长方体和正方体的体积复习课 ppt课件

合集下载

六年级上册数学课件-7.4 长方体和正方体复习丨苏教版 (共39张PPT)

六年级上册数学课件-7.4 长方体和正方体复习丨苏教版 (共39张PPT)

一个长方体容器从里面量长10cm,宽 10cm,高9cm,水深6cm, (2)若把一个底面边长5cm,高10cm 的长方体铁块直立在容器里,这时水面 高度是多少?

总结
通过这节课的复习,你有什么收 获?
如果将这个正方体表面涂上颜色,再把每条棱
平均分成6份,那么请思考
三面涂色有几个? 8个顶点处
表面积:不变
6 6 6 21(6 dm2)
如果这是一个棱长为60厘米正方体木料,可以 锯成多少个棱长是1分米的小正方体?
如果拿走一块小正方体,它的表面积和体积分
别是多少?
表面积:增加2dm²
6 6 6 2 21(8 dm2)
如果这是一个棱长为60厘米正方体木料,可以 锯成多少个棱长是1分米的小正方体?
60cm 6dm 6 6 6 21(6 个)
如果这是一个棱长为60厘米正方体木料,可以
锯成多少个棱长是1分米的小正方体?
如果拿走一块小正方体,它的体积和m
6 6 6 21(6 个)
体积:63 -13 21(5 dm3)
表面积:
如果这是一个棱长为60厘米正方体木料,可以 锯成多少个棱长是1分米的小正方体? 如果拿走一块小正方体,它的表面积和体积分 别是多少?
一个长方体容器从里面量长10cm,宽 10cm,高9cm,水深6cm,
(1)若把一个底面边长5cm的正方体铁 块放入容器里,这时水面高度是多少?
铁块的体积=上升部分水的体积
555 10 10 6
125100 6
7.25cm
答:这时水面高度是7.25cm。
一个长方体容器从里面量长10cm,宽 10cm,高9cm,水深6cm, (1)若把一个底面边长5cm的正方体铁 块放入容器里,这时水面高度是多少? (2)若把一个底面边长5cm,高10cm 的长方体铁块直立在容器里,这时水面 高度是多少?

五年级下册长方体与正方体体积课件人教版(34张PPT)

五年级下册长方体与正方体体积课件人教版(34张PPT)

A.4
B.6
C.8
D.12
4.长方体玻璃缸,长4dm,宽3dm,高5dm,缸中的水深2.5dm,水
的体积是( )dm3
A.30
B.37.5
C.50
D.60
5
填上合适的数.
10m3= ( )dm3
3020cm3= (
230mL= ( )L
3.05L3= (
2.7m3= (
)dm3= (
)L
)dm3 )cm3
长方体与正方体体积
1
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的 长方体的体积是75立方厘米,则原长方体的最长的棱是 ______厘米. 2.一个长方体表面积为40平方厘米,上、下两个面为正方形, 如果正好可以截成两个相等体积的正方体,则这个长方体的 体积是_____立方厘米. 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已 知全部棱长之和是220cm,长方体的体积是______立方厘米
的体ቤተ መጻሕፍቲ ባይዱ是( )dm3
A.30
B.37.5
C.50
D.60
4
你来选择
1.一个棱长是8厘米的正方体的体积与一个长方体体积相等,这个长方
体高16厘米,它的底面积是( )
A.32厘米2 B.9厘米 C.15厘米 D.120厘米
2.至少需要( )个小正方体可以拼成大正方体.
A.4
B.6
C.8
D.12
3.正方体的表面积是底面积的( )倍.
2
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的长方体的体积是75立方厘 米,则原长方体的最长的棱是8厘米. 解:75÷(5×5)=75÷25=3(厘米),3+5=8(厘米), 2.一个长方体表面积为40平方厘米,上、下两个面为正方形,如果正好可以截成两个 相等体积的正方体,则这个长方体的体积是 16立方厘米. 解:40÷10=4(平方厘米),因为2×2=4,所以小正方体的棱长是2厘米,则体积是: 2×2×2×2=16(立方厘米) 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已知全部棱长之和是220cm, 长方体的体积是4500立方厘米 解:根据“长与宽之比为2:1,宽与高之比为3:2”,可得:长:宽:高=6:3:2, 利用棱长总和求出一组长宽高的和是:220÷4=55厘米,由此再利用长宽高的比分别求 出这个长方体的长宽高,再根据长方体3的体积公式V=abh,即可解答.

