2011年考研数学考试大纲 数二

合集下载

最新高数二考试大纲汇总

最新高数二考试大纲汇总

2011年高数二考试大纲2011全国硕士研究生入学统一考试数学二考试大纲考试科目高等数学、线性代数试卷结构试卷满分为150分,考试时间180分钟内容比例高等数学约78 %线性代数约22 %题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学函数、极限、连续考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:,函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。

考试要求理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。

了解函数的有界性、单调性、周期性和奇偶性。

理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

掌握基本初等函数的性质及其图形,了解初等函数的概念。

理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。

掌握极限的性质及四则运算法则。

掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。

10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

一元函数微分学考试内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径考试要求理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

11年考研数二大纲

11年考研数二大纲

11年考研数二大纲:高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法刚求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。

2011年考研数学数二真题解析

2011年考研数学数二真题解析

2011年全国硕士研究生入学统一考试数学二一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个符合题目要求的.(1)已知当0x →时,()3sin sin3f x x x =-与k cx 是等价无穷小量,则( ) (A) 1,4==k c (B) 1,4==-k c (C) 3,4==k c (D) 3,4==-k c【答案】(C) 【解析】由泰勒展开,因为33sin ()3!x x x o x =-+,所以33(3)sin 33()3!x x x o x =-+.则,333339()3sin sin 33()4()322x x f x x x x o x x o x x ⎛⎫=-=--+=+- ⎪⎝⎭. 当0x →时,3()4f x x ,所以选择(C) .(2)设函数()f x 在0x =处可导,且(0)0f =,则()233()2limx x f x f x x→-=( )2(0)(A) f '- )() 0B (f '- )(C) (0f ' (D) 0【答案】(B) 【解析】()[]()2323332(0)()(0)()2limlimx x x f x f f x f x f x f x xx→→⎡⎤----⎣⎦=()3300(0)()(0)lim 2lim (0)2(0)(0)x x f x f f x f f f f x x'''→→--=-=-=-。

(3)函数()ln (1)(2)(3)f x x x x =---的驻点个数为( ) (A) 0 (B) 1 (C) 2 (D) 3【答案】(C)【解析】(2)(3)(1)(3)(1)(2)()(1)(2)(3)x x x x x x f x x x x --+--+--'=---231211(1)(2)(3)x x x x x -+=--- 令2()31211g x x x =-+,由于2124311120∆=-⨯⨯=>,故()g x 有两个不同的实根,且不是1,2,3,所以()f x 有两个不同的驻点.(4)微分方程2(0)λλλλ-''-=+>x x y y e e 的特解形式为( ) (A) ()x x a e e λλ-+. (B) ()x x ax e e λλ-+.(C) ()x x x ae be λλ-+. (D) 2()x x x ae be λλ-+【答案】(C) 【解析】特征方程为220r λ-=,解得特征根12r r λλ==-, 齐次方程20y y λ''-=的通解为12x x y C e C e λλ-=+, 非齐次方程2x y y e λλ''-=有特解1x y x a e λ=⋅⋅, 非齐次方程2x y y e λλ-''-=有特解2x y x b e λ-=⋅⋅,故非齐次方程2x x y y e e λλλ-''-=+可设特解().x x y x ae be λλ-=+(5)设函数(),g()f x x 均具有二阶连续导数,满足(0)0,(0)0f g ><,且(0)(0)0f g ''==,则函数()()z f x g y =在点(0,0)处取得极小值的一个充分条件是( )(A) (0)0,g (0)0f ''''<>. (B) (0)0,g (0)0f ''''<<.(C) (0)0,g (0)0f ''''>>. (D) (0)0,g (0)0f ''''><.【答案】(A) 【解析】(0,0)(0,0)(0)(0)0()()x z f g f x g y '''===,(0,0)(0,0)(0)(0)0()()y z f g f x g y '''===。

2011年高数二考试大纲

2011年高数二考试大纲

2011全国硕士研究生入学统一考试数学二考试大纲考试科目高等数学、线性代数试卷结构试卷满分为150分,考试时间180分钟内容比例高等数学约78 %线性代数约22 %题型结构单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学函数、极限、连续考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:,函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。

