图象由三个不同的交点,如图所示,又由直线和必有一个交点,所以0>,则与的图象有两个交点,联立方程组,整理得,由,解得或,所以实数的取值范围是.14.(江苏省无锡市2025届高三上学期期末考试)已知直线与函数的图象恰有四个公共点,,,,则__________.【答案】-2【解析】直线y=a(x+2)过定点(-2,0),如下图所示,由图可知,直线与余弦函数图象在x4处相切,且∈,即a(x4+2)=-cos,所以,a=又,即直线的斜率为:a=,因此a==,即+=+=--2=-2.故答案为:-2.15.(江苏省南通市2025届高三年级阶段性学情联合调研)已知函数,若函数有三个不同的零点,则实数的取值范围是__________.【答案】【解析】函数有三个不同的零点等价于的图象与直线有三个不同交点,作出函数的图象:由图易得:故答案为:.16.(江苏省常州市2025届高三上学期期中教学质量调研)已知函数,若关于x的函数有6个不同的零点,则实数m的取值范围是______.【答案】【解析】作出的函数图象如右:设,则当或时,方程只有1解,当或时,方程有2解,当时,方程有3解,当时,方程无解.关于的函数有6个不同的零点,关于的方程在上有两解,,解得.故答案为17.(江苏省镇江市2025届高三上学期期中考试)已知函数,若函数有6个不同的零点,则实数m的取值范围是__________.【答案】m<﹣3【解析】令t=f(x),则原函数等价为y=2t2+3mt+1﹣2m,作出函数f(x)的图象如图,图象可知:当t<0时,函数t=f(x)有一个零点;当t=0时,函数t=f(x)有三个零点;当0<t<1时,函数t=f(x)有四个零点;当t=1时,函数t=f(x)有三个零点;当t>1时,函数t=f(x)有两个零点.要使关于x的函数y=2f2(x)+3mf(x)+1﹣2m有6个不同的零点,则方程2t2+3mt+1﹣2m=0有两个根t1,t2,且0<t1<1,t2>1或t1=0,t2=1,令g(t)=2t2+3mt+1﹣2m,则由根的分布可得,将t=1,代入g(t)=0得m=﹣3,此时2t2﹣9t+7=0的另一个根为t=,不满意t1=0,t2=1,若0<t1<1,t2>1,则即解得m<﹣3,故答案为:m<﹣3.18.(盐城市2025届高三年级第一学期期中模拟考试)已知函数,若在区间上有且只有2个零点,则实数的取值范围是_________.【答案】【解析】当0⩽x⩽1时,=0,易知x=0不是方程=0的解,故m=−x在(0,1]上是减函数,故m−1=−;即m时,方程f(x)=0在[0,1]上有且只有一个解,当x>1时,令mx+2=0得,m=−,故−2<m<0,即当−2<m<0时,方程f(x)=0在(1,+∞)上有且只有一个解,综上所述,若f(x)在区间[0,+∞)上有且只有2个零点,则实数m的取值范围是.19.已知函数f(x)=x m-2x且f(4)=72.(1)求m的值;(2)判定f(x)的奇偶性;(3)推断f(x)在(0,+∞)上的单调性,并赐予证明.【答案】(1)m=1(2)奇函数(3)见解析【解析】解:(1)∵f(4)=72,∴4m-24=72,∴m=1.