长方体正方体表面积和体积ppt(共21张PPT)

长方体正方体表面积和体积ppt(共21张PPT)
长方体的体积=长×宽×高 V=abh
长方体的体积=长×宽×高
=底面积×高
V=Sh
正方体的体积=长×宽×高 =棱长×棱长×棱长
V=a3
长=a
高=h 宽=b
第三节 长方体正方体的体积
习题:
1、求下列图形的体积。
3
第长二方节 体上面(长或方下体面正)方的体面的积表=面长积×宽
长做方一体 个或如正图方所体示6的个长面方的体总纸面盒积,,长叫6厘做米它,的宽表5面厘积米。,高4 厘米,至少要用多少平方厘米硬纸板?
4面第5×积三24、是 节=2_0光_(_平_明方_长_厘纸_3方_米_体盒_)正__厂方__体生__的_产_体_;积一1 种正方形1纸2 板箱,棱长是8分米,体积是多少立方分米?
=棱上长面是积1d+m下的面正积方+前体面,积体+积后是面1积d+m左3 面;积+右面积=30 ×2 +24 ×2 +20 ×2 =148(平方厘米)
第三节
长方体正方体的体积
需要引入的概念
计算体积,常用到的体积单位:立方厘米,立方分米,立方米,也可以写成:cm3,dm3,m3
棱长是1cm的正方体,体积是1 cm3 ;
棱长是1m的正方体,体积是1m3
一个手指尖的体积大约是1 cm3
可以用3根1m的木条做成一个互 成直角的架子,放到墙角,看看 体积为1 m3 是多大哦!
4cm 5 第棱二长节 是1dm的长正方方体体正,方体体积的是表1面d积m3 ;
dm
8cm 第5×一4节=20(平方回厘米顾)
第做三一节 个如图所长示方的体长正方方体体纸的盒体,积长6厘米,宽5厘米,高4 厘米,至少要用多少平方厘米硬纸板?

长方体和正方体的体积ppt课件

长方体和正方体的体积ppt课件

理解体积的概念
体积的概念
体积是指物体所占空间的大小,是三维空间的一个量度。对 于长方体和正方体,体积是指其内部空间的大小。
体积的单位
体积的国际单位是立方米,常用的单位还有立方厘米、立方 分米等。
掌握体积的计算方法
长方体体积的计算
长方体的体积可以通过其长、宽、高 的乘积计算得出,即体积 = 长 × 宽 × 高。
长方体和正方体的体积
目录
• 长方体和正方体的定义 • 长方体和正方体的体积公式 • 体积公式的应用 • 体积公式的推导 • 体积公式的理解与掌握
01
长方体和正方体的定义
长方体的定义
总结词
长方体是一个六面体,其中相对的面都是矩形。
详细描述
长方体的每个面都是矩形,其中相对的两个矩形面相等,并且三个矩形面两两 垂直。长方体的长度、宽度和高度分别用$l$、$w$和$h$表示。
04
体积公式的推导
长方体体积公式的推导
计算长方体的体积
V = l × w × h。
推导过程
长方体的体积等于其底面积乘以高,即V = l × w × h。
正方体体积公式的推导
计算正方体的体积:V = a^3。 推导过程:正方体的体积等于其边长的三次幂,即V = a^3。
05
体积公式的理解与掌握
应用
在计算实际生活中如冰 箱、箱子等物体的体积 时,可以使用长方体的 体积公式进行计算。
计算正方体的体积
01
02
03
公式
正方体的体积 = 边长 × 边长 × 边长 或 边长³
实例
一个正方体的边长为4cm ,则其体积 = 4cm × 4cm × 4cm = 64cm³
应用

