上海市高三数学练习题及答案
金山区高三数学试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若复数z满足|z-2i|=|z+3|,则复数z的对应点在下列哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知函数f(x) = x^3 - 3x,若f(a) = f(b),则a+b的值为:A. 0B. 1C. 2D. 33. 若等差数列{an}的前n项和为Sn,且S5 = 50,S10 = 150,则公差d的值为:A. 5B. 10C. 15D. 204. 下列函数中,在其定义域内是奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = e^x5. 若平面α的法向量n = (1, -2, 3),则直线l:x - 2y + z = 0在平面α上的投影方程为:A. x - 2y + z = 0B. x - 2y + z = 1C. x - 2y + z = -1D. x - 2y + z = 26. 已知等比数列{an}的首项a1 = 2,公比q = 3,则数列的前5项之和S5为:A. 58B. 102C. 153D. 1807. 若向量a = (1, 2, 3),向量b = (3, 4, 5),则向量a·b的值为:A. 10B. 12C. 15D. 188. 在三角形ABC中,AB = AC,角B = 60°,若BC = 2,则三角形ABC的面积为:A. 2√3B. 3√3C. 4√3D. 5√39. 下列函数中,在其定义域内是增函数的是:A. y = -x^2B. y = 2xC. y = x^3D. y = e^x10. 若直线l:x - 2y + 1 = 0与平面α的交点为P,则点P到原点O的距离为:A. √5B. √10C. √15D. √20二、填空题(本大题共5小题,每小题10分,共50分。
)11. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则a、b、c之间的关系为______。
2024年高考数学上海卷 (含答案)

2024年普通高等学校招生全国统一考试数学(上海卷)一、 填空题本题共12小题,满分54分。
1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得0分。
1、 设全集{}U 1,2,3,4,5=,集合{}A 24=,,求A =_________________。
2、 已知()01, 0x f x x >=≤ ,()f x =______________。
3、 不等式2230x x −−<的解集为_________________。
4、 已知()3f x x a =+,且()f x 是奇函数,则a =___________________。
5、 已知()2,5a =,()6b k =,,//a b ,则k 的值为________________。
6、 在()1nx +的展开式中,若各项系数和为32,则展开式中2x 的系数为__________。
7、 已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为_______。
8、 某校举办科学竞技比赛,有A,B,C,3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题,小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,现他从所有的题中随机选一题,正确率是______。
9、 已知虚数z ,其实部为1,且()2z m m R z+=∈,则实数m 为____________。
10、设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,则集合中元素个数的最大值为____________。
11、海上有灯塔O,A,B,货船T,如图,已知A 在O 的正东方向,B 在O 的正北方向,O 到A,B的距离相等,165BTO ∠=°,37ATO ∠=°,则BOT ∠=____________。
上海新高考高三数学试卷(含答案)

2022学年第一学期期中质量检测高三数学答案及评分细则一、填空题(本大题满分54分)本大题共有12题,1-6题每题4分,7-12题每题5分.考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分或5分,否则一律得零分.注:填写等价即可得分 1.已知复数iiz +-=324,则._____=z 2 2.如果两个球的体积之比为8:27,则这两个球的表面积之比为______.4:9 3.集合{}222,(1),33A a a a =+++,且1A ∈,则实数a 的值 .01-或 4. 若321324,24==-y x,则._____32=-y x 3-5.海上有,A B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60︒的视角,从B 岛望C 岛和A 岛成75︒的视角,那么B 岛和C 岛间的距离是___6. 已知向量b a m b m m a ⊥-+=-=且,),2,2()3,3(,则实数._____=m 16或- 7. 曲线x y =在点()2,4处的切线方程是__________.044=+-y x 8.