(完整版)高三数学第一轮复习函数测试题

合集下载

高三数学第一轮复习单元测试题—_集合与函数

高三数学第一轮复习单元测试题—_集合与函数

高三数学第一轮复习单元测试题—_集合与函数(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高三数学第一轮复习单元测试题— 集合与函数一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是 ( )A .1B .3C .4D .8 2.已知集合M ={x |0)1(3≥-x x },N ={y |y =3x 2+1,x R },则MN =( )A .B .{x |x 1}C .{x |x 1}D .{x | x 1或x 0}3.有限集合S 中元素个数记作card ()S ,设A 、B 都为有限集合,给出下列命题:①φ=B A 的充要条件是card ()B A = card ()A + card ()B ; ②B A ⊆的必要条件是card ()≤A card ()B ; ③B A ⊄的充分条件是card ()≤A card ()B ; ④B A =的充要条件是card ()=A card ()B .其中真命题的序号是A .③、④B .①、②C .①、④D .②、③ 4.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N = ( )A .∅B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3}5.函数2log (1)1xy x x =>-的反函数是 ( )A .2(0)21xx y x =>-B .2(0)21xx y x =<-C .21(0)2x x y x -=>D .21(0)2x x y x -=<6.函数)13lg(13)(2++-=x xx x f 的定义域是( )A .),31(+∞-B .)1,31(-C .)31,31(-D .)31,(--∞7.下列函数中,在其定义域内既是奇函数又是减函数的是 ( )A .R x x y ∈-=,3B .R x x y ∈=,sinC .R x x y ∈=,D .R x x y ∈=,)21(8.函数)(x f y =的反函数)(1x f y -=的图象与y 轴交于点 )2,0(P (如图2所示),则方程0)(=x f 的根是=x ( ) A .4B .3C .2D .19.已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( ) A .12()()f x f x > B .12()()f x f x <C .12()()f x f x =D .1()f x 与2()f x 的大小不能确定10.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A .7,6,1,4B .6,4,1,7C .4,6,1,7D .1,6,4,7 11.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所 围成的弓形面积的2倍,则函数y =f (x )的图象是( ) 12.关于x 的方程()011222=+---k x x ,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根.其中假命题的个数是 ( )A .0B .1C .2D .3 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______.14.设f (x )=log 3(x +6)的反函数为f -1(x ),若〔f -1(m )+6〕〔f -1(n )+6〕=27,则f (m +n )=___________________.15.设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________.16.设()xx x f -+=22lg ,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为_____________ .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数b x a x x f lg )2(lg )(2+++=满足2)1(-=-f 且对于任意R x ∈,恒有x x f 2)(≥成立. (1)求实数b a ,的值; (2)解不等式5)(+<x x f .18(本小题满分12分)20个下岗职工开了50亩荒地,这些地可以种蔬菜、棉花、水稻,如果种这些农作物每亩地所需的劳力和预计的产值如下:问怎样安排,才能使每亩地都种上作物,所有职工都有工作,而且农作物的预计总产值达到最高?19.(本小题满分12分)已知函数,),,( 1)(2R x b a bx ax x f ∈++=为实数⎩⎨⎧<->=)0( )( )0()()(x x f x x f x F (1)若,0)1(f =-且函数)x (f 的值域为),0[∞+ ,求)(x F 的表达式; (2)在(1)的条件下, 当]2 ,2[-∈x 时, kx x f x g -=)()(是单调函数, 求实数k 的取值范围;(3)设0<⋅n m , ,0>+n m 0>a 且)(x f 为偶函数, 判断)(m F +)(n F 能否大于零?20.(满分12分)已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x . (1)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(2)设有且仅有一个实数x 0,使得f (x 0)= x 0,求函数f (x )的解析表达式.21.(本小题满分12分)设函数54)(2--=x x x f .(1)在区间]6,2[-上画出函数)(x f 的图像;(2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A . 试判断集合A 和B 之间的关系,并给出证明;(3)当2>k 时,求证:在区间]5,1[-上,3y kx k =+的图像位于函数)(x f 图像的上方.22.(本小题满分14分)设a 为实数,记函数x x x a x f -+++-=111)(2的最大值为g (a ).(1)设t =x x -++11,求t 的取值范围,并把f (x )表示为t 的函数m (t );(2)求g (a );(2)试求满足)1()(ag a g =的所有实数a .参考答案(1)1.C .{1,2}A =,{1,2,3}A B ⋃=,则集合B 中必含有元素3,即此题可转化为求集合{1,2}A =的子集个数问题,所以满足题目条件的集合B 共有224=个.故选择答案C .2.C .M ={x |x 1或x 0},N ={y |y 1}故选C3.B .选由ca r d()B A = ca r d ()A + ca r d ()B + ca r d ()A B 知ca r d ()B A = ca r d ()A +ca r d ()B ⇔ca r d ()A B =0⇔φ=B A .由B A ⊆的定义知ca r d ()≤A ca r d ()B .4.D .{}{}2log 12N x x x x =>=>,用数轴表示可得答案D .5.A .∵ 2log 1x y x =- ∴21y x x =- 即221x x y =- ∵1x> ∴11111x x x =+>-- 即2log 01x y x =>-∴函数2log (1)1x y x x =>-的反函数为2(0)21x x y x =>-. 6.B .由1311301<<-⇒⎩⎨⎧>+>-x x x ,故选B .7.B .在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A .8.C .利用互为反函数的图象关于直线y =x 对称,得点(2,0)在原函数)(x f y =的图象上,即0)2(=f ,所以根为x =2.故选C9. B .取特值()()22,2,2,121->=-==f f x x a ,选B ;或二次函数其函数值的大小关系,分类研究对成轴和区间的关系的方法, 易知函数的对成轴为1-=x ,开口向上的抛物线, 由12x x <, x 1+x 2=0,需分类研究12x x <和对成轴的关系,用单调性和离对成轴的远近作判断,故选B ;10.B .理解明文→密文(加密),密文→明文(解密)为一种变换或为一种对应关系,构建方程组求解,依提意用明文表示密文的变换公式为⎪⎪⎩⎪⎪⎨⎧=+=+=+=d m d c z c b y b a x 43222,于是密文14,9,23,28满足,即有⎪⎪⎩⎪⎪⎨⎧====∴⎪⎪⎩⎪⎪⎨⎧=+=+=+=6417,428322329214a b c d d d c c b b a ,选B ; 11.D .当x =2π时,阴影部分面积为14个圆减去以圆的半径为腰的等腰直角三角形的面积,故此时12()2[]24222f ππππ-=-=<,即点(2,22ππ-)在直线y =x 的下方,故应在C 、D 中选;而当x =32π时, ,阴影部分面积为34个圆加上以圆的半径为腰的等腰直角三角形的面积,即32()2[]222f ππππ-=⨯-=+32π>,即点(3,22ππ+)在直线y =x 的上方,故选D .12.B .本题考查换元法及方程根的讨论,要求考生具有较强的分析问题和解决问题的能力;据题意可令21x t -=(0)t ≥①,则方程化为20t t k -+=②,作出函数21y x =-的图象,结合函数的图象可知:(1)当t =0或t >1时方程①有2个不等的根;(2)当0<t <1时方程①有4个根;(3)当t =1时,方程①有3个根.故当t =0时,代入方程②,解得k=0此时方程②有两个不等根t =0或t =1,故此时原方程有5个根;当方程②有两个不等正根时,即104k<<此时方程②有两根且均小于1大于0,故相应的满足方程21x t -=的解有8个,即原方程的解有8个;当14k =时,方程②有两个相等正根t =12,相应的原方程的解有4个;故选B . 13.由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.14.f -1(x )=3x -6故〔f -1(m )+6〕〔f -1(x )+6〕=3m3n =3m +n=27m +n =3f (m +n )=log 3(3+6)=2.15.1ln 2111(())(ln )222g g g e ===.16.由202x x +>-得,()f x 的定义域为22x -<<。

高三数学一轮复习函数测试题

高三数学一轮复习函数测试题

高三数学一轮复习函数测试题姓名_________ 班级_________ 分数_________1.2sin lg ln y x y x y x y =+===下列函数是偶函数的是( )A. B. C. D. ()()()()12.lg(1)1,11,1,11,(,)f x x x++--∞-+∞-+∞-∞+∞函数()=的定义域是( )A. B. C. D.2443.log 3.6,log 3.2,log 3.6,a b c a b c a c b b a c c a b ===>>>>>>>>已知则( )A. B. C. D.134.y x =函数 )5.已知函数22)(m mx x x f --=,则)(x f ( )A .有一个零点B .有两个零点C .有一个或两个零点D .无零点}{(]136.=124,log 1110,,2(,2)0,233xR x B x x ⎧⎫⎪⎪<<=≤⎨⎬⎪⎪⎩⎭⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭已知集合A ,则A (C B)=( )A. B. C. D.10020000003,07..()3,log ,0808808x x f x f x x x x x x x x x x +⎧≤>⎨>⎩><><<<<<已知函数是()=若则的取值范围是( )A. B.或 C.0 D.或08.()431111130444224x f x e x =+--在下列区间中,函数的零点所在的区间为( )A.(,0)B.(,)C.(,)D.(,)9.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A ),3()1,3(+∞⋃-B ),2()1,3(+∞⋃-C ),3()1,1(+∞⋃-D )3,1()3,(⋃--∞10.已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2log 3)f += A124 B 112 C 18 D 38二、填空题(本大题共4小题,每小题5分,共20分).211.ln(2)________y x x =--的单调递增区间为12、设()f x 是定义在R 上的奇函数,当x≤0时,()f x =22x x -,则(1)f = .213.450,(),()(),,x a a f x a m n f m f n m n --==>已知正数满足函数若实数,满足则的大小关系为_______2114.log 0,______3a a a a+>+若则的取值范围是三、解答题:本大题共2小题,共30分.解答应写出文字说明,证明过程或演算步骤. 15. 已知函数)12lg()(2++=ax ax x f 的定义域为R ,求a 的取值范围。