(2)由(1)知f(x)=x-2x,∴函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.又f(-x)=-x +2x =-(x -2x)=-f(x), 所以函数f(x)是奇函数.(3)函数f(x)在(0,+∞)上是单调增函数,证明如下:设x 1>x 2>0, 则f(x 1)-f(x 2)=x 1-12x -(x 2-22x )=(x 1-x 2)(1+122x x ),因为x 1>x 2>0, 所以x 1-x 2>0,1+122x x >0. 所以f(x 1)>f(x 2).所以函数f(x)在(0,+∞)上为单调递增函数.20.(江苏省苏州市2025届高三上学期期末学业质量阳光指标调研)已知函数(a ,bR).(1)当a =b =1时,求的单调增区间;(2)当a≠0时,若函数恰有两个不同的零点,求的值;(3)当a =0时,若的解集为(m ,n),且(m ,n)中有且仅有一个整数,求实数b 的取值范围.【答案】(1)f (x )的单调增区间是和(2)(3)【解析】(1)当a =b =1时,,令,解得或所以f (x )的单调增区间是和(2)法一:,令,得或, 因为函数f (x )有两个不同的零点,所以或,当时,得a =0,不合题意,舍去: 当时,代入得即,所以.法二:由于,所以,由得,,设,令,得,当时,,h(x)递减:当时,,递增当时,,单调递增当时, 的值域为R故不论取何值,方程有且仅有一个根;当时,,所以时,方程恰有一个根-2,此时函数恰有两个零点-2和1.(3)当时,因为,所以设,则,当时,因为,所以在上递增,且,所以在上,,不合题意:当时,令,得,所以在递增,在递减,所以,要使有解,首先要满意,解得. ①又因为,,要使的解集(m,n)中只有一个整数,则即解得. ②设,则,当时,,递增:当时,,递减所以,所以,所以由①和②得,.21.(江苏省苏州市2025届高三调研测试)已知函数(1)当时,求函数的单调区间;(2)若方程在区间(0,+)上有实数解,求实数a的取值范围;(3)若存在实数,且,使得,求证:.【答案】(1)函数的单调减区间为和,单调增区间为.(2)(3)见解析【解析】(1)当时,当时,,则,令,解得或(舍),所以时,,所以函数在区间上为减函数.当时,,,令,解得,当时,,当时,,所以函数在区间上为减函数,在区间上为增函数,且.综上,函数的单调减区间为和,单调增区间为.(2)设,则,所以,由题意,在区间上有解,等价于在区间上有解.记,则,令,因为,所以,故解得,当时,,当时,,所以函数在区间上单调递减,在区间上单调递增,故函数在处取得最小值.要使方程在区间上有解,当且仅当,综上,满意题意的实数a的取值范围为.(3)由题意,,当时,,此时函数在上单调递增,由,可得,与条件冲突,所以. 令,解得,当时,,当时,,所以函数在上单调递减,在上单调递增.若存在,,则介于m,n之间,不妨设,因为在上单调递减,在上单调递增,且,所以当时,,由,,可得,故,又在上单调递减,且,所以.所以,同理.即解得,所以.。

