高三数学一轮复习典型题专题训练:函数(含解析)
2021届高三数学(文理通用)一轮复习题型专题训练:函数的值域(一)(含解析)

《函数的值域》(一)主要考查内容:主要涉及简单函数求值域问题一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数[]22,0,3y x x x =-∈的值域为( ) A .[]0,3 B .[]1,3C .[]1,0-D .[]1,3-2.函数()f x =的值域是( )A .(,2]-∞B .(0,)+∞C .[2,)+∞D.3.函数y = )A .RB .[0,)+∞C .3(,]2-∞D .30,2⎡⎤⎢⎥⎣⎦4.函数()11(1)f x x x =--的值域为( )A .4(0,]5B .5(0,]4C .3(0,]4D .4(0,]35.函数13y = )A .(],3-∞B .(]0,1C .(]0,3D .(]1,3 6.函数y 121x =-的值域是( ) A .(),1-∞ B .()(),00,-∞⋃+∞ C .()1,-+∞D .()(),10,-∞-⋃+∞7.函数y = ) A .[0,)+∞ B .[0,4] C .[0,4) D .(0,4)8.函数()26512x x f x -+⎛⎫= ⎪⎝⎭的值域为( )A .(]0,16B .[)16,+∞ C .10,16⎛⎤⎥⎝⎦D .1,16⎡⎫+∞⎪⎢⎣⎭9.函数y x =的值域为( ).A .2⎡⎤-⎣⎦B .[]0,4C .0,2⎡+⎣D .2⎡-+⎣10.函数y x = ) A .(-∞,1] B .(-∞,-1]C .RD .[1,+∞11.函数()3452xf x x-+=-的值域是( )A .()(),22,-∞+∞B .()(),22,-∞--+∞C .55,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .R12.函数y =的值域为( )A .[B .C .(-∞D .[)+∞二.填空题13.函数2y x =+的值域为__.14.函数y x =的值域是___________________.15.求函数21x y x +=-的值域__________. 16.当0x <时,函数2321xy x x =++的值域是_________.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.求函数3254x y x+=-的定义域与值域.18.求函数2y x =+19.求下列函数的值域:(1)2224y x x =+-;(2)2223x x y x ++=;(3)234x x y x -+=; (4)23,[2,4]21x y x x =∈-;(5)211x y x x +=++;(6)22211x x y x x --=++.20.已知函数243()3axx f x -+=.(1)当1a =时,求函数()f x 的值域; (2)若()f x 有最大值81,求实数a 的值.21.已知()1425x x f x -=-+,[]0,2x ∈.(1)求()f x 的值域;(2)若()227f x m am <-+对任意0,2m都成立,求a 的取值范围.22.已知函数24()(0,1)2x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值:(2)求函数()f x 的值域;(3)当[]1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.《函数的值域》(一)解析1.【解析】()22211y x x x =-=--,∴对称轴为1x =,抛物线开口向上,03x ≤≤,∴当1x =时,min 1y =-,1-距离对称轴远,∴当3x =时,max 3y =,∴13y -≤≤.故选:D.2.【解析】令()22()2112g x x x x =--+=-++, 则有:当1x =-时,()max ()2g x =,即()max ()f x =因为()f x =为根式函数,则()0f x ≥,所以0()f x ≤≤D3.【解析】函数y ==,21990,244x ⎛⎫⎡⎤--+∈ ⎪⎢⎥⎝⎭⎣⎦,∴函数y =⎡⎢⎣即30,2⎡⎤⎢⎥⎣⎦.故选:D.4.【解析】由题可知,函数()221111(1)11324f x x x x x x ===---+⎛⎫-+⎪⎝⎭因为22211331400224431324x x x ⎛⎫⎛⎫-≥⇒-+≥⇒<≤ ⎪ ⎪⎝⎭⎝⎭⎛⎫-+⎪⎝⎭, 故值域为4(0,]3,故选:D 5.【解析】0≥,∴11≤,∴1033<≤.故选:C6.【解析】由121xy =- 可得1210xy =+>,即()10y y +> ,解之得1y <- 或0y >,应选答案D .7.【解析】:由于016416x ≤-<,所以[)0,4y ∈.即值域为[0,4),故选C.8.【解析】设2265(3)44u x x x =-+=--≥-,则()1,42uf u u ⎛⎫=≥- ⎪⎝⎭,因为12xy ⎛⎫= ⎪⎝⎭为减函数,所以()()0416f u f <≤-=,即值域为(]0,16.故选:A.9.【解析】因为y x =240x x -,解得04x .可得函数()y f x x ==-[]0,4.又()1f x '==令()(2)g x x =-,则()()()1222410g x x x x -'=--+>,即()f x '在[]0,4上单(2)0x -=,解得2x =-,即()f x 在0,2⎡⎣上单调递减,在2⎡⎤⎣⎦上单调递增,所以2x =为极小值点,又(22f -=-(0)0f =,()44f =.∴函数y x =的值域为2⎡⎤-⎣⎦.故选:A .10.【解析】(0)t t =≥,则212t x -=,所以2211(1)122t y t t -=+=--+,当1t =时,此时函数取得最大值1,所以函数的值域为(,1]-∞.故选:A. 11.【解析】()344341077252252525x x x f x x x x x -+--+==-=-=-+----)()2f x ∴≠-,值域为()(),22,-∞-⋃-+∞)故选:B.12.【解析】要使函数()y f x ==需满足1010x x +⎧⎨-⎩,解得:11x -,所以函数的定义域为[]1,1-,根据函数的解析式,x y 增大,即该函数为增函数,所以最小值为()1f -=()1f =所以值域为⎡⎣,故选:A .13.【解析】2y x =+30x ∴-≥,解得3x ≥.又函数2y x =+为定义域内的增函数,∴26y x =≥.即函数2y x =+的值域为[)6,+∞.14.【解析】由120x +≥得12x ≥-,因为函数y x =为定义域单调递增函数,所以12y ≥-,即值域是1,.2⎡⎫-+∞⎪⎢⎣⎭15.【解析】因为21x y x +=-,所以23111x y x x +==+--,又301x ≠- 所以3111y x =+≠-,故函数的值域为()()-11∞+∞,, 16.【解析】2331212x y x x x x==++++()1x ≠-,因为0x <,所以1220x x ++≤-=,当且仅当1x =-时“=”号成立, 因为1x ≠-,所以函数2321xy x x =++的值域是{|0}y y <,故答案为{|0}y y <. 