三角函数的有关概念
三角函数及其有关概念

三角函数及其有关概念三角函数是数学中一组描述角度和三角形关系的函数。
它们在几何学、物理学、工程学和许多其他领域中都有广泛的应用。
以下是一些与三角函数及其相关概念有关的重要概念:1.正弦函数(Sine Function,通常表示为sin):正弦函数是一个周期函数,它描述了直角三角形中角度和对边长度之间的关系。
正弦函数的定义如下:对于任意角度θ,正弦函数的值等于对边长度与斜边长度之比。
2.余弦函数(Cosine Function,通常表示为cos):余弦函数也是一个周期函数,它描述了直角三角形中角度和邻边长度之间的关系。
余弦函数的定义如下:对于任意角度θ,余弦函数的值等于邻边长度与斜边长度之比。
3.正切函数(Tangent Function,通常表示为tan):正切函数描述了角度和对边与邻边之间的关系。
正切函数的定义如下:对于任意角度θ,正切函数的值等于对边长度与邻边长度之比。
4.三角函数的周期性:正弦、余弦和正切函数都是周期函数,其周期是360度(或2π弧度)。
这意味着这些函数在每个周期内的值重复。
5.弧度(Radian):弧度是角度的另一种度量方式,常用符号是rad。
1弧度等于半径等于圆的弧长所对应的角度。
弧度是在三角函数中常用的单位,因为它使三角函数的公式更加简洁。
6.三角恒等式:三角函数满足一系列重要的恒等式,其中最著名的是正弦定理、余弦定理和正切定理。
这些定理在解决三角形中的问题时非常有用。
7.正弦法则和余弦法则:这些法则用于解决非直角三角形中的边和角的关系问题。
8.三角函数的图形:正弦、余弦和正切函数的图形通常是波形,它们在数学中和实际应用中都有广泛的用途。
这些概念是三角函数和相关数学原理的基础。
掌握它们有助于解决与角度和三角形有关的各种问题。
三角函数总结归纳

最新三角函数总结归纳大全三角函数是数学中的重要概念,主要用于描述三角形中角度和边长之间的关系。
以下是三角函数的总结归纳:1. 定义:- 正弦(sin):定义为对边与斜边的比值,记作sin(θ),其中θ为角度。
- 余弦(cos):定义为邻边与斜边的比值,记作cos(θ)。
- 正切(tan):定义为对边与邻边的比值,记作tan(θ)。
2. 基本关系:- Pythagorean identity:sin^2(θ) + cos^2(θ) = 1。
这是三角函数的基础,常用于角度和三角形的计算。
- Pythagorean theorem:在直角三角形中,斜边的平方等于两直角边的平方和。
- Cotangent identity:cot(θ) = 1/tan(θ)。
- Secant identity:sec(θ) = 1/cos(θ)。
- Cosecant identity:csc(θ) = 1/sin(θ)。
3. 诱导公式:- 公式一:sin(π/2 - α) = cos(α)。
- 公式二:cos(π/2 - α) = sin(α)。
- 公式三:sin(π/2 + α) = cos(α)。
- 公式四:cos(π/2 + α) = -sin(α)。
- 公式五:sin(π- α) = sin(α)。
- 公式六:cos(π- α) = -cos(α)。
- 公式七:sin(π+ α) = -sin(α)。
- 公式八:cos(π+ α) = -cos(α)。
4. 和差公式:- sin(α+ β) = sinαcosβ+ cosαsinβ。
- cos(α+ β) = cosαcosβ- sinαsinβ。
- tan(α+ β) = (tanα+ tanβ)/(1 - tanαtanβ)。
5. 倍角公式:- sin2α= 2sinαcosα。
- cos2α= cos^2(α) - sin^2(α)。
- tan2α= 2tanα/(1 - tan^2(α))。
三角函数的概念

三角函数的概念三角函数是数学中一种重要的函数类型,它描述了角度和长度之间的关系。
它在几何、物理、工程和计算机图形等领域中具有广泛的应用。
本文将介绍三角函数的概念以及它们的定义、性质和图像特征。
一、三角函数的定义1. 正弦函数(sine function):正弦函数是指一个单位圆上任意角的对应坐标的纵坐标值,用sin表示。
在三角形中,正弦函数表示对边与斜边的比值。
2. 余弦函数(cosine function):余弦函数是指一个单位圆上任意角的对应坐标的横坐标值,用cos表示。
在三角形中,余弦函数表示邻边与斜边的比值。
3. 正切函数(tangent function):正切函数是指一个单位圆上任意角的对应坐标的纵坐标值与横坐标值的比值,用tan表示。
在三角形中,正切函数表示对边与邻边的比值。
二、三角函数的性质1. 周期性:三角函数都具有周期性,周期为360度或2π弧度。
例如,sin(θ)=sin(θ+360°)=sin(θ+2π)。
2. 奇偶性:正弦函数是奇函数(sin(-θ)=-sin(θ)),余弦函数和正切函数是偶函数(cos(-θ)=cos(θ),tan(-θ)=tan(θ))。