《长方体和正方体的体积》ppt课件

《长方体和正方体的体积》ppt课件

06 课堂小结与回顾
关键知识点总结
长方体和正方体的体积公式
长方体的体积V=a×b×c,正方体的体积V=a^3,其中a、 b、c分别为长方体的长、宽、高,a为正方体的棱长。
体积单位的认识与换算
常见的体积单位有立方厘米(cm³)、立方分米(dm³)、立方 米(m³)等,需掌握各单位之间的换算关系。
实际问题的应用
提出改进方案
03
针对可能出现的误差,提出相应的改进方案,如提高测量精度、
使用更精确的计算方法等。
05 拓展延伸:不规则物体体 积估算方法
排水法原理及应用
原理
将不规则物体完全浸没于水中,通过计算物体排开水的体积来估 算物体的体积。
应用
适用于易溶于水或与水发生反应的物体以外的任何不规则物体。 如石块、金属块等。
公式应用注意事项
单位统一
在应用公式计算体积时,需要确 保长度、宽度和高度的单位统一,
避免出现错误结果。
公式适用范围
长方体和正方体的何体需要采用其他方
法进行计算。
公式变形应用
在实际应用中,可以根据需要对 公式进行变形,如已知体积和其
中两个维度求第三个维度等。
体积单位换算
1立方米=1000立方分米,1立 方分米=1000立方厘米。
实物体积感受
常见物体体积
列举生活中常见物体的体积,如 一个苹果的体积约为200立方厘米, 一个电冰箱的体积约为0.5立方米
等。
体积比较
通过比较不同物体的体积大小,让 学生感受体积的概念。
体积估算
通过估算物体的体积,培养学生的 空间想象力和估算能力。
02 长方体和正方体认识
长方体特点与性质
01
02

《长方体和正方体的体积》精品PPT课件

《长方体和正方体的体积》精品PPT课件

课程目标
掌握长方体和正方体 的体积计算公式。
培养学生的空间观念 和几何直觉,提高解 决几何问题的能力。
能够运用公式解决实 际问题,如计算容积、 体积等。
02
长方体的体积
长方体的定义
总结词
长方体的定义
详细描述
长方体是一种三维图形,由六个矩形面组成,相对的两个面完全相同。它的三 个边分别是长度、宽度和高度。
06
总结与回顾
本节课的重点回顾
计算长方体和正方体的体积公式 掌握长方体和正方体的体积计算方法
理解体积的概念和意义 了解体积单位的应用
本节课的难点解析
如何理解体积的概念 如何正确应用长方体和正方体的体积公式进行计算
如何解决与体积相关的实际问题
下节课预告
学习圆柱体的体积计算方法 了解圆锥体的体积计算公式
《长方体和正方体的 体积》精品ppt课件
• 引言 • 长方体的体积 • 正方体的体积 • 体积的单位和换算 • 练习与巩固 • 总结与回顾
目录
01
引言
课程背景
01
长方体和正方体是生活中常见的 几何形状,了解其体积计算方法 对于解决实际问题具有重要意义 。
02
学生已经学习了长方形和正方形 的面积计算,在此基础上进一步 学习长方体和正方体的体积计算 有助于巩固几何知识体系。
学习如何解决与立体几何相关的实际问题
感谢观看
THANKS
体积计算公式
正方体的体积可以通过其 棱长的三次方来计算,即 V = a^3,其中a是正方体 的棱长。
公式推导
正方体的体积可以通过其 底面积和高的乘积来推导, 即 V = a^2 × a = a^3。
单位换算
正方体的体积单位通常是 立方单位,如立方米、立 方厘米等,根据需要可以 进行单位换算。