17.【解析】要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233235445445444(54x x x y x x x x ++-+==⨯=⨯=-+---⨯-),因为540x -≠,所以10(54x ≠-),即2304(54x ≠⨯-),所以34y ≠-,即值域为3{|}4y y ≠-.18.【解析】令t =()0t ≥,则212t x -=.∴原函数可化为22151()24y t t t =-++=--+. ∵当12t =,即38x =时,max 54y =;且原函数无最小值.故原函数的值域为5,4⎛⎤-∞ ⎥⎝⎦.19.【解析】(1)因为2224y x x =+-22(1)5x =+-,所以22(1)50x y +=+≥, 所以250y y +≥,所以(52)00y y y +≥⎧⎨≠⎩,所以0y >或25y ≤-, 所以函数2224y x x =+-的值域为2,(0,)5⎛⎤-∞-⋃+∞ ⎥⎝⎦. (2)因为2223x x y x++=2321x x =++21123()33x =++23≥,所以函数2223x x y x ++=的值域为2,3⎡⎫+∞⎪⎢⎣⎭. (3)因为234x x y x-+=43x x =+-, 所以当0x >时,3431y ≥=-=,当且仅当2x =时,等号成立, 当0x <时,4()3y x x =--+--3≤-437=--=-,当且仅当2x =-时,等号成立,所以函数234x x y x-+=的值域为(][,7,)1-∞-+∞.(4)2331212x y x x x==--,当[2,4]x ∈时,函数为递减函数,所以2x =时,y 取得最大值,最大值为23262217⨯=⨯-,当4x =时,y 取得最小值,最小值为2341224131⨯=⨯-, 所以函数23,[2,4]21xy x x =∈-的值域为126[,]317. (5)由211x y x x +=++得2(1)10yx y x y +-+-=, 当0y =时,方程的根为1x =-,当0y ≠时,根据关于x 的一元二次方程有解,得2(1)4(1)0y y y ∆=---≥,即23210y y --≤,解得103y -≤<或01y <≤, 综上可得函数211x y x x +=++的值域为1,13⎡⎤-⎢⎥⎣⎦. (6)由22211x x y x x --=++得2(2)(1)10y x y x y -++++=,当2y =时,方程的根为1x =-,当2y ≠时,根据一元二次方程有解得2(1)4(2)(1)0y y y ∆=+--+≥,即2230y y --≤,解得12y -≤<或23y <≤,综上可得函数211x y x x +=++的值域为[1,3]-. 20.【解析】(1)当1a =时,2243(2)111()3333xx x f x -+---===, ∴函数()f x 的值域为1[3,)+∞.(2)令243t ax x =-+,当0a 时,t 无最大值,不合题意; 当0a <时,222443()3t ax x a x a a =-+=--+,43t a∴-,又()3tf t =在R 上单调递增,434()33813t a f x -∴===,434a∴-=,4a ∴=-.21.【解析】(1)令2x t = ,[]0,2x ∈ ,[]1,4t ∴∈()1425x x f x -=-+,∴()()221152444g t t t t =-+=-+[]1,4t ∈ ,()[]4,5g t ∴∈,()f x ∴的值域为[]4,5.(2)()227f x m am <-+对任意0,2m都成立∴()2max 275m am f x -+>=,即2275m am -+>,故2220m am -+>(]0,2m ∈,由2220m am -+>,可转化为:22a m m <+,可得22m a m+>224m m +≥=,当且仅当1m =取等号,∴4a < 22.【解析】(1)∵()f x 是R 上的奇函数,∴()()f x f x -=-即:242422x x x x a a a aa a a a ---+-+=-++.即2(4)2422x x x xa a a a a a a a+-+⋅-+-=+⋅+ 整理可得2a =.(2)222212()12222121x x x x x f x ⋅--===-⋅+++在R 上递增 ∵211x +>,22021x ∴-<-<+,211121x∴-<-<+ ∴函数()f x 的值域为()1,1-. (3)由()220xmf x +->可得,()2 2xmf x >-,21()2221x x x mf x m -=>-+.当[]1,2x ∈时,(21)(22)21x x x m +->-令(2113)xt t -=≤≤),则有(2)(1)21t t m t t t+->=-+,函数21y t t=-+在1≤t ≤3上为增函数,∴max 210(1)3t t -+=,103m ∴>,故实数m 的取值范围为(10,3)+∞。
高考数学一轮复习:函数与方程(Word版,含解析)

函数与方程基础练一、选择题1.[2021·河南濮阳模拟]函数f (x )=ln2x -1的零点所在区间为( )A .(2,3)B .(3,4)C .(0,1)D .(1,2)2.函数f (x )=x 2+ln x -2021的零点个数是( )A .3B .2C .1D .03.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( )A.(-1,0) B .C .(1,2) D .(2,3)4.[2021·四川绵阳模拟]函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)5.[2021·大同调研]已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >03x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]二、填空题6.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________. 7.[2021·新疆适应性检测]设a ∈Z ,函数f (x )=e x +x -a ,若x ∈(-1,1)时,函数有零点,则a 的取值个数为________.8.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 三、解答题9.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同的零点,求实数a 的取值范围.10.已知函数f (x )=ax 2+bx +c (a ≠0),满足f (0)=2,f (x +1)-f (x )=2x -1.(1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-mx 的两个零点分别在区间(-1,2)和(2,4)内,求m 的取值范围.能力练11.