数学分析试题及答案4
数学分析4测试题答案

dxdy = ∫∫ e − ( x
Sa a
2
2
+ y2 )
dxdy ≤ ∫∫ e − ( x
D2
2
+ y2 )
dxdy
而 H (a ) = ∫∫ e
D1
− ( x2 + y2 )
dxdy = ∫ dθ ∫ e− r rdr =
0
π 2 0
2 2 π π (1 − e − a ) , G (a ) = (1 − e −2 a ) , 且 4 4
0 3 3 3 3 y 9 3
4. 8; 7. 8
1 3 1 x + x 2 y − xy 2 − y 3 + C 3 3 二、计算题(每小题 9 分,共 54 分) 6.
f x ( x, y ) = cos x + cos( x + y ) = 0 1. 由 ,求得稳定点 (2mπ + π , 2nπ + π ) , f y ( x, y ) = cos y + cos( x + y ) = 0 (2mπ + π π π π , 2nπ + ) , (2mπ − , 2nπ − ) . 3 3 3 3 在 点 (2mπ + π , 2nπ + π ) 处 ,
Ò ∫∫ Ò ∫∫
同理得:
S
xyzdxdy = ∫∫ xydxdy = ∫ 2 dθ ∫ r 3 sin θ cos θ dr =
D1 0 0 1 1
π
1
1 8 1 6
S
xyzdydz = ∫∫ xy 1 − y 2 dydz = ∫ dy ∫ yz 1 − y 2 =
D2 0 0
数学分析—极限练习题及详细答案

一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。
A.sin ||xB.ln(1)x -C.11.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
微积分(数学分析)练习题及答案doc

统计专业和数学专业数学分练习题 计算题1. 试求极限.42lim)0,0(),(xyxy y x +-→2. 试求极限.)()cos(1lim 222222)0,0(),(y x y x ey x y x ++-→3. 试求极限.1sin 1sin )(lim )0,0(),(yx y x y x +→4. 试讨论.lim 422)0,0(),(y x xy y x +→5. 试求极限.11lim2222)0,0(),(-+++→y x y x y x6. ),(xy y x f u +=,f 有连续的偏导数,求 .,yu x u ∂∂∂∂ 7. ,arctan xy z =,xe y = 求.dxdz 8. 求抛物面 222y x z +=在点 )3,1,1(M 处的切平面方程与法线方程.9. 求5362),(22+----=y x y xy x y x f 在)2,1(-处的泰勒公式.10. 求函数)2(),(22y y x e y x f x++=的极值. 11. 叙述隐函数的定义.12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容.14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线0333=-+axy y x所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程0),,(323=-++=z y x xyz z y x F在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23(,,)f x y z xy z =, 方程2223x y z xyz ++=.(1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组⎩⎨⎧=+-+-==--+=01),,,(,0),,,(222xy v u v u y x G y x v u v u y x F 在点)2,1,1,2(0P 近旁能确定怎样的隐函数组,并求其偏导数。
数学分析试卷及答案6套

f ( x1 ) f ( x2 ) .
g ( x) ,x 0 九. (12 分)设 f ( x) x 且 g (0) g (0) 0 , g (0) 3 , 求 f (0) . 0, x 0
答案参见我的新浪博客:/s/blog_3fb788630100muda.html
lim
h 0
1 h
x
a
[ f (t h) f (t )] dt f ( x) f (a).
六 (10 分 ) 求椭圆区域 R : (a1 x b1 y c1 ) 2 (a2 x b2 y c2 ) 2 1 (a1b2 a2b1 0) 的 面积 A . 七 (10 分) 设 F (t ) f ( x 2 y 2 z 2 ) dx dy dz ,其中 V : x 2 y 2 z 2 t 2 (t 0) ,
四. (12 分)证明函数 f ( x)
五. (12 分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10 分)证明任一齐次多项式至少存在一个实数零点. 七. (12 分)确定 a, b 使 lim ( x 2 x 1 ax b) 0 .
x
1 5 八. (14 分)求函数 f ( x) 2 x 3 9 x 2 12 x 在 [ , ] 的最大值与最小值. 4 2
x x0
x x0
1 1 . f ( x) b
三. (10 分)设 an 0 ,且 lim
an l 1 , 证明 lim an 0 . n n a n 1
四. (10 分 ) 证 明 函 数 f ( x) 在 开 区 间 ( a, b) 一 致 连 续 f ( x) 在 ( a, b) 连 续 , 且
数学分析 3,4,5章答案 华东师范大学

(2)若 存在,试问是否成立 ?