高三数学一轮复习 三角函数测试卷(附答案)

高三数学一轮复习 三角函数测试卷(附答案)

高三数学一轮复习 三角函数测试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A={|,}2n n Z παα=∈2{|2,}3n n Z ααππ=±∈,B={2|,}3n n Z πββ=∈1{|,}2n n Z ββππ=+∈,则A 、B 之间关系为( )A .AB ⊂B .B A ⊂C .B AD .A B2.函数)42sin(log 21π+=x y 的单调减区间为( )A .(,]()4k k k Z πππ-∈B .(,]()88k k k Z ππππ-+∈C .3(,]()88k k k Z ππππ-+∈ D .3(,]()88k k k Z ππππ++∈3.设角35,6απ=-则222sin()cos()cos()1sin sin()cos ()παπαπααπαπα+--+++--+的值等于 ( )A .33B .-33 C .3 D .-34.已知锐角α终边上一点的坐标为(),3cos 2,3sin 2-则α=( )A .3-πB .3C .3-2π D .2π-3 5.函数[]sin ,,y x x x ππ=+∈-的大致图象是( )6.下列函数中同时具有①最小正周期是π;②图象关于点(6π,0)对称这两个性质的是( )A. y =cos (2x +6π) B .y =sin (2x +6π) C.y =sin (2x +6π)D.y =tan (x +6π) 7.已知cos (02)y x x π=≤≤的图象和直线y=1围成一个封闭的平面图形,该图形的面积 是( )A .4πB .2πC .8D .48.与正弦曲线x y sin =关于直线34x π=对称的曲线是( )A .x y sin =B .x y cos =C .x y sin -=D .x y cos -=9. 若方程1cos +=ax x 恰有两个解,则实数a 的取值集合为 ( ) A. 2222,,33ππππ--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ B. 22,00,ππ-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ C. 22,ππ-⎡⎤⎢⎥⎣⎦D. {}22,ππ-10.已知函数)sin(ϕω+=x A y 在同一周期内,9π=x 时取得最大值21,π94=x 时取得最 小值-21,则该函数解析式为 ( )A .)63sin(2π-=x y B .)63sin(21π+=x yC )63sin(21π-=x yD .)63sin(21π-=x y 11..函数)0(tan )(>=w wx x f 的图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf 的值是 ( )A .0B .1C .-1D .4π 12.函数],[)0)(sin()(b a x M x f 在区间>+=ωϕω上为减函数,则函数],[)cos()(b a x M x g 在ϕω+=上( A )A .可以取得最大值MB .是减函数C .是增函数D .可以取得最小值-M二、填空题:本大题共4小题,把答案填在题中横线上.13.已知cos sin 2αα-=,这sin cos αα-的值为14.在区间[2,2]ππ-上满足sin sin 2xx =的x 的值有 个15.设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若(2001)1,f =则(2005)f = .16.设函数()sin()(0,)22f x x ππωϕωϕ=+>-<<,给出以下四个论断:①它的图象关于直线12x π=对称; ②它的图象关于点(,0)3π对称;③它的周期是π; ④在区间[,0)6π-上是增函数。

高三数学一轮复习《函数的应用》综合复习练习题(含答案)

高三数学一轮复习《函数的应用》综合复习练习题(含答案)

高三数学一轮复习《函数的应用》综合复习练习题(含答案)一、单选题 1.函数2ln y x x=-的零点所在的大致区间是( ) A .1(,1)eB .(1,2)C .(2,e)D .(e,)+∞2.已知函数()2sin 4f x x m π⎛⎫=++ ⎪⎝⎭在区间()0,π上有零点,则实数m 的取值范围为( )A .()2,2-B .(2,2⎤-⎦C .2,2⎡⎤-⎣⎦D .)2,2⎡-⎣3.已知函数()()32,0log ,0x x f x x k x +<⎧=⎨+≥⎩,则“(],3k ∈-∞”是“函数()()1F x f x =-有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.中国是全球最大的光伏制造和应用国,平准化度电成本(LCOE )也称度电成本,是一项用于分析各种发电技术成本的主要指标,其中光伏发电系统与储能设备的等年值系数CRF I 对计算度电成本具有重要影响.等年值系数CRF I 和设备寿命周期N 具有如下函数关系()()CRF 0.05111NNr I r +=+-,r 为折现率,寿命周期为10年的设备的等年值系数约为0.13,则对于寿命周期约为20年的光伏-储能微电网系统,其等年值系数约为( ) A .0.03B .0.05C .0.07D .0.085.已知函数()f x 的图像如图所示,则该函数的解析式为( )A .3()e ex x x f x -=+B .3e e ()x xf x x -+=C .2()e e x x x f x -=-D .3e e ()x xf x x --=6.已知函数2ln ,0,()=2,0.xx f x x x x x ⎧>⎪⎨⎪+≤⎩,若()()g x f x a =-有3个零点,则a 的取值范围为( )A .()1,0-B .11,e ⎛⎫- ⎪⎝⎭ C .10,e ⎡⎫⎪⎢⎣⎭ D .{}10,1e ⎛⎫⋃- ⎪⎝⎭7.我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y (单位:万元)与处理量x (单位:吨)([120,500])x ∈之间的函数关系可近似表示为[)[]3221805040,120,1443120080000,144,5002x x x x y x x x ⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩,当处理量x 等于多少吨时,每吨的平均处理成本最少( ) A .120B .200C .240D .4008.已知函数()232,1,42,1,x x x f x x x x ⎧--≤⎪=⎨+->⎪⎩则函数()()3y f f x =-的零点个数为( ) A .2B .3C .4D .59.若函数()2ln f x x x ax =-在区间()0,∞+上有两个极值点,则实数a 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .(],0-∞C .(]1,02⎧⎫-∞⋃⎨⎬⎩⎭D .10,2⎛⎫ ⎪⎝⎭10.已知定义在R 上的奇函数()f x 恒有()()11f x f x -=+,当[)0,1x ∈时,()2121x x f x -=+,已知21,1518k ⎛⎫∈-- ⎪⎝⎭,则函数()()13g x f x kx =--在()1,6-上的零点个数为( )A .4个B .5个C .3个或4个D .4个或5个11.已知函数()34,0,0x x x f x lnx x ⎧-≤=⎨>⎩,若函数()()g x f x x a =+-有3个零点,则实数a 的取值范围是( ) A .[)0,1B .[)0,2C .(],1-∞D .(],2-∞12.设函数()2sin()1(0,0)2f x x πωϕωϕ=+->的最小正周期为4π,且()f x 在[0,5]π内恰有3个零点,则ϕ的取值范围是( )A .50,312ππ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭B .0,,432πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦C .50,612ππ⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭D .0,,632πππ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦二、填空题13.已知函数ln ,0()e 1,0xx x f x x ⎧>=⎨+≤⎩,且函数()()g x f x a =-恰有三个不同的零点,则实数a 的取值范围是______. 14.以模型()e0kxy c c =>去拟合一组数据时,设ln z y =,将其变换后得到线性回归方程21z x =-,则c =______.15.函数()sin ln 23f x x x π=--的所有零点之和为__________. 16.设随机变量(),1N ξμ,函数()22f x x x ξ=+-没有零点的概率是0.5,则()01P ξ<≤=_____________附:若()2,N ξμσ,则()0.6826P μσξμσ-<≤+≈,(22)0.9544P μσξμσ-<≤+≈.三、解答题 17.已知函数22()1=-f x x . (1)求()f x 的零点;(2)判断()f x 的奇偶性,并说明理由; (3)证明()f x 在(0,)+∞上是减函数.18.已知函数4()12x f x a a =-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围.19.对于定义域为D 的函数()y f x =,若同时满足以下条件:①()y f x =在D 上单调递增或单调递减;②存在区间[],a b D ⊆,使()y f x =在[],a b 上的值域是[],a b ,那么我们把函数()()y f x x D =∈叫做闭函数.(1)判断函数()()110g x x x=->是不是闭函数?(直接写出结论,无需说明理由) (2)若函数()()2111h x x m x m=-++>0为闭函数,则当实数m 变化时,求b a -的最大值. (3)若函数()1e ln 112xx x x k x φ⎛⎫=-+-≤≤ ⎪⎝⎭为闭函数,求实数k 的取值范围.(其中e 是自然对数的底数,e 2.7≈)20.已知函数32()f x x ax bx c =+++在点()1,2P 处的切线斜率为4,且在=1x -处取得极值. (1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)若函数()()1g x f x m =+-有三个零点,求m 的取值范围.21.已知函数()()24f x x x a x =-+∈R .(1)若(1,3)x ∈时,不等式2log ()1f x ≤恒成立,求实数a 的取值范围;(2)若关于x 的方程(21)(2)|21|80x x f a +++-+=有三个不同的实数解,求实数a 的取值范围.22.已知函数()ln f x x x =-. (1)求证:()1f x ≤-; (2)若函数()()()xxh x af x a e =+∈R 无零点,求a 的取值范围.23.辆高速列车在某段路程中行驶的速率v (单位:km /h )与时间t (单位:h )的关系如图所示.(1)求梯形OABC 的面积,并说明所求面积的实际含义;(2)记梯形OABC 位于直线()04t a a =<≤的左侧的图形的面积为()g a ,求函数()y g a =的解析式,并画出其图象.24.已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(),1k k +()k N ∈上有零点,求k 的值;(3)记函数21()2()2g x x bx f x =---,设1212,()x x x x <是函数()g x 的两个极值点,若32b ≥,且12()()g x g x k-≥恒成立,求实数k 的取值范围。