考试要求理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。

了解函数的有界性、单调性、周期性和奇偶性。

理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

掌握基本初等函数的性质及其图形,了解初等函数的概念。

理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。

掌握极限的性质及四则运算法则。

掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。

10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

一元函数微分学考试内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径考试要求理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2011年考研数学二真题及答案解析

2011年考研数学二真题及答案解析

x2 f x x2 f 0 2 f x3 2 f 0
lim x0
x3
f x f 0 f x3 f 0
lim x0
x
2
x3

f 0 2 f 0 f 0.
故答案选(B). (3)【答案】(C).
1
1
2
1 O
1
x
x2 y2 1 1
图1
(21) (本题满分 11 分)
已知函数 f (x, y) 具有二阶连续偏导数,且 f (1, y) 0 ,f (x,1) 0 , f (x, y)dxdy a ,
D
其中 D (x, y) | 0 x 1,0 y 1 ,计算二重积分 I xy fxy (x, y)dxdy .
(6)【答案】(B).
【解析】因为 0 x 时, 0 sin x cos x 1 cot x , 4
又因 ln x 是单调递增的函数,所以 ln sin x ln cos x ln cot x .
故正确答案为(B). (7)【答案】 (D).
【解析】由于将 A 的第 2 列加到第 1 列得矩阵 B ,故
xyd .
D
(14) 二次型 f (x1, x2, x3) x12 3x22 x32 2x1x2 2x1x3 2x2x3 ,则 f 的正惯性指数


三、解答题(15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文

xy x1
y 1
(18) (本题满分 10 分)
数学(二)试题 第 2 页 (共 13 页)
设函数 y(x) 具有二阶导数,且曲线 l : y y(x) 与直线 y x 相切于原点,记 为曲线 l

最新全国硕士研究生入学统一考试数学考试大纲--数学二汇总

最新全国硕士研究生入学统一考试数学考试大纲--数学二汇总

2011年全国硕士研究生入学统一考试数学考试大纲--数学二2011年全国硕士研究生入学统一考试数学考试大纲--数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学 78%线性代数 22%四、试卷题型结构试卷题型结构为:单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.首先从数学的三大内容来进行解读考研数学的特点。