[2021·天津部分区质量调查]已知函数f (x )=若关于x 的方程f (x )=m (m ∈R )恰有三个不同的实数根a ,b ,c ,则a +b +c 的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫34,1C.⎝⎛⎭⎫34,2D.⎝⎛⎭⎫32,212.[2021·长沙市四校高三年级模拟考试]已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤01x ,x >0,若方程f (x )=a (x +3)有四个不同的实数根,则实数a 的取值范围是( )A .(-∞,4-23)B .(4-23,4+23)C .(0,4-23]D .(0,4-23)13.[2021·山西省六校高三阶段性测试]函数y =5sin ⎝⎛⎭⎫π5x +π5(-15≤x ≤10)的图象与函数y=5(x +1)x 2+2x +2图象的所有交点的横坐标之和为______.参考答案:1.解析:由f (x )=ln2x -1,得函数是增函数,并且是连续函数,f (1)=ln2-1<0,f (2)=ln4-1>0,根据函数零点存在性定理可得,函数f (x )的零点位于区间(1,2)上,故选D.答案:D2.解析:由题意知x >0,由f (x )=0得ln x =2021-x 2,画出函数y =ln x 与函数y =2021-x 2的图象(图略),即可知它们只有一个交点.故选C.答案:C3.解析:设f (x )=e x -(x +2),则f (1)=-0.28<0,f (2)=3.39>0,故方程e x -x -2=0的一个根在区间(1,2)内.故选C.答案:C4.解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧ f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C 项. 答案:C5.解析:h (x )=f (x )+x -a 有且只有一个零点,即方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.在同一坐标系中作出函数f (x )的图象和直线y =-x +a ,如图所示,若函数y =f (x )的图象与直线y =-x +a 有且只有一个交点,则有a >1,故选B.答案:B 6.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-127.解析:根据函数解析式得到函数f (x )是单调递增的.由零点存在性定理知若x ∈(-1,1)时,函数有零点,需要满足⎩⎪⎨⎪⎧f (-1)<0,f (1)>0⇒1e -1<a <e +1,因为a 是整数,故可得a 的可能取值为0,1,2,3.答案:48.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点.令f (x )=0,得a =2x .因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是(0,1].答案:(0,1]9.解析:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同的实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).10.解析:(1)由f (0)=2得c =2,又f (x +1)-f (x )=2x -1,得2ax +a +b =2x -1,故⎩⎪⎨⎪⎧2a =2,a +b =-1,解得a =1,b =-2,所以f (x )=x 2-2x +2. (2)g (x )=x 2-(2+m )x +2,若g (x )的两个零点分别在区间(-1,2)和(2,4)内,则满足⎩⎪⎨⎪⎧ g (-1)>0,g (2)<0,g (4)>0⇒⎩⎪⎨⎪⎧ 5+m >0,2-2m <0,10-4m >0,解得1<m <52.所以m 的取值范围为⎝⎛⎭⎫1,52. 11.解析:假设a <b <c ,通过作图可得a ∈⎝⎛⎭⎫-12,0,b +c =2,所以a +b +c ∈⎝⎛⎭⎫32,2,故选D 项.答案:D12.解析:方程f (x )=a (x +3)有四个不同的实数根可化为函数y =f (x )与y =a (x +3)的图象有四个不同的交点,易知直线y =a (x +3)恒过点(-3,0),作出函数y =f (x )的大致图象如图所示,结合函数图象,可知a >0且直线y =a (x +3)与曲线y =-x 2-2x ,x ∈[-2,0]有两个不同的公共点,所以方程x 2+(2+a )x +3a =0在[-2,0]上有两个不等的实数根,令g (x )=x 2+(2+a )x +3a ,则实数a 满足⎩⎪⎨⎪⎧ Δ=(2+a )2-12a >0-2<-2+a 2<0g (0)=3a ≥0g (-2)=a ≥0,解得0≤a <4-23,又a >0,所以实数a 的取值范围是(0,4-23),故选D.答案:D 13.解析:函数y =5sin ⎝⎛⎭⎫π5x +π5(x ∈R )的图象关于点(-1,0)对称.对于函数y =5(x +1)x 2+2x +2,当x =-1时,y =0,当x ≠-1时,易知函数y =5(x +1)x 2+2x +2=5x +1+1x +1在(-1,0)上单调递增,在(0,+∞)上单调递减,且当x ∈(-1,+∞)时,y =5(x +1)x 2+2x +2的最大值为52,函数图象关于点(-1,0)对称.对于函数y =5sin ⎝⎛⎭⎫π5x +π5,当x =0时,y =5sin π5>5sin π6=52,所以在(-1,0)内两函数图象有一个交点.根据两函数图象均关于点(-1,0)对称.可知两函数图象的交点关于点(-1,0)对称,画出两函数在[-15,10]上的大致图象,如图,得到所有交点的横坐标之和为-1+(-2)×3=-7.答案:-7。
2019-2020年高三数学一轮复习 专项训练 函数(含解析)

2019-2020年高三数学一轮复习 专项训练 函数(含解析)1.记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )=1-2x -1的定义域为集合N ,求: (1)集合M ,N ;(2)集合M ∩N ,M ∪N .解 (1)M ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x ⎪⎪ x >32, N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ 1-2x -1≥0=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -3x -1≥0={x |x ≥3,或x <1}. (2)M ∩N ={x |x ≥3},M ∪N =⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1或x >32. 2.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)在区间[-1,1]上,函数y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围. 