解:(1)证明因为 存在,设 ,则任给 ,存在 ,使得当 时,有 。此时取 ,则当 时, ,从而有 ,故有 。
(2)若若 存在, 并不一定成立。
例如
这里 存在,但 不存在,但是 则 。
3.函数极限存在的条件
1.叙述函数极限 的归结原则,并应用它证明 不存在。
所以 。
2.利用迫敛性求极限:
(1) ;(2) 。
解:(1)因为 趋于负无穷,所以当 时,
,而 ,由迫敛性定理得 。
(2)因为 趋于正无穷,所以当 时, 。而 , 。由迫敛性定理得 。
3.设 , ,证明:
(1) ;
(2) ;
(3) 。
证明:(1)因为 ,则对任给的 ,存在 ,当 时, 。 ,则对任给的 ,存在 ,当 时, 。对已给定的 ,取 ,当 时, 与 同时成立。当 时,
,对 ,存在 ,使得当 时,有 ,于是取 ,则当 ,即在 内有 。
8.求下列极限(其中 皆为正整数):
(1) ;(2) ;
(3) ;(4) ;
(5) 。
解:(1) 。
(2) 。
(3)由于
。由极限的四则运算法则,有
。
(4)由于 ,
。
(5)由于 ,当 时, 或 。对于两种形式,均有 ,由迫敛性定理得 。
解归结原则:设函数 为定义在 上的函数,则 存在的充要条件是:对任何含于 且趋于正无穷的数列 ,极限 都存在且相等。
证明由于 在 上有定义,设 ,则显然有 且 ,
但 ,有归结原则知 不存在。
2.设 为定义在 上的增(减)函数。证明: 存在的充要条件是 在 上有上(下)界。
证明只证一种情况即可。
数学分析试卷及答案6套

数学分析试卷及答案6套第一套试卷一、选择题(共20题,每题4分,共80分)1. 若函数f(x) = 3x^2 + 2x - 1,求f(-1)的值是多少?A. -4B. 4C. 0D. 12. 函数f(x) = ln(x^2 + 1)在区间(-∞, 0)上的最小值是多少?A. ln(1)B. ln(0)C. ln(-1)D. 不存在最小值3. 已知函数f(x)在区间[0, 5]上连续,且f(0) = 2, f(5) = 1,证明在该区间上存在一个点c,使得f(c) = 3.(请写出证明过程)4. 求不等式2x - 5 < 3x + 2的解集。
A. x < -7B. x > -7C. x > -3D. x < -35. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b),证明在该区间上至少存在两个不同的点c和d,使得f(c) = f(d).(请写出证明过程)..................第一套答案一、选择题1. B2. A3. (证明过程略)4. A5. (证明过程略)二、填空题(共5题,每题4分,共20分)1. 若e^x = 2,则x = ln(2);2. 设a, b为实数,若a^2 + 2ab + b^2 = 0,则a = -b;3. lim(x→∞) (x^2 - 2x - 3)/(3x + 1) = 1;4. 若函数f(x) = x^2 + 3x - 2,则f(-1) = -6;5. 若f(x) = √(2x + 1),则f'(x) = 1/√(2x + 1)。
三、解答题(共3题,每题20分,共60分)1. 设函数f(x) = x^3 - 2x + 1在区间[-2, 2]上的一个驻点为c,请求该驻点c的值以及f(c)的极值。
(请写出解题过程)2. 求函数f(x) = x^3 - 3x + 1的所有零点。
(请写出解题过程)3. 若函数f(x) = 3x^4 + 4x^3 - 12x^2 + 4在区间[0, 3]上的导函数f'(x)恰有一个零点c,并且f(c) = 2,求函数f(x)在该区间上的最大值。
数学分析第四学期试题

试题(1卷)一.填空(每小题3分,共15分)1.若平面曲线L 由方程0),(=y x F 给出,且),(y x F 在点),(000y x P 的某邻域内满足隐函数定理的条件,则曲线L 在点0P 的切线方程为 ; 2.含参量积分⎰=)()(),()(x d x c dyy x f x F 的求导公式为=')(x F ;3。
Γ函数的表达式为 =Γ)(s ,0>s ;4。
二重积分的中值定理为:若),(y x f 在有界闭区域D 上连续,则存在D ∈),(ηξ,使⎰⎰=Dd y x f σ),( ;5.当0),,(≥z y x f 时,曲面积分⎰⎰S dSz y x f ),,(的物理意义是: 。
二.完成下列各题(每小题5分,共15分)1。
设5422222=-+-++z y x z y x ,求y z x z ∂∂∂∂,; 2。