将两颗质地均匀的骰子同时抛掷一次,则向上的点数之和为5的概率是___91___.9.若012233444)12(a x a x a x a x a x ++++=-,则420a a a ++=____41__.10. 已知a 是常数且10<<α,若R 53log 在xay ⎪⎭⎫⎝⎛=上是严格增函数,则实数a 的取值范围是_______.153<<a11. 函数()R 1cos 4cos 2∈+-=x x x y 的最大值是___6___. 12.某位学生在研究函数)R (1)(∈+=x xxx f 时得出下列一些结论: ① 0)()(=+-x f x f 对任意R ∈x 恒成立; ② 函数)(x f 的值域为)1,1(-; ③ 若21x x ≠,则一定有)()(21x f x f ≠; ④ 函数x x f x g -=)()(有3个零点. 其中正确的序号是__①②③____.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 设c b a 、、是实数,则下列命题成立的是( D )A. 如果b a >,那么22bc ac >;B. 如果ac ab >,那么c b >;C. 如果c ab >,那么bca >; D. 如果22bc ac >,那么b a >. 14.已知βα、是两个不同的平面,“βα//”的一个充分非必要条件是( D )A.α内有无数条直线平行于βB. 存在平面γ,γβγα⊥⊥,C. 存在平面γ,n m n m //,且,==γβγαD.对任意直线l ,l l ⊥⊥βα,15. 函数⎪⎭⎫ ⎝⎛+-=4sin 212πx y 是( C )A. )(x f 是偶函数B. 函数)(x f 的最小正周期是π2C. 曲线)(x f y =关于4π-=x 对称 D. )2()1(f f >16. 整数集Z 中,被5除所得余数为 k 的所有整数组成一个“类”,记为[]k ,即[]{}Z 5∈+=n k n k ,其中{}4,3,2,1,0∈k .以下判断错误的是( B )A. []22022∈;B. []22∈-;C. [][][][][]43210Z =D. 若[]0∈-b a ,则整数b a 、属于同一“类”.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.注:此处仅给了一种解法,其他解法相应得分17.(本题满分14分)已知R ∈b a 、,集合{}24A <-=x x ,{}0B 2<++=b ax x x ,φ≠B A ,⎭⎬⎫⎩⎨⎧--==27lg B A x x y x ,求b a +的取值范围.【解答】)(6,2=A , …………………………………………4分)7,2(=B A …………………………………………8分由φ≠B A ,得)7,(B m =,其中26m ≤<.……10分 于是m b m a 7,7=--=.……………………………12分[)675,29a b m +=-∈………………………………14分18.(本题满分14分,第1小题满7分,第2小题满7分)某企业因排污比较严重,决定着手整治,一个月时污染度为60,整治后前四个月的污染度如下表;污染度 60 31 13 0 ……当污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式: ()204(1)f x x x =-≥, 220()(4)(1)3g x x x =-≥, 2()30log 2(1)h x x x =-≥, 其中x 表示月数,()f x 、)()(x h x g 和分别表示污染度. (1)问选用哪个函数模拟比较合理,并说明理由;(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过60. 【解答】(1)计算各函数对应各月份污染度得下表:月数(x ) 1 2 3 4 …… 污染度60 31 13 0 …… )(x f 60 40 20 0 )(x g60 26.7 6.7 0 )(x h603012.45从上表可知,函数)(x h 模拟比较合理,故选择)(x h 作为模拟函数. ………7分(2)602log 302≤-x ……………………………………………………………10分解得161≤≤x , …………………………………………………………13分所以,整治后16个月的污染度不超过60. ………………………………14分 19.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF ⊥DE,F 是垂足. (1)求证:AF ⊥BD ;(2)若圆柱与三棱锥D-ABE 的体积之比等于3π,求直线DE 与平面ABD 所成的角的大小.【解答】(1)∵点E 在底面的圆周上∴AE ┴BE ……1分 又∵AD ┴平面ABE ,∴AD ┴BE …………………………2分 ∴BE ┴平面ADE ,………………………………………4分 ∴AF ⊥BD.……………………………………………6分 (2)设圆柱底面圆的圆心为点O ,半径为r ,则它的高为2r ,∴圆柱的体积r r V 22⋅=π圆柱,r S V ABE ABE D 231⋅=∆-由π3=-ABED V V 圆柱,得2r S ABE =∆, …………………8分 ∴ABE ∆边AB 上的高为r, ……………………9分 ∴点E 在圆弧AB 的中点,∴AB OE ⊥. ………10分 ∴∠EDO 就是直线DE 与平面ABD 所成的角.