解 (1)由f (0)=1,可设f (x )=ax 2+bx +1(a ≠0),故f (x +1)-f (x )=a (x +1)2+b (x +1)+1-(ax 2+bx+1)=2ax +a +b ,由题意,得⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1, 故f (x )=x 2-x +1.(2)由题意,得x 2-x +1>2x +m ,即x 2-3x +1>m ,对x ∈[-1,1]恒成立.令g (x )=x 2-3x +1,则问题可转化为g (x )min >m ,又因为g (x )在[-1,1]上递减, 所以g (x )min =g (1)=-1,故m <-1.3.下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是( ).A .y =x 2B .y =|x |+1C .y =-lg|x |D .y =2|x | 解析 对于C 中函数,当x >0时,y =-lg x ,故为(0,+∞)上的减函数,且y =-lg |x |为偶函数. 答案 C4、设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),求g (a )的表达式。
高考数学一轮复习专题2.10函数的综合运用练习(含解析)

第十讲 函数的综合运用考向一新概念题【例1】对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R)恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.【答案】 ⎝ ⎛⎭⎪⎫1-316,0【解析】 函数f (x )=⎩⎪⎨⎪⎧2x 2-x ,x ≤0,-x 2+x ,x >0的图象如图所示.设y =m 与y =f (x )图象交点的横坐标从小到大分别为x 1,x 2,x 3.由y =-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14,得顶点坐标为⎝ ⎛⎭⎪⎫12,14.当y =14时,代入y =2x 2-x ,得14=2x 2-x ,解得x =1-34(舍去正值),∴x 1∈⎝ ⎛⎭⎪⎫1-34,0.又∵y =-x 2+x 图象的对称轴为x =12,∴x 2+x 3=1,又x 2,x 3>0,∴0<x 2x 3<⎝ ⎛⎭⎪⎫x 2+x 322=14.又∵0<-x 1<3-14,∴0<-x 1x 2x 3<3-116,∴1-316<x 1x 2x 3<0. 【举一反三】1.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .]2,49(--B .[-1,0]C .(-∞,-2]D .),49(+∞-【答案】A【解析】令F (x )=f (x )-g (x )=x 2-3x +4-(2x +m )=x 2-5x +4-m ,则由题意知F (x )=0在[0,3]上有两个不同的实数根,因而2(0)0(3)054(4)0F F m ⎧≥⎪⎪≥⎨⎪∆=-->⎪⎩,即402049m m m -≥⎧⎪--≥⎨⎪>-⎩,解之得-94<m ≤-2,故选A考向二函数性质与零点定理综合运用【例2】已知偶函数 满足 ,当0 时, ,则函数 在区间 内的零点个数为。
高三数学一轮复习典型题专题训练:函数(含解析)

高三数学一轮复习典型题专题训练:函数(含解析)1.函数y=log7(x^2-4x+3)的定义域为(x3)。
2.若函数f(x)=a+x是奇函数,则实数a的值为0.3.函数f(x)=lg(2-x)+2+x的定义域是(x<2)。
4.已知8a=2,loga(x)=3a,则实数x=64.5.已知奇函数y=f(x)是R上的单调函数,若函数g(x)=f(x)+f(a-x^2)只有一个零点,则实数a的值为1.6.已知函数f(x)=(x+m)e^(x/2-(m+1)/2)在R上单调递增,则实数m的取值集合为(m>-1)。
7.已知函数f(x)为偶函数,且x>0时,f(x)=x+x,则f(-1)=2.8.已知函数f(x)=(x-1)(px+q)为偶函数,且在(0,+∞)单调递减,则f(x-3)<0的解集为(x∈(1,3))。
9.函数y=1-lnx的定义域为(x>0)。
10.已知函数f(x)=logx,x>2或3x-4,xa的解集为(x∈(e^(a+1)/3.+∞)),实数a的所有可能值之和为(e^2-1)/2.11.已知y=f(x)为定义在R上的奇函数,且当x>0时,f(x)=ex+1,则f(-ln2)=1/e。
12.函数有3个不同的零点,则实数a的取值范围为(a∈(-∞,1/3)或(1.+∞))。
13.已知a,b∈R,函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)上是减函数,则关于x的不等式f(2-x)>0的解集为(x∈(0,2-b/a)∪(2+b/a,+∞))。
14.设函数f(x)=2x^2,x≤0,-x^2+2x,x>0,则实数k的取值范围为(k∈(-∞,2))。
15.已知函数f(x)=若存在唯一的整数x,-3|x-1|+3,x>0.要使得f(x)-a>0成立,即要求f(x)>a,因为f(x)是整数,所以a的取值范围为a≤2.16.已知函数f(x)=x+(a−1)lnx,当x∈[1,3]时,函数f(x)的值域为[f(1),f(3)]。
2021届高三数学(文理通用)一轮复习题型专题训练:函数的图像及其应用(一)(含解析)

《函数的图像及其应用》(一)“、In lx+ 111.函数/(工)=1一廿的部分图象大致是(A. ~~1 1B. ——C.2.函数/.-)=" 一"卜|的图象大致为().X 3- tLB- J L C- 73.函数/(]) =炉一cosx的部分图象大致为(] .1/A. J tB.弋J/ . EC.产力今4.函数y =,T)2kl的图像大致是()*朱,出。
,3 ccs X + 15.函数= 一的部分图象大致是(XA. \y:B. \j\ ^\t c-X36.函数/(x) = 4—的图象大致是()e +1A B. C. 1) T D. f」A )\ z /D-:-f 1飞I 1 f).〜卜D、J 〔[y,Z\[0 » d \J Q B Q "zh考查内容:主要涉及画函数图像、函数图像的识别选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)2021届高三一轮复习题型专题训练一1 O9 .已知函数/(x ) = Lf+cosx, f (x )是函数的导函数,则/'(x )的图象大致 410 .下图可能是下列哪个函数的数像()H.某市出租车起步价为5元(起步价内行驶里程为3 km ),以后每1km 价为1.8元(不足1 km 按1 km 计价),则乘坐出租车的费用y (元)与行驶的里程x (km )之间的函数图像 大致为()ax + b的图象如图所示,则下列结论成立的是()7. 已知则函数II )的图象是(8. )函数y = /(x )的图象如图所示,则.fa )的解析式是(A.,/一27 + 1D. x 2-2lxl+lB.x(x-2) ln|x-l|D. y = tanxln(x+l)是().C. y = x 2 ln|x-l|A.B.填空题14 .某人开车去某地旅行,先沿直线匀速前进了a km,到达目的地后游玩了一段时间,又原路返回匀速行驶了 6km (0v 。