「最新」人教版最新江苏省高三数学一轮复习备考试题:函数(含答案)及参考答案-可编辑修改

高考一轮复习备考试题(附参考答案)函数一、填空题1、(2014年江苏高考)已知函数1)(2-+=mx x x f ,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ▲ .2、(2014年江苏高考)已知)(f x 是定义在R 上且周期为3的函数,当)3,0[x 时,|212|)(2+-=x x x f a x f -=)(y 在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ . 3、(2013年江苏高考)已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 。

4、(2012年江苏高考)函数x x f 6log 21)(-=的定义域为 ▲ .5、(2012年江苏省高考)设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 6、(2012年江苏省5分)已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .7、(2015届江苏南京高三9月调研)设f (x )=x 2-3x +a .若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为 ▲8、(2015届江苏南通市直中学高三9月调研)已知函数23 1 ()x a x f x x a x ⎧+>⎪=⎨+⎪⎩≤,,,1,若()f x 在R 上为增函数,则实数a 的取值范围是 ▲9、(2015届江苏苏州高三9月调研)已知函数()2log 1a x f x x-=+为奇函数,则实数a 的值为 ▲ 10、(南京市2014届高三第三次模拟)已知函数f (x )=⎩⎨⎧x ,x ≥0,x 2,x <0,,则关于x 的不等式f (x 2)>f (3-2x )的解集是 ▲11、(南通市2014届高三第三次调研)已知函数()f x 对任意的x ∈R 满足()()f x f x -=,且当0x ≥时,2()1f x x ax =-+.若()f x 有4个零点,则实数a 的取值范围是 ▲ .112、(苏锡常镇四市2014届高三5月调研(二))函数1y x =-的定义域为A ,函数()lg 2y x =-的定义域为B ,则AB = ▲13、(苏锡常镇四市2014届高三5月调研(二))已知奇函数()f x 是R 上的单调函数,若函数2()()y f x f k x =+-只有一个零点,则实数k 的值是 ▲ .14、(徐州市2014届高三第三次模拟)已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()3f x x x =--,则不等式(1)4f x x ->-+的解集是 ▲15、(徐州市2014届高三第三次模拟)已知函数1()()e x af x a x=-∈R .若存在实数m ,n , 使得()0f x ≥的解集恰为[],m n ,则a 的取值范围是 ▲16、(南京、盐城市2014届高三第二次模拟(淮安三模))函数f (x )=ln x +1-x 的定义域为 ▲ 17、(南京、盐城市2014届高三第二次模拟(淮安三模))已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1).若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲ 18、(2014江苏百校联考一)函数1()2sin(),[2,4]1f x x x xπ=-∈--的所有零点之和为 .19、(南京、盐城市2014高三第一次模拟)若函数()f x 是定义在R 上的偶函数,且在区间[0.)+∞上是单调增函数.如果实数t 满足1(ln )(ln )2(1)f t f f t+<时,那么t 的取值范围是20、(苏锡常镇四市2014届高三3月调研(一))已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不同的零点,则实数k 的取值范围为 ▲21、(南通市2014届高三上学期期末考试)设函数()y f x =是定义域为R ,周期为2的周期函数,且当[)11x ∈-,时,2()1f x x =-;已知函数lg ||0()10x x g x x ≠⎧⎪=⎨=⎪⎩,,,. 则函数()f x 和()g x 的图象在区间[]510-,内公共点的个数为 . 22、(苏州市2014届高三1月第一次调研)已知22(0),()(0)x x x f x x x x ⎧+⎪=⎨-+<⎪⎩≥,则不等式2(1)12f x x -+<的解集是 ▲23、(泰州市2014届高三上学期期末考试)设函数()()f x x a x a b =--+(,a b 都是实数).则下列叙述中,正确的序号是 ▲ .(请把所有叙述正确的序号都填上) ①对任意实数,a b ,函数()y f x =在R 上是单调函数;②存在实数,a b ,函数()y f x =在R 上不是单调函数; ③对任意实数,a b ,函数()y f x =的图像都是中心对称图形; ④存在实数,a b ,使得函数()y f x =的图像不是中心对称图形. 24、(江苏省扬州中学2014届高三上学期12月月考)设12()1f x x=+,11()[()]n n f x f f x +=,且(0)1(0)2n n n f a f -=+,则2014a = ▲25、、(江苏省诚贤中学2014届高三12月月考)在用二分法...求方程3210x x --=的一个近似解时,现在已经将一根锁定在区间(1,2),则下一步可断定该根所在的区间为 ▲ . 26、(江苏省东海县第二中学2014届高三第三次学情调研)已知函数ln (),()xf x kxg x x==,如果关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,那么实数k 的取值范围是 ▲ .27、(江苏省阜宁中学2014届高三第三次调研)已知函数()()2log ,12,01x x f x f x x ⎧⎪=⎨<<⎪⎩≥,则()3212f ⎡⎤⎢⎥⎢⎥⎣⎦= ▲28、(无锡市2014届高三上学期期中)定义在R 上的奇函数()f x ,当0x ≥时,2l o g (1)(01)()|3|1(1)x x f x x x +≤<⎧=⎨--≥⎩,则函数1()()2g x f x =-的所有零点之和为_____。

江苏省2011届高考数学一轮复习精练函数

江苏省2011届高考数学一轮复习精练:函数一、选择题(60分,每小题5分)1.若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x =A .x 2logB .x21C .x21logD .22-x2.函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( D ) (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数3.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B .若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x Mg x αα∈C .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈ [来源:学|科|网Z|X|X|K]D .若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈4.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度5.定义在R 上的函数f(x)满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( )[来源:学§科§网]A.-1B. 0C.1D. 26.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是A. 在1t时刻,甲车在乙车前面 B. 1t 时刻后,甲车在乙车后面 C. 在0t 时刻,两车的位置相同D.t 时刻后,乙车在甲车前面7.如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不 变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为A B C D 8.设函数()0)f x a =<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为A .2-B .4-C .8-D .不能确定 9.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A),3()1,3(+∞⋃- B ),2()1,3(+∞⋃- C ),3()1,1(+∞⋃- D )3,1()3,(⋃--∞ 10.设球的半径为时间t 的函数()R t 。