设 ⎩⎨⎧-=+=,cos ,sin v u e y v u e x u u 求 x v x u ∂∂∂∂, ;3. 求积分)0(ln 1>>-⎰a b dx x x x ab .三。
计算下列积分(每小题10分,共50分)1。
⎰L xyzds,其中L 为曲线)10(21,232,23≤≤===t t z t y t x 的一段;2.⎰+-Ly x xdxydy 22,其中L 为圆t a y t a x sin ,cos ==在第一象限的部分,并取逆时针方向;3.作适当变换计算⎰⎰-+D dxdyy x y x )sin()(, 其中D }{ππ≤-≤≤+≤=y x y x y x 0,0),(; 4。
⎰⎰⎰+Vy x dxdydz22,其中V 是由x y z x x ====,0,2,1与y z =围成的区域;5.dSy xS)(22⎰⎰+,其中S 为圆锥面222z y x =+被平面1,0==z z 截取的部分。
四.应用高斯公式计算dxdy z dzdx y dydz x S333++⎰⎰,其中S 为球面2222a z y x =++的外侧。
数学分析课本(华师大三版) 习题及答案第四章

数学分析课本(华师大三版)习题及答案第四章数学分析课本(华师大三版)-习题及答案第四章第四章函数的连续性一、填空题1x0xsinx1.设f(x)??kx?0,若函数f(x)在定义域内连续,则xsin11x0xk;2.函数f(x)??x?0?x?1的间断点是;x?0?sinx3.函数f(x)?x的已连续区间就是;4.函数f(x)?1的已连续区间就是;x2?2x?3x2?95.函数f(x)?的间断点是;x(x?3)6.函数f(x)?x?2的间断点就是;(x?1)(x?4)1的连续区间是;(x?1)(x?2)7.函数f(x)??ex?e?x?x?0在x?0点已连续,则k?;8.设f(x)??x?x?0?k?1?x?0?x?1?0?x?1的间断点是;9.函数f(x)x?1??x?31?x?3?10.函数f(x)??x?0?ax?ba?b?0.则f(x)处处连续的充要条件是2x?0?(a?b)x?xb?;12?x11.函数f(x)??ex?0,则limf(x)?,若f(x)无间断点,则a?;x?0?x?0?a?1?x2?x??1,当12.如果f(x)??1?xa?时,函数f(x)已连续x1a二、选择填空1.设f(x)和?(x)在,内有定义,f(x)为连续函数,且f(x)?0,?(x)存有间断点,则()a.??f(x)?必有间断点。
b.??(x)?2必有间断点c.f??(x)?必存有间断点d.(x)f(x)必有间断点2.设函数f(x)?xa?ebx,在,??内连续,且xlimf(x)?0,则常数a,b满足(a.a?0,b?0b.a?0,b?0c.a?0,b?0d.a?0,b?013.设f(x)?1?ex1,当x?0;f(x)??1,当x?0,则1?exa有可去间断点。
b。
有跳跃间断点。
c有无穷间断点d连续4.函数f(x)?nlim1?x??1?x2na不存有间断点。
b存有间断点x??1c存有间断点x?0d存有间断点x?15.设f(x)1x?0??xsin1x?0?0x?0;g(x)??,则在点x?0处有间断点的函数是?x?1x?0amax{f(x),g(x)}bmin{f(x),g(x)}cf(x)?g(x)df(x)?g(x)6.下述命题正确的是a设f(x)与g(x)均在x0处不已连续,则f(x)g(x)在x0处必不已连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(十四) 《数学分析Ⅱ》考试题一 填空(共15分,每题5分):1 设=∈-=E R x x x Esup ,|][{则 1 , =E inf 0 ;2 设=--='→5)5()(lim,2)5(5x f x f f x 则54;3 设⎩⎨⎧>++≤=0,)1ln(,0,sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。
二 计算下列极限:(共20分,每题5分)1 n n n1)131211(lim ++++∞→ ; 解: 由于,n n n n 11)131211(1≤++++≤ 又,1lim =∞→nn n故 。