3. 值域:正弦函数和余弦函数的值域为[-1, 1];正切函数的值域为全体实数。
三、三角函数的图像1. 正弦函数的图像呈现出周期性的波形,对于一个周期内的任意值,其取值范围在[-1, 1]之间。
2. 余弦函数的图像与正弦函数非常相似,只是在横坐标上有一个相位差。
3. 正切函数的图像在某些角度上会出现无穷大或无穷小,这些角度被称为正切函数的奇点。
四、三角函数的应用1. 几何学应用:三角函数在几何学中广泛应用于解决三角形相关的问题,如计算三角形的边长、角度和面积等。
2. 物理学应用:三角函数在物理学中用于描述波动、振动和周期性现象,如声音和光的传播。
3. 工程学应用:三角函数在工程学中用于解决各种实际问题,如测量、设计和建模等。
三角函数的基本概念

三角函数的基本概念三角函数是数学中重要的概念之一,它们是描述角度与三角形之间关系的函数。
在数学和物理学中,三角函数广泛应用于各种领域,包括几何、导数、微积分、辐射传输等。
一、正弦函数正弦函数是最基本的三角函数之一,通常用sin表示。
对于任意角度θ,正弦函数的值定义为对边与斜边的比值:sin(θ) = 对边/斜边。
正弦函数的定义域为整个实数集,值域为[-1,1]。
二、余弦函数余弦函数是另一种常见的三角函数,通常用cos表示。
对于任意角度θ,余弦函数的值定义为邻边与斜边的比值:cos(θ) = 邻边/斜边。
余弦函数的定义域为整个实数集,值域也为[-1,1]。
三、正切函数正切函数是正弦函数与余弦函数的比值,通常用tan表示。
对于任意角度θ,正切函数的值定义为对边与邻边的比值:tan(θ) = 对边/邻边。
正切函数的定义域为除了90度和270度的整数倍角之外的所有实数,值域为整个实数集。
四、余切函数余切函数是余弦函数与正弦函数的比值,通常用cot表示。
对于任意角度θ,余切函数的值定义为邻边与对边的比值:cot(θ) = 邻边/对边。
余切函数的定义域为除了0度和180度的整数倍角之外的所有实数,值域为整个实数集。
五、正割函数正割函数是正弦函数的倒数,通常用sec表示。
对于任意角度θ,正割函数的值定义为斜边与邻边的比值:sec(θ) = 斜边/邻边。
正割函数的定义域为除了90度和270度的整数倍角之外的所有实数,值域为(-∞,-1]和[1,+∞)。
六、余割函数余割函数是余弦函数的倒数,通常用csc表示。
对于任意角度θ,余割函数的值定义为斜边与对边的比值:csc(θ) = 斜边/对边。
余割函数的定义域为除了0度和180度的整数倍角之外的所有实数,值域为(-∞,-1]和[1,+∞)。
三角函数除了以上六种基本函数外,还有诸如反正弦函数、反余弦函数、反正切函数等反三角函数,它们的定义域和值域不同于基本三角函数。
三角函数在数学上有丰富的性质和运算规律,如正弦函数和余弦函数的和差公式、倍角公式等,这些规律在解决实际问题时起着重要的作用。
高中三角函数知识点整理

高中三角函数知识点整理三角函数是数学中重要的概念,存在于高中数学课程中,是几何、代数、微积分等领域的基础知识。
下面整理了高中三角函数的重要知识点,希望对学生们的学习有帮助。
一、三角函数的基本概念1.弧度制:角的度量单位,一个角所对应的弧长等于半径的长度时,这个角的大小为1弧度。
2.角的三要素:顶点,始边,终边,顶点为角的端点,始边为角的起始边,终边为角的结束边。
3.弧度与角度的转换:角度数×π/180=弧度。
4.等角:具有相同角度的两个角是等角。
5. 正弦:给定一个锐角∠A,对于 A 的任何弧 B,就有 sin A = sin B。
二、正弦、余弦和正切函数1. 正弦函数:在数轴上,根据半径 r 的终端点 (x, y),它的正弦函数值定义为 y / r,可以表示为sinθ。
2. 余弦函数:在数轴上,根据半径 r 的终端点 (x, y),它的余弦函数值定义为 x / r,可以表示为cosθ。
3. 正切函数:在数轴上,根据半径 r 的终端点 (x, y),它的正切函数值定义为 y / x,可以表示为tanθ。
4.三角函数的性质:正弦和余弦函数的值在-1到1之间,正切函数的值没有限制。
三、三角函数的基本性质1.三角函数的周期性:正弦和余弦函数周期为2π,正切函数周期为π。
2.函数图像:正弦函数和余弦函数的图像为曲线,正切函数的图像为直线。
3.函数值的变化:正弦函数和余弦函数的值在一个周期内从-1到1变化,正切函数在不同区间内的值无限制变化。
4. 正弦函数和余弦函数的图像对称:sin(-θ) = -sinθ,cos(-θ) = cosθ。
5. 周期性的性质:sin(θ + 2πn) = sinθ,cos(θ + 2πn) =cosθ,n为整数。
6. 三角函数的诱导公式:sin(α + β) = sinαcosβ +cosαsinβ,cos(α + β) = cosαcosβ - sinαsinβ。
初中数学:三角函数

初中数学:三角函数三角函数是数学中经典的概念之一,是数学分析、数学物理、工程等领域的基础工具。