2011考研数学二真题及答案解析

2011考研数学二真题及答案解析

2011年全国硕士研究生入学统一考试数学二试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.)(1)已知当0x →时,()3sin sin 3f x x x =-与kcx 是等价无穷小,则()(A)1,4k c ==.(B)1,4k c ==-.(C)3,4k c ==.(D)3,4k c ==-.(2)已知()f x 在0x =处可导,且()00f =,则()()2332limx x f x f x x →-=()(A)()20f '-.(B)()0f '-.(C)()0f '.(D)0.(3)函数()ln (1)(2)(3)f x x x x =---的驻点个数为()(A)0.(B)1.(C)2.(D)3.(4)微分方程2(0)xx y y e e λλλλ-''-=+>的特解形式为()(A)()xx a ee λλ-+.(B)()xx ax ee λλ-+.(C)()xx x aebe λλ-+.(D)2()xx x aebe λλ-+.(5)设函数(),()f x g x 均有二阶连续导数,满足(0)0,(0)0,f g ><且(0)(0)0f g ''==,则函数()()z f x g y =在点(0,0)处取得极小值的一个充分条件是()(A)(0)0,(0)0.f g ''''<>(B)(0)0,(0)0.f g ''''<<(C)(0)0,(0)0.f g ''''>>(D)(0)0,(0)0.f g ''''><(6)设40ln sin I x dx π=⎰,40ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是()(A)I J K <<.(B)I K J <<.(C)J I K <<.(D)K J I <<.(7)设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A =()(A)12PP .(B)112P P -.(C)21P P .(D)121P P -.(8)设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为()(A)13,αα.(B)12,αα.(C)123,,ααα.(D)234,,ααα.二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.)(9)1012lim()2x x x →+= .(10)微分方程'cos xy y e x -+=满足条件(0)0y =的解为 .(11)曲线0tan (04xy tdt x π=≤≤⎰的弧长s = .(12)设函数,0,()0,0,0,x e x f x x λλλ-⎧>=>⎨≤⎩则()xf x dx +∞-∞=⎰ .(13)设平面区域D 由直线,y x =圆222x y y +=及y 轴围成,则二重积分Dxyd σ=⎰⎰ .(14)二次型222123123121323(,,)3222f x x x x x x x x x x x x =+++++,则f 的正惯性指数为.三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分10分)已知函数20ln(1)()xat dt F x x+=⎰,设0lim ()lim ()0,x x F x F x +→+∞→==试求a 的取值范围.(16)(本题满分11分)设函数()y y x =由参数方程3311,3311,33x t t y t t ⎧=++⎪⎪⎨⎪=-+⎪⎩确定,求()y y x =的极值和曲线()y y x =的凹凸区间及拐点.(17)(本题满分9分)设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可导且在1x =处取得极值(1)1g =,求211x y zx y==∂∂∂.(18)(本题满分10分)x设函数()y x 具有二阶导数,且曲线:()l y y x =与直线y x =相切于原点,记α为曲线l 在点(,)x y 处切线的倾角,若,d dydx dxα=求()y x 的表达式.(19)(本题满分10分)(I)证明:对任意的正整数n ,都有111ln(11n n n<+<+成立.(II)设111ln (1,2,)2n a n n n=+++-= ,证明数列{}n a 收敛.(20)(本题满分11分)一容器的内侧是由图中曲线绕y 轴旋转一周而成的曲面,该曲线由2212()2x y y y +=≥与2211()2x y y +=≤连接而成的.(I)求容器的容积;(II)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m ,重力加速度为2/gm s ,水的密度为3310/kg m ).图1(21)(本题满分11分)已知函数(,)f x y 具有二阶连续偏导数,且(1,)0f y =,(,1)0f x =,(,)Df x y dxdy a =⎰⎰,其中{}(,)|01,01D x y x y =≤≤≤≤,计算二重积分(,)xyDI xy f x y dxdy ''=⎰⎰.(22)(本题满分11分)设向量组123(1,0,1),(0,1,1),(1,3,5)T T T ααα===,不能由向量组1(1,1,1)T β=,2(1,2,3)T β=,3(3,4,)T a β=线性表示.(I)求a 的值;(II)将123,,βββ由123,,ααα线性表示.(23)(本题满分11分)A 为三阶实对称矩阵,A 的秩为2,即()2r A =,且111100001111A -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(I)求A的特征值与特征向量;(II)求矩阵A.2011年全国硕士研究生入学统一考试数学二试题答案一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.)(1)【答案】(C).【解析】因为03sin sin 3limk x x x cx →-03sin sin cos 2cos sin 2limk x x x x x xcx →--=()20sin 3cos 22cos limkx x x x cx →--=2103cos 22cos lim k x x xcx -→--=()22132cos 12cos limk x x xcx -→---=22110044cos 4sin lim lim k k x x x x cxcx --→→-==304lim1k x cx -→==.