1)131211(lim 1=++++∞→nn n2 3)(21limn nn ++∞→; 解: 由stolz 定理,3)(21limn n n ++∞→33)1()(lim --=∞→n n n n )1)1()(1(lim-+-+--=∞→n n n n n n nn)1)1(2))(1(()1(lim--+---+=∞→n n n n n n n n n.32)1)11(2111lim2=--+-+=∞→nn nn 3 ax a x a x --→sin sin lim;解: ax ax a x --→sin sin lim ax ax a x ax --+=→2sin 2cos2lim.cos 22sin2coslim a a x a x a x ax =--+=→ 4 xx x 10)21(lim +→。
解: xx x 1)21(lim +→.)21(lim 22210e x xx =⎥⎦⎤⎢⎣⎡+=→ 三 计算导数(共15分,每题5分):1 );(),1ln(1)(22x f x x x x f '++-+=求解: 。
1111111221122)(222222+-=+-+=++++-+='x x x x x x x x xx xx f 2 解:3 设。
求)100(2,2sin )23(y x x y -=解: 由Leibniz 公式)23()2(sin )23()2(sin )23()2(sin 2)98(21002)99(11002)100(0100)100(''-+'-+-=x x C x x C x x C y6)2sin(26)2sin(2100)23)(2sin(2298982991002999922100100⋅+++⋅+-+=⨯πππx x x x xx x x x x 2sin 2297002cos 26002sin )23(298992100⨯-⋅--= 。
]2cos 12002sin )22970812[(2298x x x x --=四 (12分)设0>a,}{n x 满足:,00>x ,2,1,0),(211 =+=+n x ax x nn n;sin cos 33表示的函数的二阶导数求由方程⎩⎨⎧==t a y ta x ,tan sin cos 3cos sin 3)cos ()sin (2233t tt a t t a t a t a dx dy -=-=''=。
tt a tt a t dx y d sin cos 3sec )cos (sec 223222='-=证明:}{n x 收敛,并求。
n n x ∞→lim解: (1) 证明:易见,),,2,1,0(,0 =>n x n a x x nx ann =≥+1),,2,1,0( =n从而有: ),2,1(02)(2121 =≤-=-+=-+n x x a x x ax x x nn n n n n n ,故}{n x 单调减少,且有下界。
所以}{n x 收敛。
(2)求n n x ∞→lim: 设}{n x l =,由(1)知:0}{>≥=a x l n 。
在)(211nn n x ax x +=+两边同时取极限得 1lim +∞→=n n x l ),(21)(lim 21la l x a x nn n +=+=∞→ 解之得a l =,即a x n n =∞→lim 。
五 (10分)求椭圆),(1002222y x by a x 过其上点=+处的切线方程。
解: 在方程12222=+b y a x 两边对x 求导数得:,02222='+b y y a x故,22y x a b y -='从而02200y x a b y y y x x -='==,所以椭圆),(00y x 在点处的切线方程为)(00220x x y x a b y y --=-,即12020=+b yy a xx六(10分)利用Cauchy 收敛原理证明:单调有界数列必收敛。
证明:设}{n x 单调有界,不妨设}{n x 单调增加。
假定}{n x 不收敛,则由Cauchy 收敛原理,存在常数N n m >∀>,,00ε),(n m <0ε≥-n m x x ,于是令,1=N存在1,11>n m ),(11n m < 011ε≥-n m x x , 再令,1n N=存在122,n n m > ),(22n m < 022ε≥-n m x x ,一般地令,1+=K n N存在1,->k k k n n m ),(k k n m < 0ε≥-k k n m x x ,这样得到}{n x 的一个子列: ,,,,,,,2211k k n m n m n m x x x x x x 满足:0ε≥-k k n m x x 。