本篇文章将从初中三角函数的定义、性质、常见角度及其应用等方面进行介绍。
一、三角函数的定义1. 正弦函数正弦函数Sine,简写为sin,是一个经典的周期函数,它的周期是2π。
在数学上,正弦函数可以用一个圆上的角的对边长度与斜边长度之比来定义。
设一个半径为r的圆上有一个角α,则该角的正弦值为:sinα = 对边/ 斜边2. 余弦函数余弦函数Cosine,简写为cos,同样是一个经典的周期函数,它的周期也是2π。
在数学上,余弦函数可以用一个圆上的角的邻边长度与斜边长度之比来定义。
设一个半径为r的圆上有一个角α,则该角的余弦值为:cosα = 邻边/ 斜边3. 正切函数正切函数Tangent,简写为tan,用一个直角三角形的对边长度与邻边长度之比来描述。
设一个直角三角形中的一个角为α,则该角的正切值为:tanα = 对边/ 邻边4. 余切函数余切函数Cotangent,简写为cot,是正切函数的倒数,它用邻边长度与对边长度之比来描述。
设一个直角三角形中的一个角为α,则该角的余切值为:cotα = 邻边/ 对边二、三角函数的性质1. 正弦函数和余弦函数的特点正弦函数与余弦函数具有如下特点:(1)周期性:正弦函数和余弦函数都是周期函数,周期均为2π。
(2)奇偶性:正弦函数是奇函数,余弦函数是偶函数。
(3)取值范围:正弦函数的取值范围是[-1,1],余弦函数的取值范围也是[-1,1]。
2. 正切函数和余切函数的特点正切函数与余切函数具有如下特点:(1)周期性:正切函数和余切函数都是周期函数,周期均为π。
(2)奇偶性:正切函数是奇函数,余切函数也是奇函数。
(3)取值范围:正切函数的取值范围是R(实数集),余切函数的取值范围也是R,但余切函数的定义域不包括π的整数倍。
三、常见角度的三角函数值1. 30°、45°、60°三角函数值(1)30°角正弦函数:sin30° = 1/2余弦函数:cos30° = √3/2正切函数:tan30° = 1/√3余切函数:cot30° = √3(2)45°角正弦函数:sin45° = √2/2余弦函数:cos45° = √2/2正切函数:tan45° = 1余切函数:cot45° = 1(3)60°角正弦函数:sin60° = √3/2余弦函数:cos60° = 1/2正切函数:tan60° = √3余切函数:cot60° = 1/√32. 常用角度的三角函数值(1)0°和180°角正弦函数:sin0° = 0,sin180° = 0余弦函数:cos0° = 1,cos180° = -1正切函数:tan0° = 0,tan180° = 0余切函数:cot0° = 无穷大,cot180° = 无穷大(2)90°和270°角正弦函数:sin90° = 1,sin270° = -1余弦函数:cos90° = 0,cos270° = 0正切函数:tan90° = 无穷大,tan270° = 无穷大余切函数:cot90° = 0,cot270° = 0四、三角函数的应用1. 三角函数在直角三角形中的应用在直角三角形中,三角函数可以用来计算三角形的各个边与角。
数学中的三角函数概念及其应用

数学中的三角函数概念及其应用三角函数是解决三角形相关问题的数学工具。
三角函数的概念通常可用一些基本函数来表示,比如正弦、余弦、正切。
这些函数在数学中广泛应用,对于计算和推导都有很大帮助。
一、三角函数的定义与性质1. 正弦函数在一个直角三角形中,正弦函数是指对于一个锐角,其对边与斜边的比值,记作sin。
即sin=a/c。
在三角形中,角度越小,正弦值越小。
也就是说,sin0=0,sin90=1。
知道sin的定义,我们可以推导出sin的周期与奇偶性质。
由于正弦函数是个周期函数,周期为2π。
另外,正弦函数是奇函数,即sin(-x)=-sin(x)。
2. 余弦函数余弦函数是指对于一个锐角,其邻边与斜边的比值,记作cos。
即cos=b/c。
在三角形中,角度越小,余弦值越大。
也就是说,cos0=1,cos90=0。
与正弦函数类似,可以推导出余弦函数的周期与奇偶性质。
余弦函数同样是周期为2π的函数,但它是偶函数,即cos(-x)=cos(x)。
3. 正切函数正切函数是指对于一个锐角,其对边与邻边的比值,记作tan。
即tan=a/b。
在三角形中,角度越小,正切值越小。
也就是说,tan0=0,tan90=undefined。
正切函数的周期同样为π,但是它的奇偶性质不同于之前的两个函数。
正切函数为奇函数,即tan(-x)=-tan(x)。
二、三角函数的应用1. 三角函数在几何中的应用三角函数在几何中最常见的应用就是计算直角三角形中缺失的数值。
比如,在已知两边以及一个角度的情况下,可以求解第三边的长度;在已知三个角度的情况下,可以确定三角形是否为直角三角形。
2. 三角函数在物理中的应用三角函数在物理中应用广泛。
例如,当一个物体作周期运动时,其运动轨迹可以用正弦或余弦函数来表示。
这里,周期总是与角频率相关。
用正弦函数表示物体的位移函数,与角频率ω有关,即y=Asin(ωt+φ)。