高三数学一轮复习备考试题:函数(含答案解析)

江苏省2015年高考一轮复习备考试题函数一、填空题1、(2014年江苏高考)已知函数1)(2-+=mx x x f ,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ▲ .2、(2014年江苏高考)已知)(f x 是定义在R 上且周期为3的函数,当)3,0[x 时,|212|)(2+-=x x x f a x f -=)(y 在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ . 3、(2013年江苏高考)已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 。
4、(2012年江苏高考)函数x x f 6log 21)(-=的定义域为 ▲ .5、(2012年江苏省高考)设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 6、(2012年江苏省5分)已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .7、(2015届江苏南京高三9月调研)设f (x )=x 2-3x +a .若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为 ▲8、(2015届江苏南通市直中学高三9月调研)已知函数23 1 ()x a x f x x a x ⎧+>⎪=⎨+⎪⎩≤,,,1,若()f x 在R 上为增函数,则实数a 的取值范围是 ▲9、(2015届江苏苏州高三9月调研)已知函数()2log 1a x f x x-=+为奇函数,则实数a 的值为 ▲ 10、(南京市2014届高三第三次模拟)已知函数f (x )=⎩⎨⎧x ,x ≥0,x 2,x <0, ,则关于x 的不等式f (x 2)>f (3-2x )的解集是 ▲11、(南通市2014届高三第三次调研)已知函数()f x 对任意的x ∈R 满足()()f x f x -=,且当0x ≥时,2()1f x x ax =-+.若()f x 有4个零点,则实数a 的取值范围是 ▲ .112、(苏锡常镇四市2014届高三5月调研(二))函数y =A ,函数()lg 2y x =-的定义域为B ,则A I B = ▲13、(苏锡常镇四市2014届高三5月调研(二))已知奇函数()f x 是R 上的单调函数,若函数2()()y f x f k x =+-只有一个零点,则实数k 的值是 ▲ .14、(徐州市2014届高三第三次模拟)已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()3f x x x =--,则不等式(1)4f x x ->-+的解集是 ▲15、(徐州市2014届高三第三次模拟)已知函数1()()e x af x a x=-∈R .若存在实数m ,n , 使得()0f x ≥的解集恰为[],m n ,则a 的取值范围是 ▲16、(南京、盐城市2014届高三第二次模拟(淮安三模))函数f (x )=ln x +1-x 的定义域为 ▲ 17、(南京、盐城市2014届高三第二次模拟(淮安三模))已知f (x )是定义在R 上的奇函数,当0≤x≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1).若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲ 18、(2014江苏百校联考一)函数1()2sin(),[2,4]1f x x x xπ=-∈--的所有零点之和为 .19、(南京、盐城市2014高三第一次模拟)若函数()f x 是定义在R 上的偶函数,且在区间[0.)+∞上是单调增函数.如果实数t 满足1(ln )(ln )2(1)f t f f t+<时,那么t 的取值范围是 20、(苏锡常镇四市2014届高三3月调研(一))已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不同的零点,则实数k 的取值范围为 ▲ 21、(南通市2014届高三上学期期末考试)设函数()y f x =是定义域为R ,周期为2的周期函数,且当[)11x ∈-,时,2()1f x x =-;已知函数lg ||0()10x x g x x ≠⎧⎪=⎨=⎪⎩,,,. 则函数()f x 和()g x 的图象在区间[]510-,内公共点的个数为 . 22、(苏州市2014届高三1月第一次调研)已知22(0),()(0)x x x f x x x x ⎧+⎪=⎨-+<⎪⎩≥,则不等式2(1)12f x x -+<的解集是 ▲23、(泰州市2014届高三上学期期末考试)设函数()()f x x a x a b =--+(,a b 都是实数).则下列叙述中,正确的序号是 ▲ .(请把所有叙述正确的序号都填上) ①对任意实数,a b ,函数()y f x =在R 上是单调函数; ②存在实数,a b ,函数()y f x =在R 上不是单调函数; ③对任意实数,a b ,函数()y f x =的图像都是中心对称图形; ④存在实数,a b ,使得函数()y f x =的图像不是中心对称图形. 24、(江苏省扬州中学2014届高三上学期12月月考)设12()1f x x=+,11()[()]n n f x f f x +=,且(0)1(0)2n n n f a f -=+,则2014a = ▲25、、(江苏省诚贤中学2014届高三12月月考)在用二分法...求方程3210x x --=的一个近似解时,现在已经将一根锁定在区间(1,2),则下一步可断定该根所在的区间为 ▲ . 26、(江苏省东海县第二中学2014届高三第三次学情调研)已知函数ln (),()xf x kxg x x==,如果关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,那么实数k 的取值范围是 ▲ .27、(江苏省阜宁中学2014届高三第三次调研)已知函数()()2log ,12,01x x f x f x x ⎧⎪=⎨<<⎪⎩≥,则()3212f ⎡⎤⎢⎥⎢⎥⎣⎦= ▲28、(无锡市2014届高三上学期期中)定义在R 上的奇函数()f x ,当0x ≥时,2log (1)(01)()|3|1(1)x x f x x x +≤<⎧=⎨--≥⎩,则函数1()()2g x f x =-的所有零点之和为_____。
山东省济宁市高三数学一轮复习 专项训练 函数的图像(