高三数学一轮复习《函数的概念与性质》练习题 (含答案)

高三数学一轮复习《函数的概念与性质》练习题 (含答案)函数的概念及其表示一、单选题1.函数11y x =-的定义域是( )A. (0,2]B. (,1)(1,2]-∞⋃C. (1,)+∞D. [1,2]2.设函数21,1()2,1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则[(3)]f f =( )A .15 B.3 C. 23 D. 1393.已知函数f (x +1)=3x +2,则f (x )的解析式( )A.3x -1B. 3x +1C. 3x +2D. 3x +44.下列各对函数表示同一函数的是( )(1) ()f x x =与2()g x =;(2) ()2f x x =-与()g x =(3) 2()(0)f x x x π=≥与2()(0)g r r r π=≥; (4) ()f x x =与,0(),0x x g x x x ≥⎧=⎨-<⎩.A.(1)(2)(4)B.(2)(4)C.(3)(4)D.(1)(2)(3)(4)5.已知函数y = f (x )的定义域是[-2,3], 则y =f (2x -1)的定义域是() A. 5[0,]2 B. [1,4]- C. 1[,2]2- D. [5,5]-6.已知函数221,0()3,0x x f x x x +≥⎧=⎨<⎩,且0()3f x =,则实数0x 的值为( )A.-1B.1C.-1或1D.-1或-3二、多选题7.关于函数y =f (x ),以下说法正确的是( )A.y 是关于x 的函数B.对于不同的x ,y 的值也不同C.f (a )表示当x =a 时函数f (x )的值,是一个常量D.f (x )一定可以用一个具体的式子表示出来8.若函数2(),(,0)(0,)1x f x x x =∈-∞⋃+∞+,则下列等式成立的是( ) A. 1()()f x f x = B. 1()()f x f x -= C.11()()f f x x = D. ()()f x f x -=- 三、填空题9.已知函数()1f x ax =+,且(2)1f =-,则(2)f -=_______.10.若函数2(21)2f x x x +=-,则(3)f =_______,()f x =___________.11.已知函数22,2()21,2x ax x f x x x ⎧+≥=⎨+<⎩,若[(1)]0f f >,则实数a 的取值范围是___________.函数的基本性质一、单选题1. 下列函数中,值域为(,0)-∞的是( )A. 2y x =-B. 131()3y x x =-<C. 1y x =D. y =2.下列函数是偶函数,且在(,0]-∞上是增函数的是( )A .1y x =- B. 2()f x x = C. 3y x = D. ,0,0x x y x x -≥⎧=⎨<⎩3.已知()f x 是实数集上的偶函数,且在区间[0,)+∞上是增函数,则(2)f -,()f π-,(3)f 的大小关系是( )A. ()(2)(3)f f f π->->B. (3)()(2)f f f π>->-C. (2)(3)()f f f π->>-D. ()(3)(2)f f f π->>-4.函数()y f x =在R 上是增函数,且(2)(9)f m f m >-+,则实数m 的取值范围是( )A. (,3)-∞-B. (0,)+∞C. (3,)+∞D. (,3)(3,)-∞-⋃+∞5.函数()y f x =是以3为周期的偶函数,且当(0,1)x ∈时,()21f x x =+,则2021()2f =( ) A.2022 B.2 C.4 D.66.已知偶函数()f x 在区间[0,)+∞上是单调递增,则满足1(21)()3f x f -<的x 的取值范围是( ) A. 12(,)33 B. 12[,)33 C. 12(,)23 D. 12[,)23二、多选题7.如果函数()f x 在[a ,b ]上是减函数,对于任意的1212,[,]()x x a b x x ∈≠,那么下列结论正确的是( ) A. 1212()()0f x f x x x -<- B. 1212()[()()]0x x f x f x --< C. 12()()()()f a f x f x f b ≥>≥ D. 12()()f x f x <8.