而用余弦函数表示,则与角频率的关系为y=Acos(ωt+φ)。
三角函数的概念解析

5.2.1 三角函数的概念知识点1 任意角的三角函数1.定义:设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:sin y α=,cos x α=,tan (0)yx xα=≠. 2.推广:设点(,)P x y 是角α终边上任意一点且不与原点重合,r OP =,则:sin y r α=,cos x r α=,tan (0)yx xα=≠. 注:三角函数的值与点P 在终边上的位置无关,仅与角的大小有关,我们只需计算点到原点的距离22r OP x y ==+,那么22sin x y α=+22cos x y α=+tan (0)yx xα=≠知识点2 正弦、余弦、正切函数值在各象限内的符号 1.图示:2.口诀:“一全正,二正弦,三正切,四余弦”.意为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.考点一 三角函数的定义及应用解题方略:(1)求已知角三角函数值,一般求已知角的终边与单位圆的交点坐标,再利用三角函数的定义求解. (2)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.sin y r α=,cos x r α=,tan y xα=. 注:利用三角函数的定义,求一个角的三角函数值时,需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r .(3)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. ①注意到角的终边为直线,所以应分两种情况来处理,取射线上任一点坐标(,)(0)a b a ≠,则对应角的正弦值22sin a b α=+,余弦值22cos a b α=+tan baα=. 注:若题目中已知角的终边在一条直线上,此时注意“在终边上任取一点”应分两种情况(点所在象限不同)进行分析.(4)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.(一)利用定义求角的三角函数值【例1-1】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(2,1)-,则sin α的值为( )A .5B 5C .25D 25【答案】B【解析】已知点()2,1P -,则()22215r OP ==-+5sin =5y r α=.变式1-1-1:若角α的终边经过点2(5,)1P -,则sin α=_______,cos α=______,tan α=________.【答案】1213-;513;125- 【解析】因为5,12x y ==-,所以225(12)13r =+-,则12512sin ,cos tan 13135y x y r r x ααα==-====-,.变式1-1-2:已知角α的终边过点()43-,,则2sin cos αα+=( ) A .1 B .25-C .25D .1-【答案】B【解析】因为角α的终边过点()43-,, 所以()()222234sin ,cos 554343αα=-==+-+-,所以3422sin cos 2555αα⎛⎫+=⨯-+=- ⎪⎝⎭,变式1-1-3:(多选)已知函数()()log 2401a f x x a a =-+>≠且的图象经过定点A ,且点A 在角θ的终边上,则11tan sin θθ+的值可能是( ) A .2 B .3 C 171+ D 171+【答案】AC【解析】由题意,可知(3,4)A 或(1,4)A ,当点是(3,4)A 时,由三角函数的定义有2244tan ,sin 3534θθ==+,所以11352tan sin 44θθ+=+=; 当点是(1,4)A 时,由三角函数的定义有224tan 4,sin 11714θθ==+11117171tan sin 4θθ+∴+==变式1-1-4:(多选)若角α的终边上有一点(4,)P a -,且3sin cos αα⋅=,则a 的值为( ) A .3 B 3 C .43-D .43【答案】CD【解析】由三角函数的定义可知,()22sin 4a α=-+()22cos 4a α=-+又3sin cos αα⋅=,则()22434a a -=-+43a =-433(二)由三角函数值求终边上的点或参数【例1-2】已知角α的顶点与平面直角坐标系的原点重合,始边与x 轴的正半轴重合,终边经过点()02,y -,若π3α=,则0y 的值为( ). A .3- B .23C .3D 23【答案】A【解析】因为角α终边经过点()02,y -,且3πα=,所以0πtan332y =-023y =-变式1-2-1:已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( )A .12B .1C .2D .52【答案】C【解析】由题意31tan 2m m θ-==,解得2m =.