……11分 又OE=r,r OD 5=,………………………………12分 ∴555tan ==∠rr EDO …………………………13分 ∴∠EDO=55arctan.………………………………14分 20.(本题满分16分,第1小题满分6分,第2小题满分4分,第3小题满分6分)已知函数236sin 3sin cos 3)(2-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=ππx x x x f .(1)求)(x f 的最大值及相应的x 的取值; (2)求)(x f 的单调递增区间及零点;(3)若61)(=αf ,且⎪⎭⎫⎝⎛∈3,12ππα,求α2cos 的值.【解答】 (1))(x f =⎪⎭⎫⎝⎛+32sin 21πx .……………………………………………4分所以当22,Z 32x k k πππ+=+∈,即,Z 12x k k ππ=+∈时,…………………………………………………………5分)(x f 取最大值为12,……………………………………………………………6分 (2)由Z ,223222∈+≤+≤-k k x k πππππ. ………………………………………7分解得Z ,12125∈+≤≤-k k x k ππππ, 即)(x f 的单调递增区间是()Z 12125∈⎥⎦⎤⎢⎣⎡+-k k k ππππ,……………………8分由Z ,32∈=+k k x ππ得Z ,62∈-=k k x ππ,…………………………………9分 所以)(x f 的零点为.Z ,62∈-=k k x ππ………………………………………10分 (3)由61)(=αf 得3132sin =⎪⎭⎫ ⎝⎛+πα,……………………………………………11分因为⎪⎭⎫ ⎝⎛∈3,12ππα,所以⎪⎭⎫⎝⎛∈+πππα,232,………………………………12分所以⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛+32sin 132cos 2παπα……………………………………13分=3223112-=⎪⎭⎫⎝⎛--. ……………………………………………………14分所以⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+=332cos 2cos ππαα =3sin 32sin 3cos 32cos ππαππα⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+ …………………………………15分=6223233121322-=⋅+⋅-. …………………………………………16分 21.(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题满分6分)已知44()ln (0)f x ax x bx c x =+->在1x =处取得极值3c --,其中a ,b ,c 为常数.(1) 试确定实数a ,b 的值; (2) 求函数()f x 的单调区间;(3) 若对任意0x >,不等式2()2f x c ≥-恒成立,求实数c 的取值范围. 【解答】 (1) 由题意,得b -c =-3-c ,则b =-3. ………………………2分)4ln 4(4ln 4)(3333b a x a x bx ax x ax x f ++=++=', ………………………4分则04)1(=+='b a f ,解得a =12. …………………………………………6分 故实数a ,b 的值分别为12,-3. ………………………………………(6分) (2) 由(1),得44()12ln 3(0)f x x x x c x =-->,所以)0(ln 48)(3>='x x x x f .………………………………………………7分 令0)(='x f ,解得1=x . …………………………………………………8分 当10<<x 时,0)(<'x f ,此时)(x f 为单调减函数;……………………10分 当1>x 时,0)(>'x f ,此时)(x f 为单调增函数;………………………11分故函数)(x f 的单调增区间为)1(∞+,,单调减区间为)1,0(.……………12分 (3) 根据(2)的结论,所以c f x f --==3)1()(min .…………………………14分 因为22)(c x f -≥恒成立,所以-3-c ≥-2c 2,…………………………16分 解得c ≥32或c ≤-1,故实数c 的取值范围为(]⎪⎭⎫⎢⎣⎡+∞-∞-,231, . …………18分。
高考数学试题上海题及答案

高考数学试题上海题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的值域为[0, +∞),则该函数的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3可以写成f(x) = (x - 2)^2 - 1,其最小值为-1,因此值域为[-1, +∞)。
由于值域为[0, +∞),所以函数的零点个数为2。
2. 若复数z = a + bi(a, b ∈ R)满足|z| = √2,且z的实部与虚部的和为0,则a和b的值分别为:A. a = 1, b = -1B. a = -1, b = 1C. a = 1, b = 1D. a = -1, b = -1答案:A解析:由|z| = √2,得√(a^2 + b^2) = √2,即a^2 + b^2 = 2。