已知函数()f x 是定义在R 上的奇函数,下列说法正确的是( )A. (0)0f =B.若()f x 在[0,)+∞上有最小值-1,则()f x 在(,0]-∞上有最大值1C. 若()f x 在[1,)+∞上为增函数,则()f x 在(,1]-∞-上为减函数D.若0x >时,2()2f x x x =-,则0x <时,2()2f x x x =--三、填空题9.如图是定义在闭区间[5,5]-上的函数()y f x =的部分图像,根据图像可知函数()y f x =的单调递增区间是_______,单调递减区间是______.10.若()f x 是定义在R 上的奇函数,且1(2)()f x f x +=,则(8)f 的值为___. 11.若2()3f x ax bx a b =+++是偶函数,且定义域为[1,2]a a -,则a =_____,b =______.本章检测 函数的概念和性质一、单选题1. 已知函数2()23f x x mx =-+在[-2,+∞)上单调递增,在(-∞,-2]上单调递减,则f (1)的值为( )A.-3B.13C.7D.52.已知f (x )为奇函数,且在(-∞,0)上为增函数,g (x )为偶函数,且在(-∞,0)上为增函数,则在(0,+∞)_上,下列结论正确的)A.两个都是增函数B.两个都是减函数C. f (x )为增函数,g (x )为减函数D. f (x )为减函数,g (x )为增函数3.已知函数g (x )= f (2x )-x 2是奇函数,且f (1)=2,则f (-1)=( ) _3 A. 32- B.-1 C. 32 D. 744.已知函数(3)5,1()2,1a x x f x a x x -+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是( )A. (0,3)B. (0,3]C. (0,2)D. (0,2]5.已知函数g (x )是定义在[a -16,3a ]上的奇函数,且21,0()(),0x x f x f x a x -≥⎧=⎨+<⎩, 则f (-2020)=( )A.2B. 7C. 10D.-16. 已知定义在R 上的奇函数f (x )满足当x >0时,f(x )=x 2-2x ,则关于x的不等式f (x )<0的解集为( )A. (-2,2)B. (2,0)(0,2)-⋃C. (,2)(2,)-∞-⋃+∞D. (,2)(0,2)-∞-⋃二、多选题7.已知定义在区间[-3,3]上的一个偶函数,它在[-3,0]上的图象如图所示,则下列说法正确的是( )A.这个函数有两个单调递增区间B.这个函数有三个单调递减区间C. f (2)<2D.这个函数的值域为[-2,2]8.已知定义域为R 的函数f (x )是奇函数,且满足f (1-x )=f (1+x ),当0<x ≤1时,f (x )=2x ,则下列结论正确的是( )A. f (x )的最小正周期为2B.当-1<x ≤1时,f (x )=2xC. f (x )在[11,13]上单调递增D. f (x )的最大值为2,最小值为-2三、填空题9.已知函数,0(),0x x f x x x ⎧≥⎪=-<若f (a )+f (-1)=2,则a =_______.10.已知函数f (x )=x 5+ax 3+bx +2,且f (2)=3,则f (-2)=________.11.函数f (x )为奇函数,定义域为R ,若f (x +1)为偶函数,且f (1)=1,则f (2020)+f (2021)=_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考一轮复习备考试题(附参考答案)函数一、填空题1、(2014年江苏高考)已知函数1)(2-+=mx x x f ,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ▲ .2、(2014年江苏高考)已知)(f x 是定义在R 上且周期为3的函数,当)3,0[x 时,|212|)(2+-=x x x f a x f -=)(y 在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ . 3、(2013年江苏高考)已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 。