函数的图像1、 (2013·山东卷)函数y =x cos x +sin x 的图象大致为( ).解析 函数y =x cos x +sin x 在x =π时为负,排除A ;易知函数为奇函数,图象关于原点对称, 排除B ;再比较C ,D ,不难发现当x 取接近于0的正数时y >0,排除C. 答案 D2、函数y =x sin x 在[-π,π]上的图象是( ).解析 容易判断函数y =x sin x 为偶函数,可排除D.当0<x <π2时,y =x sin x >0,当x =π时,y =0,可排除B ,C ,故选A.答案:A3、函数y =x +cos x 的大致图象是( ).解析:∵y ′=1-sin x ≥0,∴函数y =x +cos x 为增函数,排除C.又当x =0时,y =1,排除A ,当x =π2时,y =π2,排除D ,故选B.答案:B4、函数y =log 2(|x |+1)的图象大致是( ).解析 当x >0时,y =log 2(x +1),先画出y =log 2x 的图象,再将图象向左平移1个单位,最后作出关于y 轴对称的图象,得与之相符的图象为B. 答案 B5、已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解 f (x )=⎩⎪⎨⎪⎧x -22-1,x ∈-∞,1]∪[3,+∞,-x -22+1,x ∈1,3,作出函数图象如图.(1)函数的增区间为[1,2],[3,+∞);函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1,∴M ={m |0<m <1}.6.(2013·青岛一模)函数y =21-x的大致图象为( ).解析 y =21-x=⎝ ⎛⎭⎪⎫12x -1,因为0<12<1,所以y =⎝ ⎛⎭⎪⎫12x -1为减函数,取x =0时,则y =2,故选A.答案 A7.(2013·福建卷)函数f (x )=ln(x 2+1)的图象大致是( ).解析 函数f (x )=ln(x 2+1)的定义域为(-∞,+∞),又因为f (-x )=f (x ),故f (x )为偶函数且f (0)=ln 1=0,综上选A.答案 A8.(2014·日照一模)函数f (x )=lg(|x |-1)的大致图象是( ).解析 易知f (x )为偶函数,故只考虑x >0时f (x )=lg(x -1)的图象,将函数y =lg x 图象向x 轴正方向平移一个单位得到f (x )=lg(x -1)的图象,再根据偶函数性质得到f (x )的图象. 答案 B9.函数y =(x -1)3+1的图象的对称中心是________.解析 y =x 3的图象的对称中心是(0,0),将y =x 3的图象向上平移1个单位,再向右平移1个单位,即得y =(x -1)3+1的图象,所以对称中心为(1,1). 答案 (1,1)10.已知函数f (x )=⎩⎪⎨⎪⎧log 2xx >0,2xx ≤0,且关于x 的方程f (x )-a =0有两个实根,则实数a 的范围是________.解析 当x ≤0时,0<2x≤1,所以由图象可知要使方程f (x )-a =0有两个实根,即f (x )=a 有两个交点,所以由图象可知0<a ≤1.答案 (0,1]11.已知函数f (x )=x1+x.(1)画出f (x )的草图;(2)指出f (x )的单调区间.解 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示.(2)由图象可以看出,函数f (x )的单调递增区间为(-∞,-1),(-1,+∞).12.设函数f (x )=x +1x的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求g (x )的解析式;(2)若直线y =m 与C 2只有一个交点,求m 的值和交点坐标.解 (1)设点P (x ,y )是C 2上的任意一点,则P (x ,y )关于点A (2,1)对称的点为P ′(4-x,2-y ),代入f (x )=x +1x ,可得2-y =4-x +14-x ,即y =x -2+1x -4,∴g (x )=x -2+1x -4. (2)由⎩⎪⎨⎪⎧y =m ,y =x -2+1x -4,消去y 得x 2-(m +6)x +4m +9=0,Δ=[-(m +6)]2-4(4m +9),∵直线y =m 与C 2只有一个交点, ∴Δ=0,解得m =0或m =4.当m =0时,经检验合理,交点为(3,0); 当m =4时,经检验合理,交点为(5,4).13.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f xcos x<0的解集为( ).A.⎩⎨⎧⎭⎬⎫x |-π2<x <-1B.⎩⎨⎧⎭⎬⎫x |1<x <π2 C.⎩⎨⎧⎭⎬⎫x |-π2<x <-1,或1<x <π2 D .{x |-1<x <1}解析 当x ∈(0,1)时,cos x >0,f (x )>0;当x ∈⎝⎛⎭⎪⎫1,π2时,cos x >0,f (x )<0; 当x ∈⎝⎛⎭⎪⎫π2,4时,cos x <0,f (x )<0, 当x ∈(-1,0)时,cos x >0,f (x )>0;当x ∈⎝ ⎛⎭⎪⎫-π2,-1时,cos x >0,f (x )<0; 当x ∈⎝ ⎛⎭⎪⎫-4,-π2时,cos x <0,f (x )<0.故不等式f xcos x<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-π2<x <-1,或1<x <π2. 答案 C14.已知函数f (x )=|x 2-4x +3|.若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.解 f (x )=⎩⎪⎨⎪⎧x -22-1,x ∈-∞,1]∪[3,+∞-x -22+1,x ∈1,3作出图象如图所示.原方程变形为 |x 2-4x +3|=x +a .于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图象.如图.则当直线y =x +a 过点(1,0)时a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +a ,y =-x 2+4x -3⇒x 2-3x +a +3=0.由Δ=9-4(3+a )=0,得a =-34.由图象知当a ∈⎣⎢⎡⎦⎥⎤-1,-34时方程至少有三个不等实根.