又因为z的实部与虚部的和为0,即a + b = 0。
解得a = 1, b = -1。
3. 若直线l的倾斜角为45°,则直线l的斜率为:A. 0B. 1D. √2答案:B解析:直线的倾斜角为45°,根据斜率的定义,斜率k = tan(45°) = 1。
4. 若向量a = (3, -2),向量b = (-1, 2),则向量a与向量b的数量积为:A. 1B. -1C. 3D. -3答案:D解析:向量a与向量b的数量积为a·b = 3*(-1) + (-2)*2 = -3 - 4 = -7。
5. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象是开口向上的抛物线,且f(1) = f(3),则该函数的对称轴为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:由于抛物线开口向上,且f(1) = f(3),根据抛物线的对称性,对称轴为x = (1 + 3) / 2 = 2。
6. 若等比数列{an}的前n项和为S_n,且S_3 = 7,S_6 = 28,则该数列的公比q为:B. 4C. 3D. 1/2答案:A解析:设等比数列的首项为a1,公比为q,则S_3 = a1(1 - q^3) / (1 - q) = 7,S_6 = a1(1 - q^6) / (1 - q) = 28。
上海高三高中数学高考真卷带答案解析

上海高三高中数学高考真卷班级:___________ 姓名:___________ 分数:___________一、填空题1.计算:= (i为虚数单位).2.若集合,,则= .3.函数的最小正周期是 .4.若是直线的一个方向向量,则的倾斜角的大小为(结果用反三角函数值表示).5.一个高为2的圆柱,底面周长为2p,该圆柱的表面积为 .6.方程的解是 .7.有一列正方体,棱长组成以1为首项,为公比的等比数列,体积分别记为V1,V2,…,Vn,…,则 .8.在的二项展开式中,常数项等于 .9.已知是奇函数. 若且.,则 .10.满足约束条件的目标函数的最小值是 .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).12.在知形ABCD中,边AB、AD的长分别为2、1. 若M、N分别是边BC、CD上的点,且满足,则的取值范围是 .13.已知函数的图像是折线段ABC,若中A(0,0),B(,1),C(1,0).函数的图像与x轴围成的图形的面积为 .14.已知.各项均为正数的数列满足,.若,则的值是 .二、选择题1.若是关于x的实系数方程的一个复数根,则()A.B.C.D.2.对于常数、,“”是“方程的曲线是椭圆”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件.3.在中,若,则的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定.4.若,则在中,正数的个数是()A.16B.72C.86D.100三、解答题1.如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥P-ABC的体积;(6分)(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).(6分)2.已知函数.(1)若,求的取值范围;(6分)(2)若是以2为周期的偶函数,且当时,有,求函数的反函数.(8分)3.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A处,如图. 现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为.(1)当时,写出失事船所在位置P的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8分)4.在平面直角坐标系中,已知双曲线.(1)设F是C的左焦点,M是C右支上一点. 若|MF|=2,求过M点的坐标;(5分)(2)过C的左顶点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(5分)(3)设斜率为的直线l2交C于P、Q两点,若l与圆相切,求证:OP⊥OQ;(6分)5.对于项数为m的有穷数列数集,记(k=1,2,…,m),即为中的最大值,并称数列是的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列的控制数列为2,3,4,5,5,写出所有的;(4分)(2)设是的控制数列,满足(C为常数,k=1,2,…,m).求证:(k=1,2,…,m);(6分)(3)设m=100,常数.若,是的控制数列,求.上海高三高中数学高考真卷答案及解析一、填空题1.计算:= (i为虚数单位).【答案】 1-2i【解析】.2.若集合,,则= .【答案】【解析】,,A∩B=.3.函数的最小正周期是 .【答案】p【解析】,T=.4.若是直线的一个方向向量,则的倾斜角的大小为(结果用反三角函数值表示).【答案】【解析】,所以的倾斜角的大小为.5.一个高为2的圆柱,底面周长为2p,该圆柱的表面积为 .【答案】6p【解析】2pr=2p,r=1,S表=2prh+2pr2=4p+2p=6p.6.方程的解是 .【答案】【解析】,,,.7.有一列正方体,棱长组成以1为首项,为公比的等比数列,体积分别记为V1,V2,…,Vn,…,则 .