从而有0ε≥-k k m n x x ,0ε+≥k k m n x x),3,2( =k ,由此式递推可知:,)1(0000121+∞→-+≥≥++≥+≥--εεεεk x x x x n n n n k k k因而}{n x 无界,与条件矛盾,故}{n x 收敛。
七(8分)设满足:上在)0(),[)(>+∞a a x f|||)()(|),,[,y x K y f x f a y x -≤-+∞∈∀ 为常数)。
证明:0(≥K1上有界;在),[)(+∞a xx f 2上一致连续。
在),[)(+∞a xx f 证明:1. 由条件知,|||)()(|),,[a x K a f x f a x -≤-+∞∈∀, 故:|)(||||)(||)()(||)(|a f a x K a f a f x f x f +-≤+-≤,aa f K x a f x a x K x a f x a x K x x f |)(||)(||||)(|||||)(+≤+-=+-≤, 可见上有界。
在),[)(+∞a xx f 2. ),,[,21+∞∈∀a x x21212222122121122211|)()()()(||)()(|)()(x x x f x x f x x f x x f x x x x f x x f x x x f x x f -+-=-=- 2112221212|||)(||)()(|x x x x x f x x x f x f x -⋅+-≤|,||)(|2||)|)(|(1||2122121x x a a f aK x x a a f K a x x a K -⋅⎥⎦⎤⎢⎣⎡+=-++-≤,][,0)(2a a f a K +=>∀εδε取),,[,21+∞∈∀a x x ,||21时当δ<-x xε<-2211)()(x x f x x f ,故上一致连续。
在),[)(+∞a xx f八(10分)设n a a a ,,21为实常数,证明:nxa x a x a x f n cos 2cos cos )(21+++=内必有零点。
在),0(π证明:令,sin 2sin sin )(12211nx a x a x a x F n n +++=则),()(]0[)(x f x F x F ='上可导,,在π,0)()0(==πF F 故由Rolle 中值定理,,0)(),,0(='∈∃ξπξF 使即,0)(=ξf故)(x f 内必有零点。
在),0(π(十五)数学分析2考试题一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分,共20分)1、 函数)(x f 在 [a,b ] 上可积,那么( ) A )(x f 在[a,b ]上有界 B )(x f 在[a,b ]上连续C )(x f 在[a,b ]上单调D )(x f 在[a,b ]上只有一个间断点 2、函数)(x f 在 [a,b ] 上连续,则在[a,b ]上有( )A )()(x f dx x f dx d b a =⎰B )()(x f dt t f dx d x a =⎰C )()(x f dt t f dx d b x -=⎰D )()(x f dt t f dxd bx =⎰ 3、 在[a ,+∞]上恒有)()(x g x f ≥,则( ) A ⎰+∞a dx x f )(收敛⎰+∞adx x g )(也收敛 B ⎰+∞adx x g )(发散⎰+∞adx x f )(也发散C⎰+∞adx x f )(和⎰+∞adx x g )(同敛散 D 无法判断4、级数∑∞=1n na收敛是( )对p =1,2…,0)(lim 21=++++++∞→p n n n n a a aA 充分条件B 必要条件C 充分必要条件D 无关条件 5、若级数∑∞=+111n n α收敛,则必有( )A 0≤αB 0≥αC 0<αD 0>α 6、)()(1x ax f n n∑∞==在[a ,b ]一致收敛,且a n (x )可导(n =1,2…),那么( )A f (x )在[a ,b ]可导,且∑∞==1'')()(n nx ax fB f (x )在[a ,b ]可导,但)('x f 不一定等于∑∞=1')(n nx aC∑∞=1')(n nx a点点收敛,但不一定一致收敛D∑∞=1')(n nx a不一定点点收敛7、下列命题正确的是( ) A)(1x an n∑∞=在[a ,b ]绝对收敛必一致收敛B)(1x an n∑∞=在[a ,b ] 一致收敛必绝对收敛C)(1x an n∑∞=在[a ,b ] 条件收敛必收敛D 