人教版《长方体和正方体》完美版课件24(共18张PPT)

人教版《长方体和正方体》完美版课件24(共18张PPT)

那就让我 们开动
脑筋吧!
A
B
C
D
思考:上面的长方体是由体积1立方厘米的小正方体品拼摆出来的,如何快速地数出上图中各长方体中小 正方体的个数?
名称
长方体A 长方体B 长方体C 长方体D
每排个数
4 4
4 4
排数
3 3
3 3
1 2
3
4
层数
小正方体个数 长方体体积(单位 :cm³)
4×3×1=12
12
4×3×2=24
24
4×3×3=36 36
4×3×4=48 48
为什么长方体中小正方体的个数和长方体 体积的数量相同呢?
每排个数与长方体的长有什么关系?
排数与长方体的宽有什么关系?
层数与长方体的高有什么关系?
结论:小正方体个数=每排个数 × 排数 × 层数
长方体的体积就是长方体所 含体积单位的数量
猜想:长方体体积 = 长 × 宽 × 高
长方体体 积(单位 :cm³)
12
12
12
12
观察表格中的数据想一想: 1.比较这些长方体的摆法有什么共同点和不同点?
(这些长方体形状不同,体积相同) 2.为什么这些长方体形状不同而体积相同呢?
(因为它们都含有12个小正方体,也就是说它们含有同样多的体积单 位)
让我们 一起来
揭秘
知识讲解,难点突破
1 、什么是物体的体积?
物体所占空间的大小叫做
物体的体积。
粉笔
以旧引新,复习导入
2、常用的体积单位有( 立方)厘米 ( 立方分米)和( )立方。米
3、体积是 4 立方厘米的长方体里含有 ( 4)个体积是1立方厘米的小正方体。

人教版五年级数学下册第三单元第10课《 长方体、正方体体积 》复习课件

人教版五年级数学下册第三单元第10课《 长方体、正方体体积 》复习课件

在横线上填上合适的体积单位。
集装箱的体 积约是40 ( 立方米 )
电饭锅的体 积约是25 ( 立方分米 )
橡皮的体积 约是10
( 立方厘米 )
判断题。 长方体(或正方体)体积=底面积×高
(1)两个底面积相等的长方体,它们的体积一定相
等。
(×)
(2)棱长为6cm的正方体,它的体积和表面积相等。
(×)
一个长方体(如下图),现将它截成一个最大的 正方体,这个正方体的体积是多少?
从一个长方体中截取一个最 大的正方体,那么这个正方 体的棱长为原长方体的长、 宽、高中最短的长度。
一个长方体(如下图),现将它截成一个最大的 正方体,这个正方体的体积是多少?
7cm
7×7×7=343(cm³)
7cm 7cm
正方体体积=棱长×棱长×棱长
30×30×30=27000(cm³) 答:它的体积是27000cm³。
一个正方体的木箱,棱长是0.5dm。这 个木箱的体积是多少立方分米? 0.5×0.5×0.5=0.125(dm³)
答:这个木箱的体积是0.125立 方分米。
要在平地上挖一个长50m、宽30m、深50cm的 长方体土坑,一共要挖出多少方的土?
4.建筑工地要做50根水泥方柱,每根水泥方柱横截 面面积是3.6 dm2,长3 m,这些水泥方柱一共需 要水泥多少立方分米? 3 m=30 dm 3.6×30×50=5400(dm3) 答:这些水泥方柱一共需要水泥5400.(易错题)有一根长6 m的长方体木料,把它锯成相 同的4段,表面积比原来增加了180 cm2。原来这 根长方体木料的体积是多少立方厘米?
辨析:表面积减去两个底面积就是侧面积,侧面积 除以底面周长就是高,再用底面积乘高就是体积。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进率是:100
(3)口答:填一填,并说说你的想法。
4米=( 40 )分米=( 400 )厘米 高级单位的数×进率
500厘米=( 50 )分米=( 5 )=米 低级单位的数÷进率
单位名称
相邻两个单位 间的进率
长度
米、分米、厘米
10
面积 平方米、平方分米、 平方厘米
体积 立方米、立方分米、 立方厘米
V = abh = 6×2.2×0.4 = 5.28(立方米)
公正 式方 你体 会的 吗体 ?积
棱 长
a 棱长 a 棱长 a
正方体的体积=棱长×棱长×棱长 V=a×a×a
=a
一块正方形的石料,棱长是 6 dm。这块石 料的体积是多少立方分米?
解:石料的体积 V= a3= 63= 6×6×6 = 216(dm3)
1 L = 1000 ml
1 L = 1 dm3 1 ml = 1 cm3
像这些形状不规则的物体,怎么求它们的体积呢?
西