【答案】【解析】易知V1,V2,…,Vn,…是以1为首项,3为公比的等比数列,所以.8.在的二项展开式中,常数项等于 .【答案】 -20【解析】展开式通项,令6-2r=0,得r=3,故常数项为.9.已知是奇函数. 若且.,则 .【答案】 3【解析】是奇函数,则,,所以.10.满足约束条件的目标函数的最小值是 .【答案】 -2【解析】可行域是如图的菱形ABCD,代入计算,知为最小.11.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).【答案】【解析】设概率p=,则,求k,分三步:①选项目相同的二人,有种;②确定上述二人所选相同的项目,有种;③确定另一人所选的项目,有种. 所以,故p=.12.在知形ABCD中,边AB、AD的长分别为2、1. 若M、N分别是边BC、CD上的点,且满足,则的取值范围是 .【答案】[1, 4]【解析】如图建系,则A(0,0),B(2,0),D(0,1),C(2,1). 设Î[0,1],则,,所以M(2,t),N(2-2t,1),故=4-4t+t=4-3t=f(t),因为tÎ[0,1],所以f (t)递减,所以()max=" f" (0)=4,()min=" f" (1)=1.13.已知函数的图像是折线段ABC,若中A(0,0),B(,1),C(1,0).函数的图像与x轴围成的图形的面积为 .【答案】【解析】如图1,,所以,易知,y=xf(x)的分段解析式中的两部分抛物线形状完全相同,只是开口方向及顶点位置不同,如图2,封闭图形MND与OMP全等,面积相等,故所求面积即为矩形ODMP的面积S=.14.已知.各项均为正数的数列满足,.若,则的值是 .【答案】【解析】(*),,所以有:,,,,;又,得,令,则,由题设,所以,变形(*)为,则,故,所以.二、选择题1.若是关于x的实系数方程的一个复数根,则()A.B.C.D.【答案】D【解析】实系数方程虚根成对,所以也是一根,所以-b=2,c=1+2=3,选D.2.对于常数、,“”是“方程的曲线是椭圆”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件.【答案】B【解析】取m=n=-1,则方程不表示任何图形,所以条件不充分;反之,当然有,即条件必要,故选B.3.在中,若,则的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定.【答案】A【解析】由条件结合正弦定理,得,再由余弦定理,得,所以C是钝角,选A.4.若,则在中,正数的个数是()A.16B.72C.86D.100【答案】C【解析】令,则,当1≤n≤14时,画出角序列na终边如图,其终边两两关于x轴对称,故有均为正数,而,由周期性可知,当14k-13≤n≤14k时,Sn>0,而,其中k=1,2,…,7,所以在中有14个为0,其余都是正数,即正数共有100-14=86个,选C.三、解答题1.如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥P-ABC的体积;(6分)(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).(6分)【答案】(1);(2).【解析】(1), 2分三棱锥P-ABC的体积为. 6分(2)取PB的中点E,连接DE、AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角. 8分在三角形ADE中,DE=2,AE=,AD=2,,所以∠ADE=.因此,异面直线BC与AD所成的角的大小是. 12分2.已知函数.(1)若,求的取值范围;(6分)(2)若是以2为周期的偶函数,且当时,有,求函数的反函数.(8分)【答案】(1);(2),.【解析】(1)由,得.由得. ……3分因为,所以,.由得. ……6分(2)当xÎ[1,2]时,2-xÎ[0,1],因此. ……10分由单调性可得.因为,所以所求反函数是,. ……14分3.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A处,如图. 现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为.(1)当时,写出失事船所在位置P的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8分)【答案】(1)arctan弧度;(2)25海里.【解析】(1)时,P的横坐标xP=,代入抛物线方程中,得P的纵坐标yP=3. ……2分由|AP|=,得救援船速度的大小为海里/时. ……4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan弧度. ……6分(2)设救援船的时速为海里,经过小时追上失事船,此时位置为.由,整理得.……10分因为,当且仅当=1时等号成立,所以,即.因此,救援船的时速至少是25海里才能追上失事船. ……14分4.在平面直角坐标系中,已知双曲线.(1)设F是C的左焦点,M是C右支上一点. 若|MF|=2,求过M点的坐标;(5分)(2)过C的左顶点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(5分)(3)设斜率为的直线l2交C于P、Q两点,若l与圆相切,求证:OP⊥OQ;(6分)【答案】(1);(2);(3)见解析.【解析】(1)双曲线,左焦点.