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学一轮复习典型题专题训练函 数一、填空题1、(南京市、镇江市2019届高三上学期期中考试)函数()27log 43y x x =-+的定义域为_____________2、(南京市2019届高三9月学情调研)若函数f (x )=a +12x -1 是奇函数,则实数a 的值为 ▲3、(苏州市2019届高三上学期期中调研)函数()lg(2)2f x x x =-++的定义域是 ▲ .4、(无锡市2019届高三上学期期中考试)已知8a =2,log a x =3a ,则实数x =5、(徐州市2019届高三上学期期中质量抽测)已知奇函数()y f x =是R 上的单调函数,若函数2()()()g x f x f a x =+-只有一个零点,则实数a 的值为 ▲ .6、(盐城市2019届高三第一学期期中考试)已知函数21()()(1)2xf x x m e x m x =+--+在R 上单调递增,则实数m 的取值集合为 .7、(扬州市2019届高三上学期期中调研)已知函数()f x 为偶函数,且x >0时,32()f x x x =+,则(1)f -= .8、(常州市武进区2019届高三上学期期中考试)已知函数()(1)()f x x px q =-+为偶函数,且在(0,)+∞单调递减,则(3)0f x -<的解集为 ▲9、(常州市2019届高三上学期期末)函数1ln y x =-的定义域为________.10、(海安市2019届高三上学期期末)已知函数f (x )=⎩⎪⎨⎪⎧3x -4,x <0,log 2x ,x >0,若关于x 的不等式f (x )>a 的解集为(a 2,+∞),则实数a 的所有可能值之和为 .11、(南京市、盐城市2019届高三上学期期末)已知y =f (x )为定义在R 上的奇函数,且当x >0时,f (x )=e x +1,则f (-ln2)的值为 ▲ .12、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末) 函数有3个不同的零点,则实数a 的取值范围为____13、(苏北三市(徐州、连云港、淮安)2019届高三期末)已知,a b ∈R ,函数()(2)()f x x ax b =-+为偶函数,且在(0,)+∞上是减函数,则关于x 的不等式(2)0f x ->的解集为 .14、(苏州市2019届高三上学期期末)设函数220()20x x x f x x x ⎧-+≥=⎨-<⎩,,,若方程()3f x kx -=有三个相异的实根,则实数k 的取值范围是 .15、(南京市2018高三9月学情调研)已知函数f (x )=⎩⎨⎧2x 2,x ≤0,-3|x -1|+3,x >0.若存在唯一的整数x ,使得f (x )-a x >0成立,则实数a 的取值范围为 ▲ .16、(苏州市2018高三上期初调研)已知函数()()0af x x a x=+>,当[]1,3x ∈时,函数()f x 的值域为A ,若[]8,16A ⊆,则a 的值是 .17、(镇江市2018届高三第一次模拟(期末)考试)已知k 为常数,函数⎪⎩⎪⎨⎧>≤-+=0ln 0,12)(x x x x x x f ,若关于x 的方程2)(+=kx x f 有且只有4个不同的解,则实数k 的取值集合为18、(苏锡常镇四市2019届高三教学情况调查(一))已知函数2log (3)0()210x x x f x x -≤⎧=⎨->⎩,,,若1(1)2f a -=,则实数a = . 19、(盐城市2019届高三第三次模拟)若函数)1lg()1lg()(ax x x f +++=是偶函数,则实数a 的值_____.20、(江苏省2019年百校大联考)已知函数2,1(),1x x x f x x x ⎧-≥=⎨<⎩ ,则不等式2()f x f x ⎛⎫< ⎪⎝⎭的解集是 .21、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月)) 已知函数()()()2|||2|(0)f x x a x a x a a =+-++<.若(1)(2)(3)f f f +++…(672)0f +=,则满足()2019f x =的x 的值为 ▲ .22、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,,则函数5()log y f x x =-| |的零点的个数为 ▲ .23、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月)) 已知函数2()23f x x x a =-+,2()1g x x =-.若对任意[]103x ∈,,总存在[]223x ∈,,使得 12()()f x g x ≤成立,则实数a 的值为 ▲ .二、解答题1、(南京市、镇江市2019届高三上学期期中)已知k R ∈,函数2()(1)2f x x k x k =+-=-(1)解关于x 的不等式()2f x <(2)对任意(1,2),()1x f x ∈-≥恒成立,求实数k 的取值范围2、(南京市、镇江市2019届高三上学期期中)已知函数4()log log (0a f x x x a =+>且a ≠1)为增函数。
(1)求实数a 的取值范围;(2)当a =4时,是否存在正实数m ,n (m <n ),使得函数f(x)的定义域为[m ,n ],值域为[,]22m n?如果存在,求出所有的m ,n ,如果不存在,请说明理由。
3、(苏州市2019届高三上学期期中)已知()x xaf x e e =-是奇函数. (1)求实数a 的值;(2)求函数222()x x y e e f x λ-=+-在),0[∞+∈x 上的值域; (3)令()()2g x f x x =-,求不等式32(1)(13)0g x g x ++-<的解集.4、(南京市2018高三9月学情调研)某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完乙型装置所需时间为t 2小时.设f (x )=t 1+t 2. (1)求f (x )的解析式,并写出其定义域; (2)当x 等于多少时,f (x )取得最小值?5、(苏州市2017届高三上学期期中调研)已知函数()33()x x f x λλ-=+⋅∈R(1)若()f x 为奇函数,求λ的值和此时不等式()1f x >的解集; (2)若不等式()6f x ≤对[0,2]x ∈恒成立,求实数λ的取值范围.6、设函数()()0,0221>>++-=+b a bax f x x . (1)当2==b a 时,证明:函数()x f 不是奇函数; (2)设函数()x f 是奇函数,求a 与b 的值;(3)在(2)条件下,判断并证明函数()x f 的单调性,并求不等式()61->x f 的解集.7、已知a R ∈,函数()||f x x x a =-。
(1)当2a =时,写出函数()y f x =的单调递增区间; (2)当2a >时,求函数()y f x =在区间[1,2]上的最小值;(3)设0a ≠,函数()y f x =在(,)m n 上既有最大值又有最小值,请分别求出,m n 的取值范围(用a 表示)。