2023年新高考数学一轮复习3-5 指数与指数函数(真题测试)含详解

2023年新高考数学一轮复习3-5  指数与指数函数(真题测试)含详解

专题3.5 指数与指数函数(真题测试)一、单选题1.(2007·山东·高考真题(理))已知集合{}1,1M =-,11|24,Z 2x N x x +⎧⎫=<<∈⎨⎬⎩⎭,则MN =A .{}1,1-B .{}1-C .{}0D .{}1,0-2.(2022·北京·高考真题)己知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+=D .1()()3f x f x --=3.(2012·四川·高考真题(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .4.(2014·江西·高考真题(文))已知函数f (x )=2,0,2,0x xa x x -⎧⋅≥⎨<⎩(a ∈R ),若((1))1f f -=,则a =( ) A .14B .12C .1D .25.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .6.(2013·全国·高考真题(文))若存在正数x 使2x (x -a )<1成立,则a 的取值范围是 A .(-∞,+∞)B .(-2, +∞)C .(0, +∞)D .(-1,+∞)7.(2015·山东·高考真题(文))设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是 A .a b c <<B .a cb << C .b ac <<D .b c a <<8.(2014·陕西·高考真题(文))下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()3f x x =B .()3xf x =C .()23f x x = D .()12xf x ⎛⎫= ⎪⎝⎭二、多选题9.(2021·江苏·南京市中华中学高三期中)已知a b >,0ab ≠,则( ) A .a b >B .1133a b -->C .33a b >D .11a b< 10.(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .11.(2022·山东潍坊·高三期末)已知函数x x x xe ef xe e,则下列结论中正确的是( )A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在定义域上是减函数D .()f x 无最小值,无最大值12.(2022·全国·高三专题练习)已知函数2,0(),2,0x xa x f x a R a x -⎧-+<=∈⎨->⎩,下列结论正确的是( ) A .()f x 为奇函数B .若()f x 在定义域上是增函数,则1a ≤C .若()f x 的值域为R ,则1a <D .当1a ≤时,若()(34)0f x f x ++>,则(1,0)(0,)x ∈-+∞ 三、填空题13.(2022·全国·高三专题练习)函数()f x =的定义域为______.14.(2012·山东·高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =______.15.(2015·山东·高考真题(理))已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=_____________.16.(2022·浙江·乐清市知临中学模拟预测)设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.四、解答题17.(2021·新疆·伊宁市第一中学高三期中(理))若(1)()42(1)2x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,求实数a 的取值范围.18.(2021·福建龙岩·高三期中)已知()2221x m f x -=++是奇函数. (1)求m 的值;(2)求()f x 的值域.19.(2021·福建·永安市第三中学高中校高三期中)已知指数函数()(0xf x a a =>且1)a ≠的图象过点129⎛⎫ ⎪⎝⎭,.(1)求函数()xf x a =的解析式;(2)已知()()1f x f >,求x 的取值范围;20.(2021·安徽省六安中学高三阶段练习(文))已知函数()()33xf x k a b ⋅=++-(0a >,且1a ≠)是指数函数.(1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-.21.(2021·重庆市涪陵高级中学校高三阶段练习)设()e e x x f x -=-()R x ∈.(1)判断并证明函数()y f x =的奇偶性;(2)解不等式()()22f x f x -≤.22.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.专题3.5 指数与指数函数(真题测试)一、单选题1.(2007·山东·高考真题(理))已知集合{}1,1M =-,11|24,Z 2x N x x +⎧⎫=<<∈⎨⎬⎩⎭,则MN =A .{}1,1-B .{}1-C .{}0D .{}1,0-【答案】B 【解析】 【分析】利用指数函数的单调性化简集合N ,然后利用交集的定义运算即得. 【详解】函数2x y =是增函数,则不等式11242x +<<,即112222x -+<< ∴112,x -<+<即21x -<<,所以{}{}|21,Z 1,0N x x x =-<<∈=-,又{}1,1M =-, ∴{}1.M N ⋂=- 故选:B.2.(2022·北京·高考真题)己知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x B .()()0f x f x --= C .()()1f x f x -+= D .1()()3f x f x --=【答案】C 【解析】 【分析】直接代入计算,注意通分不要计算错误. 【详解】()()1121112121212x x x x xf x f x --+=+=+=++++,故A 错误,C 正确;()()11212121121212122121x x x x x x x xf x f x ----=-=-==-++++++,不是常数,故BD 错误; 故选:C .3.(2012·四川·高考真题(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A . B .C .D .【答案】C 【解析】 【分析】对a 进行分类讨论,结合指数函数的单调性以及函数图像平移变换,即可得出答案. 【详解】①当1a >时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于1a >,则A 错误; 又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故B 错误;②当01a <<时,函数(0,1)x y a a a a =->≠可以看做函数x y a =的图象向下平移a 个单位,由于01a <<,则D 错误;又1x =时,0y a a =-=,则函数(0,1)x y a a a a =->≠过点(1,0),故C 正确; 故选:C4.(2014·江西·高考真题(文))已知函数f (x )=2,0,2,0x xa x x -⎧⋅≥⎨<⎩(a ∈R ),若((1))1f f -=,则a =( ) A .14B .12C .1D .2【答案】A 【解析】 【分析】先求出(1)f -的值,再求((1))f f -的值,然后列方程可求得答案【详解】解:由题意得(1)(1)22f ---==,所以2((1))(2)241f f f a a -==⋅==,解得a =14.故选:A5.(2018·全国·高考真题(文))函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6.(2013·全国·高考真题(文))若存在正数x 使2x (x -a )<1成立,则a 的取值范围是 A .(-∞,+∞) B .(-2, +∞)C .(0, +∞)D .(-1,+∞)【答案】D 【解析】由题意知,存在正数x ,使12xa x >-,所以,而函数12xy x =-在(0,)+∞上是增函数,所以(0)1y y >=-,所以1a >-,故选D.7.(2015·山东·高考真题(文))设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是 A .a b c << B . a c b << C .b a c << D .b c a <<【答案】C 【解析】 【详解】由0.6x y =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C . 8.(2014·陕西·高考真题(文))下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()3f x x =B .()3xf x =C .()23f x x = D .()12xf x ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【详解】试题分析:A 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以A 错误;B 选项:由()3x y f x y ++=,()()333x y x y f x f y +=⋅=,得()()()f x y f x f y +=;又函数()3xf x =是定义在R 上增函数,所以B 正确;C 选项:由()()23f x y x y +=+,()()f x f y 2233x y =⋅23()xy =,得()()()f x y f x f y +≠,所以C 错误;D 选项:函数()12xf x ⎛⎫= ⎪⎝⎭是定义在R 上减函数,所以D 错误;故选B.二、多选题9.(2021·江苏·南京市中华中学高三期中)已知a b >,0ab ≠,则( ) A .a b >B .1133a b -->C .33a b >D .11a b< 【答案】BC 【解析】对A ,D 可取反例;对B ,C 可利用函数的单调性判断; 【详解】对A ,取1,2a b ==-,则||||a b >不成立,故A 错误; 对B ,11a b a b >⇒->-,∴1133a b -->,故B 成立;对C ,33a b a b >⇒>,故C 成立; 对D ,取1,1a b ==-,11a b<不成立; 故选:BC10.(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .【答案】AC 【解析】【分析】依题意可得a 、b 两个数一个大于1,一个大于0且小于1,再分类讨论,结合指数函数的性质判断即可; 【详解】解:令()()()0f x x a x b =--=,解得1x a =、2x b =,根据二次函数图形可知,a 、b 两个数一个大于1,一个大于0且小于1,①当1a >,01b <<时,则()x g x a b =-在定义域上单调递增,且()001g a b b =-=-,即()001g <<,所以满足条件的函数图形为C ;②当1b >,01a <<时,则()x g x a b =-在定义域上单调递减,且()0010g a b b =-=-<,所以满足条件的函数图形为A ; 故选:AC11.(2022·山东潍坊·高三期末)已知函数x x x xe ef x e e,则下列结论中正确的是( )A .()f x 的定义域为RB .()f x 是奇函数C .()f x 在定义域上是减函数D .()f x 无最小值,无最大值 【答案】BD 【解析】 【分析】求解0x x e e --≠,可判断A ;利用函数奇偶性的定义可判断B ;比较(1),(1)f f -可判断C ;分离常数得到2211x f x e ,分析单调性及函数值域可判断D【详解】选项A ,0x x e e --≠,解得0x ≠,故()f x 的定义域为{|0}x x ≠,选项A 错误;选项B ,函数定义域关于原点对称,且()()x x x x e ef x f x e e --+-==--,故()f x 是奇函数,选项B 正确;选项C ,()121212121110,(1)011e e e e e ef f e e e e e e ----++++-==<==>----,故(1)(1)f f -<,即()f x 在定义域上不是减函数,选项C 不正确;选项D ,()22212111x x x x x x x e e e f x e e e e --++===+---,令20x t e =>,211y t =+-,由于2x t e =在R 上单调递增,211y t =+-在(0,1),(1,)+∞分别单调递减,故函数()f x 在(,0),(0,)-∞+∞分别单调递减,且x →-∞时,()1f x →-,0x -→时,()f x →-∞,0x +→时,()f x →+∞,x →+∞时,()1f x →,故函数()f x 的值域为(,1)(1,-∞-⋃+∞),无最小值,无最大值,选项D 正确故选:BD12.(2022·全国·高三专题练习)已知函数2,0(),2,0x xa x f x a R a x -⎧-+<=∈⎨->⎩,下列结论正确的是( )A .()f x 为奇函数B .若()f x 在定义域上是增函数,则1a ≤C .若()f x 的值域为R ,则1a <D .当1a ≤时,若()(34)0f x f x ++>,则(1,0)(0,)x ∈-+∞ 【答案】ABD 【解析】 【分析】分段函数奇偶性判断需要分段判断,分段函数的单调性需要列两段分别单调,衔接处单调即可. 【详解】当0x <时,0x ->,()2,()2(2)()x x x f x a f x a a f x ---=-+-=-=--+=-;当0x >时,0x -<,()2,()2()x x f x a f x a f x =--=-+=-.则函数()f x 为奇函数,故A 正确;若()f x 在定义域上是增函数,则0022a a --+≤-,即1a ≤,故B 正确;当0x <时,()2xf x a -=-+在区间(,0)-∞上单调递增,此时值域为(,1)a -∞-;当0x >时,()2x f x a =-在区间()0,∞+上单调递增,此时值域为(1,)a -+∞.要使得()f x 的值域为R ,则11a a ->-,即1a >,故C 错误;当1a ≤时,由于0022a a --+≤-,则函数()f x 在定义域上是增函数,由()(34)0f x f x ++>,得()(34)f x f x >--,则034034x x x x ≠⎧⎪--≠⎨⎪>--⎩解得(1,0)(0,)x ∈-+∞,故D 正确.故选:ABD. 三、填空题13.(2022·全国·高三专题练习)函数()f x =的定义域为______.【答案】[)()0,11,+∞【解析】【分析】结合分式型,二次根号型函数的定义即可求解. 【详解】由题知,021********x xx x x x x ⎧⎧≥-≥≥⎧⎪⎪⇒⇒⎨⎨⎨≠-≠-≠≠⎪⎪⎩⎩⎩且,所以()f x 的定义域为[)()0,11,+∞,故答案为:[)()0,11,+∞.14.(2012·山东·高考真题(文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =______.【答案】14【解析】 【详解】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x = 不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意15.(2015·山东·高考真题(理))已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=_____________. 【答案】32-【解析】 【详解】若1a > ,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+= ,此方程组无解; 若01a << ,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=- ,解得1{22a b ==- ,所以32a b +=-. 16.(2022·浙江·乐清市知临中学模拟预测)设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______. 【答案】[1,2]【解析】 【分析】由1x >,求得()f x 的范围,再求得||()2x a f x -=的单调性,讨论1a <,1a 时函数()f x 在1x 的最大值,即可得到所求范围. 【详解】解:因为()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,当1x >时()112f x x =-+函数单调递减且()12f x <,当1x ≤时()122x ax af x ---⎛⎫== ⎪⎝⎭,可得在x a >时函数单调递减,在x a <单调递增,若1a <,1x ,则()f x 在x a =处取得最大值,不符题意; 若1a ,1x ,则()f x 在1x =处取得最大值,且11122a -⎛⎫≥⎪⎝⎭,解得12a , 综上可得a 的范围是[]1,2. 故答案为:[]1,2 四、解答题17.(2021·新疆·伊宁市第一中学高三期中(理))若(1)()42(1)2x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,求实数a 的取值范围. 【答案】[4,8). 【解析】 【分析】根据分段函数的单调性的判定方法,列出不等式组,即可求解. 【详解】由题意,函数(1)()42(1)2xa x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则满足114024122a a a a⎧⎪>⎪⎪->⎨⎪⎪⎛⎫-⨯+≤ ⎪⎪⎝⎭⎩,解得48a ≤<, 所以实数a 的取值范围[4,8).18.(2021·福建龙岩·高三期中)已知()2221x m f x -=++是奇函数. (1)求m 的值; (2)求()f x 的值域. 【答案】(1)-2 (2)11-(,) 【解析】【分析】(1)因为()f x 为奇函数,且在0x =处有意义,所以()00f =,便可求出m 的值;(2)在(1)的前提下,对于复合函数分解成若干基本初等函数,然后逐个求其值域,从而求出()f x 的值域. (1)因为()f x 为奇函数,所以()00f =,即2022m +=,解得2m =-. 经检验:当2m =-时,()f x 为奇函数; (2)由(1)知()2121xf x -=-+,因为211x -+∈+∞(,), 所以20221x -∈+(,),于是()11f x ∈-(,),因此()f x 的值域为11-(,). 19.(2021·福建·永安市第三中学高中校高三期中)已知指数函数()(0xf x a a =>且1)a ≠的图象过点129⎛⎫ ⎪⎝⎭,.(1)求函数()xf x a =的解析式;(2)已知()()1f x f >,求x 的取值范围;【答案】(1)()13xf x ⎛⎫= ⎪⎝⎭(2)()1,1- 【解析】 【分析】(1)将点129⎛⎫ ⎪⎝⎭,代入()(0xf x a a =>且1)a ≠,解之即可得出答案;(2)根据指数函数的单调性即可得出答案. (1)解:将点129⎛⎫ ⎪⎝⎭,代入()(0xf x a a =>且1)a ≠,得:219a =,解得13a =,所以()13xf x ⎛⎫= ⎪⎝⎭;(2)因为1013<<,所以函数()13xf x ⎛⎫= ⎪⎝⎭为减函数,由()()1f x f >,得1x <,解得11x -<<, 所以()()1f x f >的解为()1,1-.20.(2021·安徽省六安中学高三阶段练习(文))已知函数()()33xf x k a b ⋅=++-(0a >,且1a ≠)是指数函数.(1)求k ,b 的值;(2)求解不等式()()2743f x f x ->-. 【答案】(1)2k =-,3b = (2)答案见解析 【解析】 【分析】(1)根据指数函数的定义列出方程,即可得解;(2)分1a >和01a <<两种情况讨论,结合指数函数的单调性即可得解. (1)解:因为()()33x f x k a b =++-(0a >,且1a ≠)是指数函数, 所以31k +=,30b -=, 所以2k =-,3b =; (2)解:由(1)得()xf x a =(0a >,且1a ≠),①当1a >时,()xf x a =在R 上单调递增,则由()()2743f x f x ->-, 可得2743x x ->-,解得2x <-;②当01a <<时,()xf x a =在R 上单调递减,则由()()2743f x f x ->-, 可得2743x x -<-,解得2x >-,综上可知,当1a >时,原不等式的解集为(),2-∞-; 当01a <<时,原不等式的解集为()2,-+∞.21.(2021·重庆市涪陵高级中学校高三阶段练习)设()e e x xf x -=-()R x ∈.(1)判断并证明函数()y f x =的奇偶性;(2)解不等式()()22f x f x -≤.【答案】(1)奇函数,证明见解析; (2)[]1,2- 【解析】 【分析】(1)利用函数奇偶性的定义判断证明即可;(2)根据指数函数单调性以及函数单调性的性质判断()y f x =的单调性,再由单调性去掉f 转化为解一元二次不等式即可求解. (1)()e e x x f x -=-是R 上的奇函数,证明如下:()e e x x f x -=-的定义域为R 关于原点对称,()()()e e e e x x x x f x f x ---=-=--=-,所以()e e x xf x -=-是R 上的奇函数.(2)因为e x y =为R 上的增函数,1ee xxy -==为R 上的减函数, 所以()e e x xf x -=-为R 上的增函数,若()()22f x f x -≤,则22x x -≤即220x x --≤,可得()()210x x -+≤,解得:12x -≤≤,所以不等式()()22f x f x -≤的解集为:[]1,2-.22.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围. 【答案】(1)证明见解析(2)[]4,4- 【解析】 【分析】(1)利用单调性的定义,取值、作差、整理、定号、得结论,即可得证.(2)令33x x t -=-,根据x 的范围,可得t 的范围,原式等价为()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,只需()min 4h t ≥-即可,分别讨论823m -≤-、88323m -<-<和823m -≥三种情况,根据二次函数的性质,计算求值,分析即可得答案. (1)由已知可得()f x 的定义域为R , 任取12,x x ∈R ,且12x x <,则()()12f x f x -()()1122121121333331313x x x x x x x x x ---+⎛⎫=---=-+ ⎪⎝⎭,因为130x >,121103x x ++>,21130x x --<,所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数. (2)()()()()223333x x x xf x mf x m --⎡⎤+=-+-⎣⎦,令33x x t -=-,则当[]1,1x ∈-时,88,33t ⎡⎤∈-⎢⎥⎣⎦,所以()()22f x mf x t mt ⎡⎤+=+⎣⎦.令()2h t t mt =+,88,33t ⎡⎤∈-⎢⎥⎣⎦,则只需()min 4h t ≥-. 当823m -≤-,即163m ≥时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递增, 所以()min 86484393h t h m ⎛⎫=-=-≥- ⎪⎝⎭,解得256m ≤,与163m ≥矛盾,舍去;当88323m -<-<,即161633m -<<时,()h t 在8,32m ⎡⎤--⎢⎥⎣⎦上单调递减,在8,23m ⎡⎤-⎢⎥⎣⎦上单调递增,所以()2min424m m h t h ⎛⎫=-=-≥- ⎪⎝⎭,解得44m -≤≤;当823m -≥即163m ≤-时,()h t 在88,33⎡⎤-⎢⎥⎣⎦上单调递减, 所以()min 86484393h t h m ⎛⎫==+≥- ⎪⎝⎭,解得256m ≥-,与163m ≤-矛盾,舍去. 综上,实数m 的取值范围是[]4,4-.。