设,则,……2分由M是右支上一点,知,所以,得.所以. ……5分(2)左顶点,渐近线方程:.过A与渐近线平行的直线方程为:,即.解方程组,得. ……8分所求平行四边形的面积为. ……10分(3)设直线PQ的方程是.因直线与已知圆相切,故,即 (*).由,得.设P(x1, y1)、Q(x2, y2),则.,所以.由(*)知,所以OP⊥OQ. ……16分5.对于项数为m的有穷数列数集,记(k=1,2,…,m),即为中的最大值,并称数列是的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列的控制数列为2,3,4,5,5,写出所有的;(4分)(2)设是的控制数列,满足(C为常数,k=1,2,…,m).求证:(k=1,2,…,m);(6分)(3)设m=100,常数.若,是的控制数列,求.【答案】(1)数列为:2, 3, 4, 5, 1;2, 3, 4, 5, 2;2, 3, 4, 5, 3;2, 3, 4, 5, 4;2, 3, 4, 5, 5.(2)见解析;(3).【解析】(1)数列为:2, 3, 4, 5, 1;2, 3, 4, 5, 2;2, 3, 4, 5, 3;2, 3, 4, 5, 4;2, 3, 4, 5, 5. ……4分(2)因为,,所以. ……6分因为,,所以,即. ……8分因此,. ……10分(3)对,;;;.比较大小,可得. ……12分因为,所以,即;,即.又,从而,,,. ……15分因此=====. ……18分。
2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
上海市高三数学复习三角函数与反三角函数专题练习(new)

三角函数与反三角函数一、 填空题1. 函数()cos(2)6f x x π=-的最小正周期是 .2. 函数2sin cos y x x =-的最大值为 。
3. 函数()sin 3cos f x x x =+的对称中心的坐标为4. 。
函数2sin(2)34y x π=--的单调递增区间是 . 5. 函数sin cos ()sin cos x x f x x x-=+的奇偶性为 6. 已知函数()cos()f x A wx ϕ=+的部分图像如图所示, 若2()23f π=-,则(0)f = 。
7。
函数()sin(2)4f x x π=-在区间[0,]2π的最小值为 。
8.方程22sin 3sin cos 4cos 0x x x x +-=的解集为 .9.函数3cos ([,))2y x x ππ=∈的反函数是 .10.已知0w >,函数()sin()4f x wx π=+在(,)2ππ单调递增,则w 的取值范围是 。
11。
设()cos(sin )f x x =与()sin(cos )g x x =,以下结论:(1)()f x 与()g x 都是偶函数; (2)()f x 与()g x 都是周期函数;(3)()f x 与()g x 的定义域都是[1,1]-; (4)()f x 的值域是[cos1,1],()g x 的值域是[sin1,sin1]-;其中不正确的是 .12。
函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于 。
二、 选择题13。
下列函数中,最小正周期为π且图像关于原点对称的函数是( ).A cos(2)2y x π=+ .B sin(2)2y x π=+ .C sin 2cos 2y x x =+ .D sin cos y x x =+14.要得到函数sin(4)3y x π=-的图像,只需要将函数sin 4y x =的图像( ) .A 向左平移12π个单位 .B 向右平移12π个单位 .C 向左平移3π个单位 .D 向右平移3π个单位 15。
上海高中数学试题及答案

上海高中数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 已知等差数列{an}的前三项依次为2,5,8,则其第10项a10为:A. 27B. 28C. 29D. 303. 圆的方程为(x-2)^2 + (y-3)^2 = 9,圆心坐标为:A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)4. 函数y = 2x + 3与y = -x + 1的交点坐标为:A. (-1, 1)B. (1, 1)C. (-1, -1)D. (1, -1)5. 已知三角形ABC的三边长分别为a,b,c,且满足a^2 + b^2 =c^2,那么三角形ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定6. 函数y = 3x - 2的反函数为:A. y = (x + 2)/3B. y = (x - 2)/3C. y = 3x + 2D. y = -3x + 27. 以下哪个选项是复数的共轭复数:A. z = 3 + 4iB. z* = 3 - 4iC. z = 3 - 4iD. z* = 3 + 4i8. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B为:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}9. 已知函数f(x) = x^2 - 4x + 3,求f(2)的值为:A. -1B. 1C. 3D. 510. 直线y = 2x + 1与x轴交点的横坐标为:A. 0.5B. -0.5C. 0D. 1二、填空题(每题4分,共20分)1. 计算极限lim(x→0) (sin(x)/x) = _______。
2. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求a3 = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市吴淞中学2009届高三数学训练题班级_____________姓名______________学号_____________成绩__________________ 一、填空题1、已知函数122)(1+=+x x x f ,则()=-11f________2、设平面α与向量{}4,2,1--=→a 垂直,平面β与向量{}1,3,2=→b 垂直,则平面α与β位置关系是___________.3、已知32cos 2,cos sin ,43sin ππx x -依次成等比数列,则x 在区间[)π2,0内的解集为 .4、椭圆192522=+y x 上到两个焦点距离之积最小的点的坐标是________________.5、 若函数)24lg(xa y ⋅-=的定义域为}1|{≤x x ,则实数a 的取值范围是 . 6、设43,)1(112161211=⋅+++++=+n n n S S n n S 且 ,则n 的值为 . 7、设1F 、2F 为曲线1C :12622=+y x 的焦点,P 是曲线2C :1322=-y x 与1C 的一个交||||2121PF PF ⋅的值为 .8、从-3,-2,-1,1,2,3中任取三个不同的数作为椭圆方程022=++c by ax 中的系数,则确定不同椭圆的个数为 .9、 一张报纸,其厚度为a ,面积为b ,现将报纸对折(即沿对边中点连线折叠)7次,这时报纸的厚度和面积分别为_________________。
10、 已知矩形ABCD 的边⊥==PA BC a AB ,2,平面,2,=PA ABCD 现有以下五个数据:,4)5(;2)4(;3)3(;1)2(;21)1(=====a a a a a 当在BC 边上存在点Q ,使QD PQ ⊥时,则a 可以取________ _____。
(填上一个正确的数据序号即可) 11、某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当住在第n 层楼时,上下楼造成的不满意度为n ,但高处空气清新,噪音较小,因此随楼层升高,环境不满意程度降低,设住在第n 层楼时,环境不满意程度为n8,则此人应选____楼。
12、对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数”。
在实数轴R (箭头向右)上[x ]是在点x 左侧的第一个整数点,当x 是整数时[x ]就是x 。
这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。
那么]1024[log ]4[log ]3[log ]2[log ]1[log 22222+++++ =___________________二、选择题 13、已知二面角βα--l ,直线α⊂a ,β⊂b ,且a 与l 不垂直,b 与l 不垂直,那么( ) (A )a 与b 可能垂直,但不可能平行 (B )a 与b 可能垂直,也可能平行(C )a 与b 不可能垂直,但可能平行 (D )a 与b 不可能垂直,也不可能平行 14、由方程1||||=+y y x x 确定的函数)(x f y =在),(∞+-∞上是( )(A) 奇函数 (B) 偶函数 (C) 增函数 (D) 减函数15、函数12)(+-=x x f ,对任意正数ε,使ε<-|)()(|21x f x f 成立的一个充分不必要条件是( )(A) ε<-||21x x (B) 2||21ε<-x x (C) 4||21ε<-x x (D) 4||21ε>-x x16、某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表: 表1 市场供给量表2 市场需求量根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间( ) (A )(,)内 (B )(,)内 (C )(,)内 (D )(,)内三、解答题17.若复数1z 与2z 在复平面上所对应的点关于y 轴对称,且2,)31()3(121=+=-z i z i z ,求1z .18、已知函数xa a a x f 2112)(-+=,常数0>a 。
(1)设0>⋅n m ,证明:函数)(x f 在][n m ,上单调递增; (2)设n m <<0且)(x f 的定义域和值域都是][n m ,,求m n -的最大值。
19、长方体1111D C B A ABCD -中,1==BC AB ,21=AA ,E 是侧棱1BB 的中点.(1)求证:直线⊥AE 平面E D A 11;(本题15分) (2)求三棱锥E D A A 11-的体积;(3)求二面角11A AD E --的平面角的大小.20、如图,直线l 与抛物线x y =2交于),(,),(2211y x B y x A 两点,与x 轴相交于点M ,且121-=y y .(1)求证:M 点的坐标为(1,0); (2)求证:OA ⊥OB ;(3)求△AOB 的面积的最小值.A BC D E A 1B 1C 1D 121、近几年,上海市为改善城区交通投入巨资,交通状况有了一定的改善,但人民广场仍是市中心交通最为拥堵的地区之一。