4、(2012年江苏高考)函数x x f 6log 21)(-=的定义域为 ▲ .5、(2012年江苏省高考)设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上, 0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 6、(2012年江苏省5分)已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ . 7、(2015届江苏南京高三9月调研)设f (x )=x 2-3x +a .若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为 ▲8、(2015届江苏南通市直中学高三9月调研)已知函数23 1 ()x a x f x x a x ⎧+>⎪=⎨+⎪⎩≤,,,1,若()f x 在R 上为增函数,则实数a 的取值范围是 ▲9、(2015届江苏苏州高三9月调研)已知函数()2log 1a x f x x-=+为奇函数,则实数a 的值为 ▲ 10、(南京市2014届高三第三次模拟)已知函数f (x )=⎩⎨⎧x ,x ≥0,x 2,x <0,,则关于x 的不等式f (x 2)>f (3-2x )的解集是 ▲11、(南通市2014届高三第三次调研)已知函数()f x 对任意的x ∈R 满足()()f x f x -=,且当0x ≥时,2()1f x x ax =-+.若()f x 有4个零点,则实数a 的取值范围是 ▲ .12、(苏锡常镇四市2014届高三5月调研(二))函数1y x =-的定义域为A ,函数()lg 2y x =-1的定义域为B ,则A B = ▲13、(苏锡常镇四市2014届高三5月调研(二))已知奇函数()f x 是R 上的单调函数,若函数2()()y f x f k x =+-只有一个零点,则实数k 的值是 ▲ .14、(徐州市2014届高三第三次模拟)已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()3f x x x =--,则不等式(1)4f x x ->-+的解集是 ▲15、(徐州市2014届高三第三次模拟)已知函数1()()e x af x a x=-∈R .若存在实数m ,n , 使得()0f x ≥的解集恰为[],m n ,则a 的取值范围是 ▲16、(南京、盐城市2014届高三第二次模拟(淮安三模))函数f (x )=ln x +1-x 的定义域为 ▲ 17、(南京、盐城市2014届高三第二次模拟(淮安三模))已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1).若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲18、(2014江苏百校联考一)函数1()2sin(),[2,4]1f x x x xπ=-∈--的所有零点之和为 . 19、(南京、盐城市2014高三第一次模拟)若函数()f x 是定义在R 上的偶函数,且在区间[0.)+∞上是单调增函数.如果实数t 满足1(ln )(ln )2(1)f t f f t+<时,那么t 的取值范围是 20、(苏锡常镇四市2014届高三3月调研(一))已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不同的零点,则实数k 的取值范围为 ▲21、(南通市2014届高三上学期期末考试)设函数()y f x =是定义域为R ,周期为2的周期函数,且当[)11x ∈-,时,2()1f x x =-;已知函数lg ||0()10x x g x x ≠⎧⎪=⎨=⎪⎩,,,. 则函数()f x 和()g x 的图象在区间[]510-,内公共点的个数为 . 22、(苏州市2014届高三1月第一次调研)已知22(0),()(0)x x x f x x x x ⎧+⎪=⎨-+<⎪⎩≥,则不等式2(1)12f x x -+<的解集是 ▲23、(泰州市2014届高三上学期期末考试)设函数()()f x x a x a b =--+(,a b 都是实数).则下列叙述中,正确的序号是 ▲ .(请把所有叙述正确的序号都填上) ①对任意实数,a b ,函数()y f x =在R 上是单调函数; ②存在实数,a b ,函数()y f x =在R 上不是单调函数;③对任意实数,a b ,函数()y f x =的图像都是中心对称图形; ④存在实数,a b ,使得函数()y f x =的图像不是中心对称图形. 24、(江苏省扬州中学2014届高三上学期12月月考)设12()1f x x=+,11()[()]n n f x f f x +=,且(0)1(0)2n n n f a f -=+,则2014a = ▲25、、(江苏省诚贤中学2014届高三12月月考)在用二分法...求方程3210x x --=的一个近似解时,现在已经将一根锁定在区间(1,2),则下一步可断定该根所在的区间为 ▲ . 26、(江苏省东海县第二中学2014届高三第三次学情调研)已知函数ln (),()xf x kxg x x==,如果关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,那么实数k 的取值范围是 ▲ .27、(江苏省阜宁中学2014届高三第三次调研)已知函数()()2log ,12,01x x f x f x x ⎧⎪=⎨<<⎪⎩≥,则()3212f ⎡⎤⎢⎥⎢⎥⎣⎦= ▲28、(无锡市2014届高三上学期期中)定义在R 上的奇函数()f x ,当0x ≥时,2l o g (1)(01)()|3|1(1)x x f x x x +≤<⎧=⎨--≥⎩,则函数1()()2g x f x =-的所有零点之和为_____。