变式1-2-2:已知()2,P y -是角θ终边上一点,且22sin θ=y 的值是( ) A .22B 22C .434D 434【答案】D【解析】因为()2,P y -是角θ终边上一点,22sin 05θ=>,故点()2,P y -位于第二象限 所以0y >,2222sin (2)y θ==-+21732y =,因为0y >,所以434y =变式1-2-3:已知角θ的终边经过点()21,2a a +-,且3cos 5θ=,则实数的a 值是( )A .2-B .211C .2-或211D .1【答案】B2235(21)(2)a a =++-且210a +>,即12a >-,①2244195525a a a ++=+,则2112040a a +-=,解得2a =-或211a =,综上,211a =.变式1-2-4:已知角α的终边上有一点(3P m ,且2cos 4mα=,则实数m 取值为______.【答案】0或5【解析】因为角α的终边上有一点(3P m , 所以22cos 43mm α==+,解得0m =或5±(三)由单位圆求三角函数值【例1-3】已知角α的终边与单位圆交于点132P ⎛- ⎝⎭,则sin α的值为( )A. 3 B .12-C 3D .12【答案】C【解析】因为角α的终边与单位圆交于点132P ⎛- ⎝⎭,所以根据三角函数的定义可知,3sin y α==.变式1-3-1:角α的终边与单位圆的交点A 3sin α=________,若点A 沿单位圆逆时针运动到点B ,所经过的弧长为2π,则转过的角度为________. 132π 【解析】α的终边与单位圆的交点A 3可得:3cos α=sin 0α>,则有:22313sin 1cos 14αα⎛⎫=--=⎪⎝⎭点A 沿单位圆逆时针运动到点B ,所经过的弧长为2π,可得:2AOB π∠=变式1-3-2:已知角α的终边与单位圆交于点36(P ,则sin cos αα⋅=( ) A 3 B .2C .3D 2【答案】B【解析】α的终边与单位圆交于点36(P ,故36||1,r OP x y ====, 故636333sin cos 11y x r r αα==== 所以632sin cos 3αα⋅=(=-,(四)已知角α的终边在直线上求三角函数值【例1-4】已知角α的终边落在射线2(0)y x x =≥上,求sin α,cos α的值.【解析】设射线2(0)y x x =≥上任一点00(,)P x y ,则002y x =,220005OP r x y x ∴==+=,00025sin 55y r x α∴===,0005cos 55x r x α===.变式1-4-1:已知α的终边落在直线2y x =上,求sin α,cos α的值255255【解析】①若α的终边在第一象限内,设点(,2)(0)P a a a >是其终边上任意一点22(2)5(0)r OP a a a a ==+=>25sin 55y r a α∴===,5cos 55x r a α===①若α的终边在第三象限内,设点(,2)(0)P a a a <是其终边上任意一点22(2)5(0)r OP a a a a ==+=-<25sin 5y r a α∴===-,5cos 5x r a α===-变式1-4-2:α是第二象限角,其终边上一点(5P x ,且2cos x α=,则sin α的值为( ) A 10 B 6 C 2 D .10 【答案】A【解析】由题意可知0x <,22cos 5x x α=+,解得3x =-510sin 35α==+考点二 三角函数值符号的判定解题方略:三角函数值符号的判断方法要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定函数值的符号.如果角不能确定所在象限,那就要进行分类讨论求解.(一)已知角或角的范围确定三角函数式的符号【例2-1】坐标平面内点P 的坐标为()sin5,cos5,则点P 位于第( )象限.A .一B .二C .三D .四【答案】B 【解析】32π2π5<<,sin50,cos50∴<>,则点P 位于第二象限,变式2-1-1:若α为第四象限角,则( )A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0 【答案】D【解析】法一:因为α为第四象限角,22,2k k k Z ππαπ∴-<<∈,424,k k k Z ππαπ∴-<<∈所以2α的终边在第三象限、第四象限或y 轴的负半轴上,所以sin 20α<.法二:因为α为第四象限角,sin 0α∴<,cos 0α>,sin 22sin cos 0ααα∴=<.