为确保交通安全,规定在此地段内,车距d 是车速v (千米/小时)的平方与车身长s (米)之积的正比例函数,且最小车距不得少于车身长的一半,现假定车速为50千米/小时,车距恰为车身长。
⑴ 试写出d 关于v 的解析式(其中s 为常数);⑵ 问应规定怎样的车速,才能使此地车流量1000vQ d s=+最大?22、已知数列{}n a 中,,11=a 且点()()*+∈N n a a P n n 1,在直线01=+-y x 上. (1)求数列{}n a 的通项公式; (2)若函数(),2,321)(321≥∈++++++++=n N n a n na n a n a n n f n且 求函数 )(n f 的最小值;(3)设n nn S a b ,1=表示数列{}n b 的前项和。
试问:是否存在关于n 的整式()n g ,使得 ()()n g S S S S S n n ⋅-=++++-11321 对于一切不小于2的自然数n 恒成立?若存在,写出()n g 的解析式,并加以证明;若不存在,试说明理由。
上海市吴淞中学高三数学训练参考答案一、填空题1、 0;2、垂直;3、⎭⎬⎫⎩⎨⎧1217,1213,125,12ππππ; 4、(±5,0); 5、)2,(-∞; 6、6; 7、31; 8、18; 9、128,128ba ; 10、①或②; 11、3; 12、8204。
二、 选择题13、B ; 14、D ; 15、C ; 16、C 。
三、解答题17、解:⎩⎨⎧-==⇒∴-=⇒⎩⎨⎧=+++-=-+∴112)31)(()3)((22b a b a b a i bi a i bi a 或⎩⎨⎧=-=11b a ,则i z -=1或i z +-=1 18、解:(1)任取1x ,],[2n m x ∈,且21x x <,21212211)()(x x x x a x f x f -⋅=-,因为21x x <,1x ,],[2n m x ∈,所以021>x x ,即)()(21x f x f <,故)(x f 在],[n m 上单调递增。
(2)因为)(x f 在],[n m 上单调递增,)(x f 的定义域、值域都是⇔],[n m n n f m m f ==)(,)(, 即n m ,是方程x xa a a =-+2112的两个不等的正根01)2(222=++-⇔x a a x a 有两个不等的正根。
所以04)2(222>-+=∆a a a ,⇒>+0222aa a 21>a 。
∴),(,)(334421316232121∞+∈+--=-+=-a a a m n a a,∴23=a 时,m n -取最大值334。
19、解:(1)依题意:E A AE 1⊥,11D A AE ⊥,则⊥AE 平面E D A 11. (2).312212131311111=⨯⨯⨯⨯=⋅⋅=∆-AE S V E D A E D A A (3)取1AA 的中点O ,连OE ,则1AA EO ⊥、11D A EO ⊥, (4)所以⊥EO 平面11A ADD .过O 在平面11A ADD 中作1AD OF ⊥,交1AD 于F ,连EF ,则EF AD ⊥1, 所以EFO ∠为二面角11A AD E --的平面角.在AFO ∆中,.sin 55111=⋅=∠⋅=ADD A OA OAF OA OF .5=∠∴EFO tg20、解:(1 ) 设M 点的坐标为(x 0, 0), 直线l 方程为 x = my + x 0 , 代入y 2= x 得y 2-my -x 0 = 0 ① y 1、y 2是此方程的两根, ∴ x 0 =-y 1y 2 =1,即M 点的坐标为(1, 0). (2 ) ∵ y 1y 2 =-1∴ x 1x 2 + y 1y 2 = y 12y 22+y 1y 2 =y 1y 2 (y 1y 2 +1) = 0∴ OA ⊥OB .(3)由方程①,y 1+y 2 = m , y 1y 2 =-1 , 且 | OM | = x 0 =1, 于是S △AOB = 21| OM | |y 1-y 2| =212214)(21y y y y -+=4212+m ≥1, ∴ 当m = 0时,△AOB 的面积取最小值1. 21、解:⑴ 由已知:212500d ksv k =⇒=∴ 212500d sv =当2s d ≥时,2125002s sv v ≥⇒≥ ∴20212500sv d sv v ⎧<<⎪⎪=⎨⎪≥⎪⎩⑵当v ≥时,212500d sv = ∴ 12100025000002500012500()2500v Q v s sv s s v v==≤++,此时50v =千米/小时当0v <<时,2sd =∴ 211000100032v vQ Q s s s ==<+故当50v =千米/小时时,车流量最大。
22、{},11111()101,1111(1)1(2),1.3n n n n n n n P a a x y a a a a a n n n a a n ++--=-==∴∴=+-⋅=≥=∴=解:()点在直线上,即且数列是以为首项,为公差的等差数列。
也满足分1112(),122111111(1)23422122111111(1)()0,621221222217()()(2)812f n n n n f n n n n n n n f n f n n n n n n n f n f n f =++++++=+++++++++++∴+-=+->+-=++++++∴=(),分是单调递增的,故的最小值是。