29、(兴化市2014届高三上学期期中) 3.若6.06.0=a ,7.06.0=b ,7.02.1=c ,则a ,b ,c 的大小关系为_____30、(徐州市2014届高三上学期期中)已知函数22log (1) (0)()2 (0)x x f x x x x +>⎧=⎨--≤⎩,,若函数()()g x f x m =-有3个零点,则实数m 的取值范围_____。

二、解答题1、(泰兴市第三高级中学2015高三上第一次质检)已知函数f(x)=x 2+mx +n 的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y =g(x)与y =f(x)的图象关于原点对称.(1) 求f(x)与g(x)的解析式;(2) 若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围.2、(泰兴市第三高级中学2015高三上第一次质检)已知函数f(x)=lg(1-x)+lg(1+x)+x 4-2x 2.(1) 求函数f(x)的定义域; (2) 判断函数f(x)的奇偶性; (3) 求函数f(x)的值域.3、已知函数]2,0(,2)(2∈+-=x xax x x f ,其中常数a > 0. (1) 当a = 4时,证明函数f (x )在]2,0(上是减函数; (2) 求函数f (x )的最小值.4、已知函数2()log (424)x x f x b =+⋅+,()g x x =.(1)当5b =-时,求()f x 的定义域;(2)若()()f x g x >恒成立,求b 的取值范围.5、已知函数 ()11f x x x =++-。

(1)求函数()f x 的定义域和值域; (2)设2()()2()2a F x f x f x ⎡⎤=⋅-+⎣⎦(a 为实数),求()F x 在0<a 时的最大值()g a ; (3)对(2)中)(a g ,若222()m tm g a -++≤对0<a 所有的实数a 及[1,1]t ∈-恒成立,求实数m 的取值范围。

6、已知二次函数()()21f x ax a x a =+-+。

(1)函数()f x 在(),1-∞-上单调递增,求实数a 的取值范围;(2)关于x 的不等式()2f x x≥在[]1,2x ∈上恒成立,求实数a 的取值范围; (3)函数()()()211a x g x f x x--=+在()2,3上是增函数,求实数a 的取值范围。

参考答案一、选择题 1、)0,22(-【提示】二次函数开口向上,在区间]1,[+m m 上始终满足0)(<x f ,只需⎩⎨⎧<+<0)1(0)(m f m f 即可,⎪⎩⎪⎨⎧<-+++<-+01)1()1(01222m m m m m ,解得⎪⎪⎩⎪⎪⎨⎧<<-<<-0232222m m ,则)0,22(-∈m 2、【答案】)21,0(【提示】根据题目条件,零点问题即转化为数形结合,通过找)(x f y =与a y =的图象交点去推出零点,先画出[0,3]上2122+-=x x y 的图像,再将x 轴下方的图象对称到上方,利用周期为3,将图象平移至]4,3[-,发现若)(x f 图象要与a y =有10个不同的交点,则)21,0(∈a3、答案:x <0,则x ->0,∴x x x x x f 4)(4)()(22+=---=-∵)(x f 是定义在R 上的奇函数∴)()(x f x f -=- ∴x x x f 4)(2+=- ∴x x x f 4)(2--= 又∵0)0(=f∴⎪⎩⎪⎨⎧<-->-=)0(40)0(4)(22x x x x x x x f ∴⎩⎨⎧>->xx x x 402或者⎩⎨⎧>--<x x x x 402∴5>x 或者05<<-x∴不等式x x f >)(的解集用区间表示为()()+∞-,50,54、(0 6⎤⎦,。

相关文档
最新文档