高三数学第一轮复习函数测试题

高三数学第一轮复习函数测试题

高三数学第一轮复习《函数》测试题一、选择题(共50分):1.已知函数y f x ()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点A.(2,-2)B.(2,2) C.(-4,2)D. (4,-2)2.如果奇函数f x 在区间,0a b b a 上是增函数,且最小值为m ,那么f x 在区间,b a 上是A.增函数且最小值为mB.增函数且最大值为mC.减函数且最小值为m D.减函数且最大值为m3. 与函数lg 210.1x y的图象相同的函数解析式是A.121()2yx x B.121yx C.11()212yxx D .121yx 4.对一切实数x ,不等式1||2x a x≥0恒成立,则实数a 的取值范围是A .(,-2]B .[-2,2]C .[-2,)D .[0,)5.已知函数)12(x f y 是定义在R 上的奇函数,函数)(x g y 的图象与函数)(x f y 的图象关于直线x y对称,则)()(x g x g 的值为A .2B .0C .1D .不能确定6.把函数)(x f y 的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为xy 2的图像,则)(x f y的函数表达式为A. 22x yB.22x yC.22x yD.)2(log 2xy7.当01ab时,下列不等式中正确的是A.bba a )1()1(1 B.(1)(1)aba b C.2)1()1(bba a D.(1)(1)aba b 8.当2,0x 时,函数3)1(4)(2xa ax x f 在2x 时取得最大值,则a 的取值范围是A.1[,)2B.,0 C.,1 D.2[,)39.已知(31)4,1()log ,1a a x a x f x x x 是(,)上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.1[,1)7 D.11[,)7310.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。