变式2-1-2:下列各选项中正确的是( )A .sin300>0︒B .cos(305)0-︒<C .22tan 03π⎛⎫-> ⎪⎝⎭D .sin100<【答案】D【解析】30036060︒=︒-︒,则300︒是第四象限角,故sin3000︒<;30536055-︒=-︒+︒,则305-︒是第一象限角,故cos(305)0-︒>;222833πππ-=-+,则223π-是第二象限角,故22tan 03π⎛⎫-< ⎪⎝⎭; 73102ππ<<,则10是第三象限角,故sin100<,故选D.变式2-1-3:下列各式:①()sin 100-︒; ①()cos 220-︒; ①()tan 10-; ①cos π. 其中符号为负的有( )A .1个B .2个C .3个D .4个 【答案】D【解析】100-︒,故()sin 1000-︒<;220-︒在第二象限,故()cos 2200-︒<;710,32ππ⎛⎫-∈-- ⎪⎝⎭在第二象限,故()tan 100-<,cos 10π=-<.(二)由三角函数式的符号确定角的范围或象限【例2-2】已知sin tan 0θθ⋅<,则角θ位于第________象限.【答案】二或三【解析】当θ为第一象限角时,sin 0θ>,tan 0θ>,sin tan 0θθ⋅>; 当θ为第二象限角时,sin 0θ>,tan 0θ<,sin tan 0θθ⋅< 当θ为第三象限角时,sin 0θ<,tan 0θ>,sin tan 0θθ⋅< 当θ为第四象限角时,sin 0θ<,tan 0θ<,sin tan 0θθ⋅> 综上,若sin tan 0θθ⋅<,则θ位于第二或第三象限变式2-2-1:已知sin 0θ<且tan 0θ<,则θ是( )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角【答案】D【解析】sin 0θ<,则θ是第三、四象限的角,tan 0θ<,则θ是第二、四象限的角 ①θ是第四象限的角变式2-2-2:若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】sin cos 0αα⋅<,α是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<; 当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意; 综上所述:α是第二象限角.变式2-2-3:若sin tan 0αα<,且cos 0tan αα<,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】C【解析】由sin tan 0αα<可知sin α,tan α异号,从而α是第二或第三象限角.由cos 0tan αα<可知cos α,tan α异号,从而α是第三或第四象限角. 综上可知,α是第三象限角.变式2-2-4:已知点P (tan α,cos α)在第四象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】因为点P 在第四象限,所以有tan 0cos 0αα>⎧⎨<⎩,由此可判断角α的终边在第三象限.变式2-2-5:若cos α与tan α同号,那么α在( )A .第一、三象限B .第一、二象限C .第三、四象限D .第二、四象限 【答案】B【解析】因为cos α与tan α同号,则cos α与tan α的乘积为正,即正弦值为正,所以α在第一、二象限.变式2-2-6:在ABC 中,A 为钝角,则点()cos ,tan P A B 在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】在ABC 中,A 为钝角,则B 为锐角,则cos 0,tan 0A B <>,则点()cos ,tan P A B 在第二象限变式2-2-7:已知角α的终边经过点(39,2)a a -+,且cos 0α≤,sin 0α>,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 【答案】A【解析】①cos 0α≤,sin 0α>,①角α的终边落在第二象限或y 轴的正半轴上. ①39020a a -≤⎧⎨+>⎩ ①23a -<≤ .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则21x x -的最小值是_______3.不等式1tan -<x 的解集是 ,不等式1cos sin >-x x 的解集是 , 4.函数2cos 3cos ++=x x y 的值域是思考题:求函数x x x x y cos sin cos sin ++=的值域 (1cos 3cos sin 2sin 22+++=x x x x y 的值域)§28 三角函数的性质(2)【基本训练】1.判断函数的奇偶性:①x y cos lg =__________②)23sin(x y +=π__________ 2.函数)4tan(π+=x y 的对称中心是___________,函数)32sin(π-=x y 的对称轴方程是___________3.x y 2cos =的单调递减区间为___________________;)sin(2x y -=的单调递增区间为___________________;x y tan =的单调递减区间为_____________________4.