石 块
形状不规则的物体(如西红柿、土 豆、梨、橡皮泥、石块……),怎 样求得它们的体积呢?
可以用排 水法。
例6:这个西红柿的体积是多少?
350ml 200ml
放入后
水面高( 350ml).
从里面量长6分米, 6分米
宽5分米,高4分米。
计算容积的方法 和体积一样
4分米
1.物体的体积和容积相同点是什么? 不同点是什么?
相同点 : 计算方法相同。
不同点: 体积要从物体的外面量,是它本身 占据的空间
容积要从物体的里面量,是它所容纳 的物体的体积。
集装箱规格:从外面量长12.2米,宽2.4米,高2.6米; 从里面量长11.8米,宽2.1米,高2.2米;
7×4×3=84(立方分米)
(2)、一个长方体纸板箱的占地面积是100平方 厘米,高是50厘米,它的体积是多少立方厘 米?
100×50=5000(立方厘米)
(3) 、一个长方体的底面边长是2分米, 高是10分米,它的体积是多少立方分米?
2×2×10=40(立方分米)
2分米 2分米
综合应用
某体育场有一个长6.5米、宽4米、深0.5米 的长方体沙坑,已知每立方米黄沙重1.7吨,填满这个 沙坑需要用黄沙多少吨?
答:这块石料的体积是216dm3。
长方体或正方体底面的面积叫做底面积。
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
底面积
底面积
所以,长方体和正方体的体积也可以这样来计算。
长方体(或正方体)的体积=底面积×高 如果用字母表示底面积,上面的公式可以写成:
V=Sh
综合练习
(1)、一个长方体石块,长7分米,宽4分米,高3 分米,它的体积是多少立方分米?
集装箱的体积: 它能容纳多大体积的货:
12.2×2.4×2.6=76.128立方米 11.8×2.1×2.2=54.516立方米
体积单位与容积单位有什么关系?
1立方分米 = 1000 立方厘米
1升 = 1000 毫升
1立方厘米=1毫升 连接
计量液体的体积,如水、油等,常用容积单 位升和毫升,也可以写成L和ml。
1.7 ×(6.5 ×4 ×0.5)
= 1.7 ×13
= 22.1(吨)
答:填满这个沙坑需要用黄沙22.1吨。
★解法一:
7×5 ×5-7 ×5 ×3 =175 -105 =70(立方分米)
答:这个铁球的体积是70立方分米。
★解法二
7×5 ×(5-3) =35 ×2 =70(立方分米)
答:这个铁球的体积是70立方分米。)的黑板Fra bibliotek黑板旁边还有我的
最爱:一台体积是d2m003 (
)的电视机!
(1) 常用的长度单位有哪些? 相邻的两个单位间的进率是多少?
常用的长度单位:米、分米、厘米 1米=10分米 1分米=10厘米 1厘米=10毫米
进率是:10
(2)常用的面积单位有哪些?相 邻的两个单位间的进率是多少?
常用的面积单位:平方米、平方分米、平方厘米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
“六一”儿童节前,全市的小学 生代表用棱长3cm的正方体塑料拼插 积木在广场中央搭起了一面长6cm, 高2.7m,厚6cm的奥运心愿墙,算一 算这面墙共用了多少块积木?
箱子、油桶、仓库等这些容器可以容 纳的物体的体积,通常叫做它们的容 积。
计量容积,一般用体积单位。
要想计算这个长方体木箱容积 的大小,需要测量哪些数据, 怎样测?为什么?
总结: 1.物体所占空间的大小叫做物体的体积。 2.常用的体积单位有cm3、dm3、m3 3.长方体的体积=长×宽×高
V长方体= a b h
4.正方体的体积=棱长×棱长×棱长
v a = 3 正方体
• 测量篮球场的大小用( 面积 )单位。 • 测量学校旗杆的高度用( 长度 )单位。
• 测量一只木箱的体积要用( 体积 )单位。
100 1000
例3:(1)3.8m3是多少立方分米? (2)2400cm3是多少立方分米?
想:1m3= 1000 dm3 3.8m3= 3800 dm3
想:1000 cm3=1dm3 2400cm3= 2.4 dm3
一个包装盒,如果从 里面量长28cm,宽20cm, 体积为11.76dm3。爸爸想 用它包装一件长25cm,宽 16cm,高18cm的玻璃器皿, 是否可以装得下?
1dm
(2)棱长是1dm的正方体,体积
接近1立方分米的物体: 1dm3。
棱长是1m
1m
的正方体, 体积是1m3。
接近1立方米的物体:
棱长 1厘米(cm) 1分米(dm) 1米(m) 体积 1立方厘米(cm3) 1立方分米(dm3) 1立方米(m3)
1. 说一说1cm、1cm2、1cm3分别是用来 计量什么量的单位,它们有什么不同?
小明的数学日记
我们的教室占地面积约是60( m2 )。我的身
高只有1.4( m ),所以被安排在第一桌,离老
师的讲台最近,老师的讲台上放着一个体积为
1( dm3 )的粉笔盒,里面放了不少粉笔,一支粉
笔的体积约为7( cm3 ),粉笔盒的旁边是一瓶
体积为50c(m3 )的红墨水盒。在教室的前面有
一块面积是m6(2
长度单位 量一次 一条线段
面积单位 量两次 一个平面
体积单位 量三次 是个立体图形(6个面)
你能总结出长方体的体积计算公式吗?
长a