2022届高三高考数学一轮复习第三章: 函数专练—抽象函数【含答案】

2022届高三高考数学一轮复习第三章: 函数专练—抽象函数【含答案】

2022届高三高考数学一轮复习第三章: 函数专练—抽象函数【含答案】一、单选题1.已知函数()f x 的定义域为实数集R ,对x R ∀∈,有(2)()f x f x +=-成立,且f (2)5=,则(100)(f = ) A .10B .5C .0D .5-2.已知()f x ,()g x 是定义在R 上的偶函数和奇函数,若2()()2x f x g x --=,则(1)(g -= )A .5B .5-C .3D .3-3.若定义在R 上的函数()f x 在(-∞,1]-上单调递减.若()(2)f x f x =--,且(4)0f -=,则不等式(3)0f x x-的解集为( ) A .[4-,1][3-,)+∞ B .[4-,1](0-⋃,1] C .[4-,0][2,)+∞D .[1-,0)[5,)+∞4.已知函数()f x 对任意x R ∈都有(6)()2f x f x f ++=(3),且(1)y f x =-的图象关于点(1,0)对称,则(2016)(f = )A .0B .1-C .1D .65.已知函数()f x 的定义域为R ,且满足()()2()()f x y f x y f x f y ++-=,且12()2f =,(0)0f ≠,则(2021)(f = )A .2021B .1C .0D .1-6.已知函数()f x ,对任意实数m 、n 都有()()()35f m n f m f n +=+-.已知f (1)31=,则f (1)f +(2)f +(3)()(*)f n n N +⋯+∈的最大值等于( ) A .133B .135C .136D .1387.定义在(1,1)-上的函数()f x 满足()()()2f x g x g x =--+,对任意的1x ,2(1,1)x ∈-,12x x ≠,恒有1212[()()]()0f x f x x x -->,则关于x 的不等式(31)()4f x f x ++>的解集为( ) A .1(,)4-+∞B .1(,0)4-C .1(,)4-∞-D .2(,0)3-8.已知(1)y f x =+是定义在R 上的奇函数,且(4)(2)f x f x +=-,当[1x ∈-,1)时,()2x f x =,则(2021)(2022)(f f += )A .1B .4C .8D .10二、多选题9.已知()f x ,()g x 都是定义在R 上的函数,且()f x 为奇函数,()g x 的图象关于直线1x =对称,则下列说法中正确的有( ) A .(y g f = ()1)x +为偶函数B .(y g = f ())x 为奇函数C .y f = (())g x 的图象关于直线1x =对称D .y f = ((1))g x + 为偶函数10.已知定义域为R 的函数()f x 对任意的实数x ,y 满足()()()()cos 222f x f y x y x y f π++-=⋅,且1(0)(1)0,()12f f f ===,并且当1(0,)2x ∈时,()0f x >,则下列选项中正确的是( )A .函数()f x 是奇函数B .函数()f x 在11(,)22-上单调递增C .函数()f x 是以2为周期的周期函数D .5()02f -=11.已知函数()f x ,(x ∈-∞,0)(0⋃,)+∞,对于任意的x ,(y ∈-∞,0)(0⋃,)+∞,()()()f xy f x f y =+,则( )A .()f x 的图象过点(1,0)和(1,0)-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集(1,)+∞12.已知()f x 是定义在R 上的奇函数,且(1)(1)f x f x +=-,当01x 时,()f x x =,关于函数()|()|(||)g x f x f x =+,下列说法正确的是( ) A .()g x 为偶函数 B .()g x 在(1,2)上单调递增 C .()g x 不是周期函数 D .()g x 的最大值为2三、填空题13.已知函数()f x 对于任意的实数x ,y 满足()()()f x y f x f y +=⋅,且()f x 恒大于0,若f (1)3=,则(1)f -= .14.已知定义在R 上的奇函数()y f x =满足(8)()0f x f x ++=,且f (5)5=,则(2019)(2024)f f += .15.已知()f x 是定义在(1,)+∞上的减函数,若对于任意的x ,(1,)y ∈+∞,均有()()(2)f x f y f x y +=+,且f (2)1=,则不等式()(1)20f x f x +--的解集为 .16.已知函数()f x 满足:1(1)4f =,4()()()()(f x f y f x y f x y x =++-,)y R ∈,则(2022)f = .四、解答题17.若函数()y f x =对任意x ,y R ∈,恒有()()()f x y f x f y +=+. (1)指出()y f x =的奇偶性,并给予证明; (2)如果0x >时,()0f x <,判断()f x 的单调性;(3)在(2)的条件下,若对任意实数x ,恒有22()(2)0f kx f x x +-+->成立,求k 的取值范围.18.定义在R 上的函数()f x ,对任意1x 、2x R ∈,满足下列条件: ①1212()()()2f x x f x f x +=+-;②f (2)4=.(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数.19.定义在(0,)+∞上的函数()f x 对于任意的x ,*y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且f (e )1=-. (1)求f (1)的值;(2)判断函数在(0,)+∞上的单调性,并证明; (3)求函数()f x 在21[,]e e上的最大值与最小值.20.已知函数()f x 对任意实数x ,y 恒有()()()f x y f x f y +=+,且(2)3f -=-.当0x >时,()0f x >.(1)证明:()f x 是R 上的增函数;(2)求关于x 的不等式22()()(3)3f ax f ax f x x -<-+的解集.答案1.解:根据题意,对x R ∀∈,有(2)()f x f x +=-成立,则(4)(2)()f x f x f x +=-+=, 则()f x 是周期为4的周期函数, 则(100)(496)f f f =+=(4), 又由f (4)f =-(2)5=-, 故选:D .2.解:根据题意,2()()2x f x g x --=, 则f (1)g -(1)2122-==,①21(1)(1)28f g +---==,又由()f x ,()g x 是定义在R 上的偶函数和奇函数,则(1)(1)f g f ---=(1)g +(1)8=,②联立①②可得:g (1)3=,()g x 是定义在R 上的奇函数,则(1)g g -=-(1)3=-,故选:D .3.解:定义在R 上的函数()f x 在(-∞,1]-上单调递减. ()(2)1f x f x x =--⇒=-为对称轴,故f (2)(4)0f =-=,∴函数()f x 的大致图像为:当32x -或34x --,即5x 或1x -时,(3)0f x -,当432x -<-<,即15x -<<时,(3)0f x -<, ∴不等式(3)0f x x-的解集为:[1-,0)[5,)+∞, 故选:D .4.解:因为函数(1)y f x =-的图象关于点(1,0)对称, 所以函数()y f x =的图象关于点(0,0)对称, 即函数()y f x =是奇函数,令3x =-得,(36)(3)2f f f -++-=(3), 即f (3)f -(3)2f =(3),解得f (3)0=. 所以(6)()2f x f x f ++=(3)0=,即(6)()f x f x +=-, 所以(12)()f x f x +=,即函数的周期是12. 所以(2016)(12168)(0)0f f f =⨯==. 故选:A .5.解:令0x y ==; 则(0)(0)2(0)(0)f f f f +=, 故2(0)((0)1)0f f -=; 故(0)1f =;((0)0f =舍) 令12x y ==; 则f (1)11(0)2()()22f f f +=,故f (1)0=;(1)(1)2()f x f x f x f ∴++-=(1)0=,即(1)(1)(2)()(4)()f x f x f x f x f x f x +=--⇒+=-⇒+=, 故()f x 的周期为4,即()f x 是周期函数. (2021)f f ∴=(1)0=,故选:C .6.解:因为对任意实数m 、n 都有()()()35f m n f m f n +=+-,f (1)31=, 则(1)()f n f n f +=+(1)35()4f n -=-, 所以(1)()4f n f n +-=-,故{()}f n 是以31为首项,以4-为公差的等差数列,所以f (1)f +(2)f +(3)2(1)()31(4)2332n n f n n n n -+⋯+=+⨯-=-+, 对称轴为334n =,因为*n N ∈,所以当8n =时,f (1)f +(2)f +(3)()f n +⋯+取得最大值为136. 故选:C .7.解:对任意的1x ,2(1,1)x ∈-,12x x ≠,恒有1212[()()]()0f x f x x x -->,所以()f x 是增函数,设()()2()()h x f x g x g x =-=--,则()h x 为奇函数,且在(1,1)-上为增函数, 所以不等式(31)()4f x f x ++>,等价于(31)2()20f x f x +-+->, 即(31)()0h x h x ++>,亦即(31)()()h x h x h x +>-=-, 可得13111131x x x x-<+<⎧⎪-<<⎨⎪+>-⎩,解得104x -<<,故选:B .8.解:根据题意,(1)y f x =+是定义在R 上的奇函数,则()f x 的图象关于点(1,0)对称, 则有(2)()f x f x -=-,又由(4)(2)f x f x +=-,则(4)()f x f x +=-,则有(8)(4)()f x f x f x +=-+=,即函数()f x 是周期为8的周期函数, (2021)(52528)f f f =+⨯=(5)f =-(1), (2022)(62528)f f f =+⨯=(6)f =-(2)(0)f =,()f x 的图象关于点(1,0)对称,则f (1)0=,则(2021)0f =,当[1x ∈-,1)时,()2x f x =,则(0)1f =,则(2022)1f =, 则(2021)(2022)f f f +=(1)(0)1f +=, 故选:A .9.解:根据题意,()f x 为奇函数,则()()f x f x -=-,()g x 图象关于直线1x =对称,则(1)(1)g x g x -=+,据此分析:对于A ,对于(()1)y g f x =+,(()1)(1())(()1)g f x g f x g f x -+=-=+,则函数(()1)y g f x =+为偶函数,A 正确;对于B ,对于(())y g f x =,有(())(())(())g f x g f x g f x -=-≠-,不是奇函数,B 错误;对于C ,()g x 图象关于直线1x =对称,即(1)(1)g x g x +=-,则有((1))((1))f g x f g x +=-. 