若)(x f 是奇函数,当0>x 时,,sin )(2x x x f -=则0<x 时 =)(x f 5.若函数)sin(3)(ϕω+=x x f 对任意实数x 都有=+)6(x f π),6(x f -π则________)6(=πf 【典型例题讲练】例1设函数)(),0)(2sin()(x f y x x f =<<-+=ϕπϕ图象的一条对称轴是直线,8π=x)1(求ϕ; )2(求函数)(x f y =的单调减区间; 证明直线025=+-c y x 与函数)(x f y =的图象不相切 例2 求下列函数的单调区间:);323sin(21)1(xy -=π )4cos()2(π--=x y例3 已知函数)0,0)(sin()(πϕωϕω≤≤>+=x x f 是R 上的偶函数,其图象关于点)0,43(πM 对称,且在区间]2,0[π上是单调函数,求ϕ和ω的值.练习:若函数)(x f y =的图象和)4sin(π+=x y 的图象关于点 )0,4(πM 对称,则)(x f 的表达式是_________________【课堂检测】1.函数x y 2sin =的对称轴方程为_________, 函数)2cos(π+=x y 的对称中心坐标为_________ 2.求下列函数的单调区间(1))34sin(x y -=π;(2))cos (sin sin )(x x x x f -=3.已知)sin(3)sin()(θθ-++=x x x f 为偶函数,求θ的值.【课后作业】1.已知函数23sin cos cos ()y ωx ωx ωx R ωR =-∈∈3x+,,2的最小正周期为π,且当6πx =时,函数有最小值,(1)求()f x 的解析式;(2)求()f x 的单调递增区间。
2.求函数)]43[cos(log 21π+=x y 的单调区间3.已知向量b a x f x x b x x a ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos 2(令πππ.求函数f (x )的最大值,最小正周期,并写出f (x )在[0,π]上的单调区间.(江西卷) 思考题:§29 三角函数的最值问题(1)【基本训练】1.(1)设M 和N 分别表示函数1cos 31-=x y 的最大值和最小值,则M +N 等于_______. (2)函数xx y c o s s i n 4=在区间[0,π32]上的最大值为_______,最小值为_______.2.(1)函数x x y cos sin +=的最大值为_______,最小值为_______.(2)函数)6sin()3sin(2x x y ++-=ππ的最大值为_______. 3.函数25sin 25sin 2+-=x x y 的最大值为_______,最小值为_______.4.函数xx x f sin 1sin )(+=,),0(π∈x ,则)(x f 的最小值是_______.5.函数1cos cos +=x xy 的最大值为_______.【典型例题讲练】 例1 求函数x x y cos 3sin +=在区间[2,2ππ-]上的最大值与最小值.练习: 函数)40)(sin (cos sin π<<-=x x x x y 的最大值是例2 函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于_______练习: 已知,4-<k 则函数)1(cos 2cos -+=x k x y +1的最小值是多少? 例3 求函数)cos 34)(sin 34(x x y --=的最小值. 练习: 求函数 ))(cos (sin a x a x y ++= 的最大值与最小值(其中)01<≤-a .【课堂检测】已知31sin sin =+y x ,求x y 2cos sin -的最大值与最小值.1.当时,函数的最大值是 ,最小值是2. 函数2cos 3cos 2+-=x y 的最小值为 3.函数xx y cos sin 21++=的最大值是§30 三角函数的最值问题(2)【基础练习】1.若函数)34sin(π--=x b a y 的最大值和最小值分别为5和1,则=a ,=b .2. 函数)6cos()3sin(2x x y +--=ππ的最小值为_______. 3. 函数472cos sin cos 2+--=x x x y 的最大值_________.4.函数2sin sin +=x x y 的最小值为______,,最大值为_______.【典型例题】例1 已知函数x x x x x x f cos sin sin 3)3sin(cos 2)(2+-+=π,求函数)(x f 的最大、最小值. 练习: 已知aR a a x x x x f ,.(1cos sin 32cos 2)(2∈-++=为常数).