8. 已知函数16()1x f x a a+=-+(0a >且1)a ≠是定义在R 上的奇函数.(1)求实数a 的值及函数()f x 的值域;(2)若不等式()33x t f x ⋅≥-在[1,2]x ∈上恒成立,求实数t 的取值范围.9. 已知函数2()21x f x a =-+(常数a ∈R ) (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,若对任意的[2,3]x ∈,都有()2x mf x ≥成立,求m 的最大值.参考答案一、填空题 1、2、123、[)2,2-4、13 5、14-6、{}1-7、28、(,2)(4,)-∞+∞9、(0,e] 10、6 11、-3 12、13、(0,4) 14、15、[0,2]∪[3,8] 16、15 17、⎩⎨⎧⎭⎬⎫1c 3∪(-e ,-1)18、2log 3 19、-1 20、{}202x x x <-<<或21、337 22、5 23、13-二、解答题 1、2、3、解:(1)函数的定义域为R ,因为()f x 为奇函数,由()()f x f x -=-可知,(0)0f =, 所以10a -=,所以1a =; ………………3分当1a =时,11()()x xx x f x e e f x e e---=-=-+=-,此时()f x 为奇函数. ………………4分 (2)令1x x e t e -=(0t ≥),所以22212x x e t e+=+所以2()22h t t t λ=-+,对称轴t λ=, ………………5分 ①当0λ≤时,[)()(0),h t h ∈+∞,所求值域为[)2,+∞; ………………7分②当0λ>时,[)()(),h t h λ∈+∞,所求值域为)22,λ⎡-+∞⎣; ………………9分(3)因为1()x xf x e e =-为奇函数,所以()()2()()2(),g x f x x f x x g x -=---=-+=- 所以()()2g x f x x =-为奇函数,所以32(1)(13)0g x g x ++-<等价于32(1)(31)g x g x +<-, ………………10分 又1()()22220x xg x f x e e ''=-=+--=≥当且仅当0x =时,等号成立, 所以()()2g x f x x =-在R 上单调增,所以32131x x +<-, ………………13分 即32320x x -+<,又32232(1)(22)0x x x x x -+=---<,所以1x <或11x << ………………15分所以不等式的解集是(,1(1,13)-∞+. ………………16分4、解:(1)因为t 1=9000x, ………………………2分t 2=30003(100-x )=1000100-x , ………………………4分所以f (x )=t 1+t 2=9000x +1000100-x , ………………………5分定义域为{x |1≤x ≤99,x ∈N *}. ………………………6分 (2)f (x )=1000(9x +1100-x )=10[x +(100-x )]( 9x +1100-x)=10[10+9(100-x )x + x100-x ]. ………………………10分因为1≤x ≤99,x ∈N *,所以9(100-x )x >0,x100-x>0, 所以9(100-x )x + x100-x≥29(100-x )x ⋅x100-x=6, …………………12分 当且仅当9(100-x )x =x100-x ,即当x =75时取等号. …………………13分答:当x =75时,f (x )取得最小值. ………………………14分5、解:(1)函数()33x x f x λ-=+⋅的定义域为R .∵()f x 为奇函数,∴()()0f x f x -+=对x ∀∈R 恒成立,即3333(1)(33)0xxxxxxλλλ---+⋅++⋅=++=对x ∀∈R 恒成立, ∴1λ=-. ..........3分 此时()331x x f x -=->即2(3)310x x -->,解得33)x x <舍去, ..........6分∴解集为3{|log x x >. ..........7分 (2)由()6f x ≤得336x x λ-+⋅≤,即363x xλ+≤,令3[1,9]x t =∈,原问题等价于6t tλ+≤对[1,9]t ∈恒成立, 亦即26t t λ-+≤对[1,9]t ∈恒成立, ...........10分令2()6,[1,9]g t t t t =-+∈,∵()g t 在[1,3]上单调递增,在[3,9]上单调递减,∴当9t =时,()g t 有最小值(9)27g =-,∴27λ-≤. .........14分6、解:(1)当2==b a 时,()22221++-=+x x x f所以()211=-f ,()01=f ,所以()()11f f -≠-,所以函数()x f 不是奇函数. (2)由函数()x f 是奇函数,得()()x f x f -=-,即ba b a x x x x ++--=++-++--112222对定义域内任意实数x 都成立,化简整理得 ()()()02242222=-+⋅-+⋅-b a ab b a x x 对定义域内任意实数x 都成立所以⎩⎨⎧=-=-04202ab b a ,所以⎩⎨⎧-=-=21b a 或⎩⎨⎧==21b a经检验⎩⎨⎧==21b a 符合题意.(3)由(2)可知()⎪⎭⎫⎝⎛++-=++-=+12212122121x x x x f易判断()x f 为R 上的减函数,证明略(定义法或导数法) 由()611-=f ,不等式()61->x f 即为()()1f x f >,由()x f 在R 上的减函数可得1<x . 另解:由()61->x f 得,即61122121->⎪⎭⎫ ⎝⎛++-x ,解得22<x,所以1<x . (注:若没有证明()x f 的单调性,直接解不等式,正确的给3分)7、解:(1)当2=a 时,⎩⎨⎧<-≥-=-=2),2(2),2(|2|)(x x x x x x x x x f , ……2分由图象可知,)(x f y =的单调递增区间为),2[],1,(+∞-∞. ……4分(2)因为]2,1[,2∈>x a ,所以4)2()()(222a a x ax x x a x x f +--=+-=-=.……6分当2321≤<a ,即32≤<a 时,42)2()(min -==a f x f ; ……7分 当232>a ,即3>a 时,1)1()(min -==a f x f . ……8分 ⎩⎨⎧>-≤<-=∴3,132,42)(min a a a a x f . ……9分(3)⎩⎨⎧<-≥-=a x x a x ax a x x x f ),(),()(, ……10分①当0>a 时,图象如图1所示.由⎪⎩⎪⎨⎧-==)(42a x x y a y 得a n a a m a x 212,20.2)12(+≤<<≤∴+=. ……12分图1 图2 ②当0<a 时,图象如图2所示.由⎪⎩⎪⎨⎧-=-=),(,42x a x y a y 得02,212.221≤<<≤+∴+=n a a m a a x . ……14分8、9、解:(1)若)(x f 为奇函数,必有(0)10f a =-= 得1a =,……………………2分当1a =时,221()12121x x x f x -=-=++,2112()()2121x xx x f x f x -----===-++∴当且仅当1a =时,)(x f 为奇函数 ………………………4分又2(1)3f a =-,4(1)3f a -=-,∴对任意实数a ,都有(1)(1)f f -≠∴)(x f 不可能是偶函数 ………………………6分 (2)由条件可得:222()2(1)(21)32121x x xx x m f x ≤⋅=-=++-++恒成立, ……8分 记21x t =+,则由[2,3]x ∈ 得[5,9]t ∈, ………………………10分此时函数2()3g t t t=+-在[5,9]t ∈上单调递增, ………………………12分 所以()g t 的最小值是12(5)5g =, ………………………13分所以125m ≤ ,即m 的最大值是125 ………………………14分。