则函数(())y f g x =图象关于直线1x =对称,C 正确;对于D ,()g x 图象关于直线1x =对称,则(1)(1)g x g x -=+,对于((1))y f g x =+,有((1))((1))f g x f g x -+=+,则((1))f g x +为偶函数,D 正确;故选:ACD .10.解:令y x =-,可得()()(0)cos 02f x f x f x π+-==,()()f x f x ∴-=-,函数()f x 是奇函数,故A 正确;设121122x x >>>-,则当1(0,)2x ∈时,()0f x >,∴12()()(2f x f x f +-=12)cos2x x-12()02x x π+>, 12()()f x f x ∴>,∴函数()f x 在11(,)22-上单调递增,故B 正确;(2)()(2)()22f x f x f x f x f +-++-==(1)cos(2)02π⨯=,可得(2)()f x f x +=,∴函数()f x 是以2为周期的周期函数,故C 正确;④511()()()1222f f f -=-=-=-,故D 不正确.故选:ABC .11.解:对于A ,对任意的x ,(y ∈-∞,0)(0⋃,)+∞,()()()f xy f x f y =+, 令1x y ==,则(11)f f ⨯=(1)f +(1),解得f (1)0=, 再令1x y ==-,则[(1)(1)](1)(1)f f f -⨯-=-+-,解得(1)0f -=, 所以()f x 的图象过点(1,0)和(1,0)-,故A 正确;对于B ,令1y =-,则()()(1)f x f x f -=+-,所以()()f x f x -=, 又函数()f x 的定义域关于原点对称,所以函数()f x 为偶函数,故B 错误; 对于C ,设1x ,2(0,)x ∈+∞,且12x x >,则121x x >, 若当1x >时,有()0f x >,所以12()0x f x >, 所以111122222222()()()()()()()()0x x xf x f x f x f x f x f f x f x x x -=⋅-=+-=>, 所以12()()f x f x >,所以()f x 在(0,)+∞上的是增函数,由函数()f x 为偶函数,可得()f x 在(,0)-∞上是减函数,所以当10x -<<时,()(1)0f x f <-=,故C 正确; 对于D ,设1x ,2(0,)x ∈+∞,且12x x <,则1201x x <<, 当01x <<时,有()0f x <,则12()0x f x <, 所以111122222222()()()()()()()()0x x xf x f x f x f x f x f f x f x x x -=⋅-=+-=<, 所以12()()f x f x <,所以()f x 在(0,)+∞上的是增函数,由函数()f x 为偶函数,可得()f x 在(,0)-∞上是减函数, 因为当01x <<时,()0f x <,可得当10x -<<时,()0f x <,当1x <-时,()(1)0f x f >-=,当1x >时,()f x f >(1)0=,故D 错误. 故选:AC .12.解:根据题意,依次分析选项: 对于A ,函数()g x 的定义域为R ,且()|()|(||)|()|(||)|()|(||)()g x f x f x f x f x f x f x g x -=-+-=-+=+=,所以()g x 为偶函数,故A 正确;对于B ,因为(1)(1)f x f x +=-,所以()f x 的图象关于直线1x =对称, 又()f x 是奇函数,当01x 时,()f x x =,则()f x 的部分图象如图所示,在区间(1,2)上,()2f x x =-,在区间(1,2)上,()|()|(||)2(2)42g x f x f x x x =+=-=-,()g x 在区间(1,2)上为减函数,故B 错误; 对于C ,()f x 为奇函数,且()f x 的图象关于直线1x =对称,∴函数()f x 的最小正周期为4,∴当0x 时,2(),[4,24]()()0,(24,44]f x x k k g x k N x k k ∈+⎧=∈⎨∈++⎩,故()g x 不是周期函数,选项C 正确; 对于D ,当0x 时,易知()g x 的最大值为2,由偶函数的对称性可知,当0x <时,()g x 的最大值也为2,()g x ∴在整个定义域上的最大值为2,故选项D 正确.故选:ACD .13.解:令0x y ==,则2(0)(0)f f =,解得(0)1f =或(0)0f =, 因为()f x 恒大于0,所以(0)1f =,令1x =,1y =-,则(0)f f =(1)(1)f ⋅-, 因为f (1)3=,所以1(1)3f -=.故答案为:13.14.解:根据题意,函数()y f x =满足(8)()0f x f x ++=,即(8)()f x f x +=-, 则有(16)(8)()f x f x f x +=-+=, 即函数()f x 是周期为16的周期函数, 则(2024)(812616)f f f =+⨯=(8)(0)f =-, (2019)(312616)f f f =+⨯=(3),又由()f x 为R 上的奇函数,则(0)0f =,f (3)(3)f f =--=(5)5=, 则(2019)(2024)(0)f f f f +=-+(3)5=, 故答案为:5.15.解:根据()()(2)x y f x f y f ++=,f (2)1=,可得211f =+=(2)f +(2)4(2)f =, 由()(1)20f x f x +--,得()(1)2f x f x +-,可化为214(2)(2)x f f -, 由()f x 是定义在(1,)+∞上的减函数,得214212211121x x x x --⎧⎪>⎪⎨->⎪⎪>⎩,解得522x <,所以不等式()(1)20f x f x +--的解集为5(2,]2.故答案为:5(2,]2.16.解:因为函数()f x 满足:1(1)4f =,4()()()()(f x f y f x y f x y x =++-,)y R ∈, 所以取1x =,0y =,得4f (1)(0)f f =(1)f +(1)12=, 所以1(0)2f =, 取1y =,有4()f x f (1)(1)(1)f x f x =++-,即()(1)(1)f x f x f x =++-,同理:(1)(2)()f x f x f x +=++, 所以(2)(1)f x f x +=--, 所以()(3)(6)f x f x f x =--=- 所以函数是周期函数,周期6T =, 故1(2022)(0)2f f ==.故答案为:12. 17.解:(1)()f x 是奇函数.令0x y ==,可知(00)(0)(0)f f f +=+,解得(0)0f =, 令y x =-,则()()()(0)0f x x f x f x f -=+-==, 所以()()f x f x -=-, 所以函数()f x 是奇函数. (2)()f x 在R 上是减函数.()f x 对任意x ,y R ∈,都有()()()f x y f x f y +=+,当0x >时,()0f x <.令12x x >,则120x x ->,且1212()()()0f x x f x f x -=+-<, 由(1)知,12()()0f x f x -<,所以12()()f x f x <. 所以()f x 在R 上是减函数.(2)因为对任意实数x ,恒有22()(2)0f kx f x x +-+->成立, 所以222()(2)(2)f kx f x x f x x >--+-=-+, 所以222kx x x <-+,即2(1)20k x x -+-<, 当10k -=,即1k =时,20x -<不恒成立, 当10k -≠,即1k ≠时,则1018(1)0k k -<⎧⎨=+-<⎩,解得78k <, 即实数k 的取值范围是7(,)8-∞.18.(1)解:假设存在一次函数()f x ,设()(0)f x kx b k =+≠,则1212()()f x x k x x b +=++,1212()()2()22f x f x k x x b +-=++-,所有22b b =-,2b =,f (2)24k b =+=,1k =,故满足条件的一次函数为:()2f x x =+;(2)证明:定义在R 上的函数()f x 对任意的1x 、2x R ∈,都有1212()()()2f x x f x f x +=+-成立,令120x x ==,则(00)(0)(0)2f f f +=+-,(0)2f ∴=,令1x x =,2x x =-,则()()()2f x x f x f x -=+--,[()2][()2]0f x f x ∴-+--=,即()()0g x g x +-=,于是()()g x g x -=-,()()2g x f x ∴=-为奇函数.19.解:(1)因为()()()f x f y f xy +=,令1x y ==,则有f (1)f +(1)f =(1),故f (1)0=;(2)()f x 在(0,)+∞上单调递减,证明如下:令1xy x =,2x x =,1y >,有xy x >,()0f y <,可得21()()()f x f y f x +=,则12()()()0f x f x f y -=<,故对任意1x ,2(0,)x ∈+∞,若12x x >,则12()()f x f x <,所以()f x 在(0,)+∞上单调递减;(3)因为()()()f x f y f xy +=,令x y e ==,则有2()f e f =(e )f +(e )2=-,令x e =,1y e =,则有f (1)f =(e )1()0f e +=,所以1()1f e=, 因为函数()f x 在(0,)+∞上单调递减, 所以21()()1,()()2max min f x f f x f e e====-. 20.(1)证明:因为()()()f x y f x f y +=+,令0x y ==,则有(0)2(0)f f =,所以(0)0f =,令y x =-,则有(0)()()f f x f x =+-,所以()()f x f x -=-,故函数()f x 为奇函数,任取12x x R <∈,则210x x ->,所以2121()()()0f x f x f x x +-=->,因为()f x 是奇函数,所以21()()0f x f x ->,故()f x 是R 上的增函数;(2)解:不等式22()()(3)3f ax f ax f x x -<-+变形为22()()(3)(2)f ax f ax f x x f -<---, 因为()f x 为奇函数,故()()f ax f ax -=-,(2)f f --=(2),所以上式可变形为22()(32)f ax ax f x x -<-+,因为()f x 是R 上的增函数,所以2232ax ax x x -<-+,即(1)[(1)2]0x a x --+<,当10a -=,即1a =时,解得(,1)x ∈-∞;当10a -≠,即1a ≠时,方程(1)[(1)2]0x a x --+=的两个根为1221,1x x a ==--, 若211a =--,即1a =-时,解得x R ∈; 若10a ->,即1a >时,解得2(,1)1x a ∈--; 若10a -<,即1a <时,①当211a >--,即11a -<<时,解得2(,)(1,)1x a ∈-∞-+∞-; ②当211a <--,即1a <-时,解得2(,1)(,)1x a ∈-∞-+∞-。