h 宽b
长方体的体积 = 长×宽×高
V=abh
计算下面长方体的体积
3 分米
0.8 分米 2 分米
6米 2. 2 米 0. 4 米
V = abh = 2×0.8×3 = 4.8(立方分米)
这个西红柿的体积是多少?
350ml 200ml
水面上升的高度
上升的水的体积 即西红柿的体积
350-200=250(ml)=250(cm3) 答:这个西红柿的体积是250cm3。
1、一个长方体容器,底面长2分米,宽1.5 分米,放入一个土豆后,水面升高了0.2分 米,这个土豆的体积是多少?
2×1.5×0.2 =3×0.2 =0.6(L) =0.6(立方分米)
物体所占空间的大小叫做物体的体积
石块所占空间的大小叫做石块的体积 书包所占空间的大小叫做书包的体积
计量体积要用体积单位,常用的体积单位有: 立方厘米,立方分米和立方米。
可以分别写成cm3,dm3和m3。
(1)棱长是1cm的正方体,体积是1cm3。
一个手指尖的体积 大约是1cm3。
1cm3
1dm
0.2分米
5分米 3分米
5分米 7分米
一个长方体水箱,长7分米,宽5分米,水深3分米。把一个铁球浸 没在水中,水面升高到5分米。这个铁球的体积是多少立方分米?
做一做:2、
8×8×7-8×8×6 8×8×(7-6) =64(cm3)
相关文档
最新文档