(1)若,R x ∈求)(x f 的最小正周期;(2)若)(x f 在[0,6π]上的最大值与最小值之和为5,求a 的值.例2 设关于x 的函数)12(cos 2cos 22+--=a x a x y 的最小值为)(a f . (1)写出)(a f 的表达式;(2)试确定使21)(=a f 的a 值,并对此时的a ,求y 的最大值.例3 扇形AOB 的半径为1,中心角为 60,PQRS 是扇形的内接矩形,问P 在怎样的位置时,矩形PQRS 的面积最大,并求出这个最大值.【课堂检测】1.若)10(sin 2)(<<=ωωx x f 在区间]3,0[π上得最大值是2.则的值是_______2.求函数x x x x y 22cos 3cos sin 2sin ++=的最大值和最小值及相应x 的值. 【课外作业】1.已知函数1cos sin 23cos 212++=x x x y ,R x ∈ (I )当函数y 取得最大值时,求自变量x 的集合;(II )该函数的图象可由x y sin =(R x ∈)的图象经过怎样的平移和伸缩变换得到?2.已知函数1cos sin 32sin 2)(2++-=b x x a x a x f 的定义域为]2,0[π,值域为]1,5[-,求b a ,之值.§31 两角和与差的三角函数式(1)RSOBAQP【考点及要求】 1.掌握两角和与两角差的正弦、余弦、正切公式.2.能正确运用三角公式进行简单的三角函数式的化简、求值. 【基础知识】:sin()αβ±= ;cos()αβ±= ;tan()αβ±= .公式的“三用”指 用、 用和 用 【基本训练】1.(1)︒︒-︒︒43cos 73sin 47cos 17sin = (2)︒+︒-15tan 115tan 1=___________2.=++)19tan 1)(26tan 1(3.若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于 4.若tan 3α=,4tan 3β=,则tan()αβ-等于 5.求值)10tan 31(50sin 200+= . 【典型例题讲练】例1 求值:︒+︒+︒+︒10cos 1)10tan 31(80sin 50sin 2练习:︒--︒︒-100sin 110cos 20sin 12例2 设),,2(ππα∈若,54sin =α试求:(1))4cos(2πα+;(2))3tan(πα+. 练习: 设54)cos(-=-βα,1312)cos(=+βα,),2(ππβα∈-,)2,23(ππβα∈+,求α2cos ,β2cos 的值.例3 已知m =+)cos(βα,n =-)cos(βα,)0(≠+n m ,求βαtan tan ⋅.练习:21)s i n (=+βα,31)sin(=-βα,则βαcot tan =_____________ 【课堂检测】 1.化简: θθcos 21sin 23+=___________2.152sin 118cos 28cos 62sin -=_______;______15sin 15cos 15sin 15cos =+-.3.,542cos ,532sin -==αα则α角的终边在第____象限.4.)20tan 10(tan 320tan 10tan ︒+︒+︒︒= .§32 两角和与差的三角函数式(2)【基础练习】1.已知βα,均为锐角,且),sin()cos(βαβα-=+则______tan =α 2.________6sin36cos =+ππ3.在ABC ∆中,若,135cos ,54cos ==B A 则C cos 的值是_________ 4.︒︒-︒70sin 20sin 10cos 2的值为_________【典型例题讲练】例1 已知α、β、,cos cos cos ,sin sin sin ),2,0(αγββγαπγ=+=+∈ 求αβ-的值.例2 设71cos =α,1411)cos(-=+βα,)2,0(πα∈,),2(ππβα∈+,求β.练习: 已知,71tan ,21)tan(-==-ββα,且),0(πβα∈、,求βα-2的值.例3.化简:)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ例4 求证:αααα2sin 412tan2cotcos 2=-.【课堂检测】 1. 化简:βαβαβα2cos 2cos 21cos cos sin sin 2222-+2. 已知:ββαtan 2)tan(=+,求证:)2sin(sin 3βαα+= 【课后作业】 1.已知sin α=55,则sin 4α-cos 4α的值为2.化简:)]12tan()18[tan(3)12tan()18tan(x x x x ++-++-3.若53)4cos(=+x π,471217ππ<<x ,求xxx tan 1sin 22sin 2-+的值.4.设ABC ∆中,有3tan tan 33tan tan ,sin cos 4A B A B A A ++==, 则此三角形是 三角形。