高三数学一轮复习《函数的概念与性质》练习题 (含答案)

高三数学一轮复习《函数的概念与性质》练习题 (含答案)

高三数学一轮复习《函数的概念与性质》练习题 (含答案)函数的概念及其表示一、单选题1.函数11y x =-的定义域是( )A. (0,2]B. (,1)(1,2]-∞⋃C. (1,)+∞D. [1,2]2.设函数21,1()2,1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则[(3)]f f =( )A .15 B.3 C. 23 D. 1393.已知函数f (x +1)=3x +2,则f (x )的解析式( )A.3x -1B. 3x +1C. 3x +2D. 3x +44.下列各对函数表示同一函数的是( )(1) ()f x x =与2()g x =;(2) ()2f x x =-与()g x =(3) 2()(0)f x x x π=≥与2()(0)g r r r π=≥; (4) ()f x x =与,0(),0x x g x x x ≥⎧=⎨-<⎩.A.(1)(2)(4)B.(2)(4)C.(3)(4)D.(1)(2)(3)(4)5.已知函数y = f (x )的定义域是[-2,3], 则y =f (2x -1)的定义域是() A. 5[0,]2 B. [1,4]- C. 1[,2]2- D. [5,5]-6.已知函数221,0()3,0x x f x x x +≥⎧=⎨<⎩,且0()3f x =,则实数0x 的值为( )A.-1B.1C.-1或1D.-1或-3二、多选题7.关于函数y =f (x ),以下说法正确的是( )A.y 是关于x 的函数B.对于不同的x ,y 的值也不同C.f (a )表示当x =a 时函数f (x )的值,是一个常量D.f (x )一定可以用一个具体的式子表示出来8.若函数2(),(,0)(0,)1x f x x x =∈-∞⋃+∞+,则下列等式成立的是( ) A. 1()()f x f x = B. 1()()f x f x -= C.11()()f f x x = D. ()()f x f x -=- 三、填空题9.已知函数()1f x ax =+,且(2)1f =-,则(2)f -=_______.10.若函数2(21)2f x x x +=-,则(3)f =_______,()f x =___________.11.已知函数22,2()21,2x ax x f x x x ⎧+≥=⎨+<⎩,若[(1)]0f f >,则实数a 的取值范围是___________.函数的基本性质一、单选题1. 下列函数中,值域为(,0)-∞的是( )A. 2y x =-B. 131()3y x x =-<C. 1y x =D. y =2.下列函数是偶函数,且在(,0]-∞上是增函数的是( )A .1y x =- B. 2()f x x = C. 3y x = D. ,0,0x x y x x -≥⎧=⎨<⎩3.已知()f x 是实数集上的偶函数,且在区间[0,)+∞上是增函数,则(2)f -,()f π-,(3)f 的大小关系是( )A. ()(2)(3)f f f π->->B. (3)()(2)f f f π>->-C. (2)(3)()f f f π->>-D. ()(3)(2)f f f π->>-4.函数()y f x =在R 上是增函数,且(2)(9)f m f m >-+,则实数m 的取值范围是( )A. (,3)-∞-B. (0,)+∞C. (3,)+∞D. (,3)(3,)-∞-⋃+∞5.函数()y f x =是以3为周期的偶函数,且当(0,1)x ∈时,()21f x x =+,则2021()2f =( ) A.2022 B.2 C.4 D.66.已知偶函数()f x 在区间[0,)+∞上是单调递增,则满足1(21)()3f x f -<的x 的取值范围是( ) A. 12(,)33 B. 12[,)33 C. 12(,)23 D. 12[,)23二、多选题7.如果函数()f x 在[a ,b ]上是减函数,对于任意的1212,[,]()x x a b x x ∈≠,那么下列结论正确的是( ) A. 1212()()0f x f x x x -<- B. 1212()[()()]0x x f x f x --< C. 12()()()()f a f x f x f b ≥>≥ D. 12()()f x f x <8.已知函数()f x 是定义在R 上的奇函数,下列说法正确的是( )A. (0)0f =B.若()f x 在[0,)+∞上有最小值-1,则()f x 在(,0]-∞上有最大值1C. 若()f x 在[1,)+∞上为增函数,则()f x 在(,1]-∞-上为减函数D.若0x >时,2()2f x x x =-,则0x <时,2()2f x x x =--三、填空题9.如图是定义在闭区间[5,5]-上的函数()y f x =的部分图像,根据图像可知函数()y f x =的单调递增区间是_______,单调递减区间是______.10.若()f x 是定义在R 上的奇函数,且1(2)()f x f x +=,则(8)f 的值为___. 11.若2()3f x ax bx a b =+++是偶函数,且定义域为[1,2]a a -,则a =_____,b =______.本章检测 函数的概念和性质一、单选题1. 已知函数2()23f x x mx =-+在[-2,+∞)上单调递增,在(-∞,-2]上单调递减,则f (1)的值为( )A.-3B.13C.7D.52.已知f (x )为奇函数,且在(-∞,0)上为增函数,g (x )为偶函数,且在(-∞,0)上为增函数,则在(0,+∞)_上,下列结论正确的)A.两个都是增函数B.两个都是减函数C. f (x )为增函数,g (x )为减函数D. f (x )为减函数,g (x )为增函数3.已知函数g (x )= f (2x )-x 2是奇函数,且f (1)=2,则f (-1)=( ) _3 A. 32- B.-1 C. 32 D. 744.已知函数(3)5,1()2,1a x x f x a x x -+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是( )A. (0,3)B. (0,3]C. (0,2)D. (0,2]5.已知函数g (x )是定义在[a -16,3a ]上的奇函数,且21,0()(),0x x f x f x a x -≥⎧=⎨+<⎩, 则f (-2020)=( )A.2B. 7C. 10D.-16. 已知定义在R 上的奇函数f (x )满足当x >0时,f(x )=x 2-2x ,则关于x的不等式f (x )<0的解集为( )A. (-2,2)B. (2,0)(0,2)-⋃C. (,2)(2,)-∞-⋃+∞D. (,2)(0,2)-∞-⋃二、多选题7.已知定义在区间[-3,3]上的一个偶函数,它在[-3,0]上的图象如图所示,则下列说法正确的是( )A.这个函数有两个单调递增区间B.这个函数有三个单调递减区间C. f (2)<2D.这个函数的值域为[-2,2]8.已知定义域为R 的函数f (x )是奇函数,且满足f (1-x )=f (1+x ),当0<x ≤1时,f (x )=2x ,则下列结论正确的是( )A. f (x )的最小正周期为2B.当-1<x ≤1时,f (x )=2xC. f (x )在[11,13]上单调递增D. f (x )的最大值为2,最小值为-2三、填空题9.已知函数,0(),0x x f x x x ⎧≥⎪=-<若f (a )+f (-1)=2,则a =_______.10.已知函数f (x )=x 5+ax 3+bx +2,且f (2)=3,则f (-2)=________.11.函数f (x )为奇函数,定义域为R ,若f (x +1)为偶函数,且f (1)=1,则f (2020)+f (2021)=_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第一轮复习《函数》测试题一、选择题(共50分):1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点 A. (2,-2) B. (2,2) C. (-4,2) D. (4,-2)2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是 A.增函数且最小值为m B.增函数且最大值为m - C.减函数且最小值为m D.减函数且最大值为m -3. 与函数()lg 210.1x y -=的图象相同的函数解析式是A .121()2y x x =->B .121y x =-C .11()212y x x =>- D .121y x =- 4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是A .-∞(,-2]B .[-2,2]C .[-2,)+∞D .[0,)+∞5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为A .2B .0C .1D .不能确定6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为xy 2=的图像,则)(x f y =的函数表达式为A. 22+=x y B. 22+-=x y C. 22--=x y D. )2(log 2+-=x y7. 当01a b <<<时,下列不等式中正确的是A.b ba a )1()1(1->- B.(1)(1)ab a b +>+C.2)1()1(b ba a ->- D.(1)(1)a b a b ->-8.当[]2,0∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是A.1[,)2-+∞B. [)+∞,0C. [)+∞,1D.2[,)3+∞9.已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.1[,1)7D.11[,)7310.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。