若0|)(|lim =∞→x a n n ,则)(1x an n∑∞=在[a ,b ]必绝对收敛8、∑∞=--1)11()1(n n nx n 的收敛域为( ) A (-1,1) B (-1,1] C [-1,1] D [-1,1)9、下列命题正确的是( )A 重极限存在,累次极限也存在并相等B 累次极限存在,重极限也存在但不一定相等C 重极限不存在,累次极限也不存在D 重极限存在,累次极限也可能不存在10、函数f (x,y )在(x 0,,y 0)可偏导,则( )A f (x,y )在(x 0,,y 0)可微B f (x,y )在(x 0,,y 0)连续C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在D 以上全不对 二、计算题:(每小题6分,共30分)1、)0(21lim 1>++++∞→p nn p pp p n 2、计算由曲线2x y =和2y x =围成的面积 3、求极限)1sin 11(lim 2222)0,0(),(x y y x y x y x +-+++→4、 已知),(yx x f z =,求yzx z ∂∂∂∂, 5、 计算nn n n x n ∑∞=--112)1(的收敛半径和收敛域 三、讨论判断题(每小题10分,共30分)1、讨论dx x x qp p⎰∞++--01|1|的敛散性 2、 判断∑∞=--+122)11(n n n 的敛散性3、 判断∑∞=+-121sin )1(n n n nx的一致收敛性 四、证明题(每小题10分,共20分)1、设f (x )是以T 为周期的函数,且在[0,T ]上可积,证明⎰⎰=+TTa adx x f dx x f 0)()(2、设级数∑∞=10n n n x α收敛,则当0αα>时,级数∑∞=1n nn x α也收敛参考答案一、1、A 2、B3、D4、A5、D6、D7、C8、A9、D10、D 二、1、由于px 在[0,1]可积,由定积分的定义知(2分)=++++∞→121lim p p p p n nn 11)21(1lim 10+==++⎰∞→p dx x n n n n n pp p p p p p n (4分)2、 、两曲线的交点为(0,0),(1,1)(2分)所求的面积为:31)(12=-⎰dx x x (4分) 3、解:由于x1sin 有界,01sin lim )0,0(),(=→x y y x (2分))1sin 11(lim 2222)0,0(),(x y y x y x y x +-+++→=)11)(11()11)((lim22222222)0,0(),(+++-++++++→y x y x y x y x y x (3分)=111lim22)0,0(),(+++→y x y x =2(1分)4、解:xz∂∂=y f f 121+(3分)y z ∂∂=22y x f -(3分)5、解:212)1(lim 1=--∞→n nn n n ,r =2(3分) 由于x =-2,x =2时,级数均不收敛,所以收敛域为(-2,2)(3分)三、1、解、因为被积函数可能在x =0和x =1处无界,所以将其分为dx x x qp p ⎰∞++--01|1|=dx x x p q p ⎰-+-101|1|1+dx x x q p p⎰∞++--11|1|(2分)考虑奇点x =0应要求p-1<1;奇点x =1应要求p+q<1;(4分)当+∞→x 时,由于1211~)1(1-++--q p q p p x x x ,知2p+q -1>1时积分收敛(2分)所以反常积分满足p <2且2(1-p)<q<1-p 收敛,其余发散(2分)2、解:由于n n n n n 1~112112222-++=--+(6分),又∑∞=11n n 发散(2分)所以原级数发散(2分)3、解:2211sin )1(n n nx n ≤+-(6分),由weierstrass 判别法原级数一致收敛性(4分)四、证明题(每小题10分,共20分)1、证明:⎰⎰⎰⎰++++=Ta TTaTa adx x f dx x f dx x f dx x f )()()()(0(1)(4分)⎰⎰⎰=+++=+aaTa Tdt t f T t d T t f t T x dx x f 0)()()()((2)(4分)将式(2)代入(1)得证(2分)2、证明:∑∑∞=-∞==11)1)((00n n n n n nx n x αααα(4分)01αα-n 单调下降有界(3分)由Abel 定理知原级数收敛(3分)。