洗浴时,已知每分钟放水34升,在放水的同时按t 分钟注22t 升自动注水。

当水箱内的水量达到最小值时,放水程序自动停止,现假定每人洗浴用水量为65升,则该热水器一次至多可供 A .3人洗浴 B .4人洗浴 C .5人洗浴 D .6人洗浴二、填空题(共25分)11.已知偶函数()f x 在[]0,2内单调递减,若()()0.511,(log ),lg 0.54a fb fc f =-==,则,,a b c 之间的大小关系为 。

12. 函数log a y x =在[2,)+∞上恒有1y >,则a 的取值范围是 。

13. 若函数14455ax y a x +⎛⎫=≠ ⎪+⎝⎭的图象关于直线y x =对称,则a = 。

14.设()f x 是定义在R 上的以3为周期的奇函数,若23(1)1,(2)1a f f a ->=+,则a 的取值范围是 。

15.给出下列四个命题:①函数x y a =(0a >且1a ≠)与函数log xa y a =(0a >且1a ≠)的定义域相同;②函数3y x =与3xy =的值域相同;③函数11221x y =+-与2(12)2x xy x +=⋅都是奇函数;④函数2(1)y x =-与12x y -=在区间[0,)+∞上都是增函数,其中正确命题的序号是_____________。

(把你认为正确命题序号都填上)三、解答题16.(本小题满分12分)已知函数()f x 在定义域()0,+∞上为增函数,且满足()()()(),31f xy f x f y f =+= (1)求()()9,27f f 的值 (2)解不等式()()82f x f x +-<17.(本题满分12分) 已知集合A ={|(2)[(31)]0}x x x a --+<,B =22{|0}(1)x ax x a -<-+. (1)当a =2时,求A ⋂B ; (2)求使B ⊆A 的实数a 的取值范围.18.(本小题满分12分)函数xax x f -=2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域;(2)若函数)(x f y =在定义域上是减函数,求a 的取值范围;(3)函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值.19.(本题满分12分) 已知函数)(x f 的图象与函数21)(++=xx x h 的图象关于点A (0,1)对称.(1)求函数)(x f 的解析式(2)若)(x g =)(x f +xa,且)(x g 在区间(0,]2上的值不小于6,求实数a 的取值范围.20.(本小题满分14分)设二次函数2()(,,)f x ax bx c a b c R =++∈满足下列条件:①当x ∈R 时,()f x 的最小值为0,且f (x -1)=f (-x -1)成立; ②当x ∈(0,5)时,x ≤()f x ≤21x -+1恒成立。

(1)求(1)f 的值; (2)求()f x 的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当x ∈[]1,m 时,就有()f x t x +≤成立。

答案一、1.D 2. B 3.C 4.C 5.A 6.B 7. D 8.D 9.D 10.B 二.11. c a b >> 12. 1(,1)(1,2)2 13.-5 14. (-1,32) 15. ⑴⑶三.解答题16.解:(1)()()()()()()9332,27933f f f f f f =+==+=(2)()()()()889f x f x f x x f +-=-<⎡⎤⎣⎦而函数f(x)是定义在()0,+∞上为增函数08089(8)9x x x x x >⎧⎪∴->⇒<<⎨⎪-<⎩即原不等式的解集为(8,9)17. 解:(1)当a =2时,A =(2,7),B =(4,5)∴ A B =(4,5).………4分(2)∵ B =(a ,2a +1),当a <13时,A =(3a +1,2) ………………………………5分 要使B ⊆A ,必须223112a a a ≥+⎧⎨+≤⎩,此时a =-1;………………………………………7分当a =13时,A =Φ,使B ⊆A 的a 不存在;……………………………………9分当a >13时,A =(2,3a +1)要使B ⊆A ,必须222131a a a ≥⎧⎨+≤+⎩,此时1≤a ≤3.……………………………………11分综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1}……………………………12分18. 解:(1)显然函数)(x f y =的值域为),22[∞+; ……………3分 (2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立,即0)2)((2121>+-x x ax x只要212x x a -<即可, …………………………5分 由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a ,故a 的取值范围是]2,(--∞; …………………………7分 (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当1=x 时取得最小值a -2;当02<<-a 时,函数)(x f y =在].0(22a -上单调减,在]1,[22a -上单调增,无最大值,当22a x -=时取得最小值a 22-. …………………………12分19. 解:(1)设)(x f 图象上任一点坐标为),(y x ,点),(y x 关于点A (0,1)的对称点)2,(y x --在)(x h 的图象上………… 3分,1,212xx y x x y +=∴+-+-=-∴即x x x f 1)(+= …… 6分(2)由题意 x a x x g 1)(++= ,且61)(≥++=xa x x g ∵∈x (0,]2 ∴ )6(1x x a -≥+,即162-+-≥x x a ,………… 9分令16)(2-+-=x x x q ,∈x (0,]2,16)(2-+-=x x x q 8)3(2+-x =-, ∴∈x (0,]2时,7)(max =x q …11′∴ 7≥a ……………… 12分 方法二:62)(+-='x x q , ∈x (0,]2时,0)(>'x q即)(x q 在(0,2]上递增,∴∈x (0,2]时,7)(max =x q ∴ 7a ≥20. 解: (1)在②中令x=1,有1≤f(1)≤1,故f(1)=1…………………………3分(2)由①知二次函数的关于直线x=-1对称,且开口向上故设此二次函数为f(x)=a(x+1)2,(a>0),∵f(1)=1,∴a=41 ∴f(x)=41(x+1)2 …………………………7分(3)假设存在t ∈R,只需x ∈[1,m],就有f(x+t)≤x. f(x+t)≤x ⇒41(x+t+1)2≤x ⇒x 2+(2t-2)x+t 2+2t+1≤0. 令g(x)=x 2+(2t-2)x+t 2+2t+1,g(x)≤0,x ∈[1,m].40(1)0()011t g g m t m t -≤≤⎧≤⎧⎪⇒⎨⎨≤--≤≤-+⎪⎩⎩ ∴m ≤1-t+2t -≤1-(-4)+2)4(--=9t=-4时,对任意的x ∈[1,9]恒有g(x)≤0, ∴m 的最大值为9. ………………………… 14分。

相关文档
最新文档