所以4,3c k ==,故答案选(C).(2)【答案】(B).【解析】()()2332limx x f x f x x →-()()()()22330220limx x f x x f f x f x →--+=()()()()33000lim 2x f x f f x f x x →⎡⎤--⎢⎥=-⎢⎥⎣⎦()()()0200f f f '''=-=-.故答案选(B).(3)【答案】(C).【解析】()ln 1ln 2ln 3f x x x x =-+-+-111'()123f x x x x =++---231211(1)(2)(3)x x x x x -+=---令'()0f x =,得1,2633x ±=,故()f x 有两个不同的驻点.(4)【答案】(C).【解析】微分方程对应的齐次方程的特征方程为220r λ-=,解得特征根12r r λλ==-,.所以非齐次方程2xy y e λλ''-=有特解1x y x a e λ=⋅⋅,非齐次方程2xy y eλλ-''-=有特解2x y x b e λ-=⋅⋅,故由微分方程解的结构可知非齐次方程2xx y y ee λλλ-''-=+可设特解().x x y x ae be λλ-=+(5)【答案】(A).【解析】由题意有()()zf xg y x ∂'=∂,()()z f x g y y∂'=∂所以,()0,0(0)(0)0zf g x ∂'==∂,()0,0(0)(0)0z f g y ∂'==∂,即()0,0点是可能的极值点.又因为22()()zf xg y x ∂''=∂,2()()z f x g y x y ∂''=∂∂,22()()z g y f x y∂''=∂,所以,2(0,0)2|(0)(0)zA f g x ∂''==⋅∂,2(0,0)|(0)(0)0zB f g x yα''==⋅=∂∂,2(0,0)2|(0)(0)zC f g y∂''==⋅∂,根据题意由()0,0为极小值点,可得20,AC B A C -=⋅>且(0)(0)0A f g ''=⋅>,所以有(0)(0)0.C f g ''=⋅>由题意(0)0,(0)0f g ><,所以(0)0,(0)0f g ''''<>,故选(A).(6)【答案】(B).【解析】因为04x π<<时,0sin cos 1cot x x x <<<<,又因ln x 是单调递增的函数,所以ln sin ln cos ln cot x x x <<.故正确答案为(B).(7)【答案】(D).【解析】由于将A 的第2列加到第1列得矩阵B ,故100110001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,即1AP B =,11A BP -=.由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫ ⎪= ⎪ ⎪⎝⎭,即2,P B E =故122B P P -==.因此,121A P P -=,故选(D).(8)【答案】(D).【解析】由于(1,0,1,0)T是方程组0Ax =的一个基础解系,所以(1,0,1,0)0TA =,且()413r A =-=,即130αα+=,且0A =.由此可得*||A A A E O ==,即*1234(,,,)A O =αααα,这说明1234,,,αααα是*0A x =的解.由于()3r A =,130αα+=,所以234,,ααα线性无关.又由于()3r A =,所以*()1r A =,因此*0A x =的基础解系中含有413-=个线性无关的解向量.而234,,ααα线性无关,且为*0A x =的解,所以234,,ααα可作为*0A x =的基础解系,故选(D).二、填空题(9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.)(9)【答案】.【解析】原式=0121lim(1)2x x x e →+-00212ln 21limlimln 2222x x x x x eee→→-⋅====.(10)【答案】sin xy e x -=.【解析】由通解公式得(cos )dx dxx y e e x e dx C --⎰⎰=⋅+⎰(cos )x e xdx C -=+⎰(sin )x e x C -=+.由于(0)0,y =故C =0.所以sin xy ex -=.(11)【解析】选取x 为参数,则弧微元sec ds xdx ===所以440sec ln sec tan ln(1s xdx x x ππ==+=+⎰.(12)【答案】1λ.【解析】原式0x xx e dx xde λλλ+∞+∞--==-⎰⎰1lim0x x xx x x xee dx ee λλλλλ+∞-+∞--+∞→+∞=-+=-+-⎰01111limlim x x x x e e e λλλλλ→+∞→+∞⎛⎫=---= ⎪⎝⎭.(13)【答案】712.【解析】原式2sin 2sin 322044cos sin cos sin d r r rdr d r drππθθππθθθθθθ=⋅=⋅⎰⎰⎰⎰4241sin cos 16sin 4d ππθθθθ=⋅⋅⋅⎰5522444cos sin 4sin sin d d ππππθθθθθ=⋅=⎰⎰66447sin 612ππθ==.(14)【答案】2.【解析】方法1:f 的正惯性指数为所对应矩阵的特征值中正的个数.二次型f 对应矩阵为111131111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭.111000131131132111111112E A λλλλλλλλλλλ-----=---=---=------------()()321412λλλλλλ--==----,故1230,1,4λλλ===.因此f 的正惯性指数为2.方法2:f 的正惯性指数为标准形中正的平方项个数.()222123123121323,,3222f x x x x x x x x x x x x =+++++()2222212322332323232x x x x x x x x x x x =++---+++()2212322x x x x =+++,令11232233,,,y x x x y x y x =++⎧⎪=⎨⎪=⎩则22122f y y =+,故f 的正惯性指数为2.三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分10分)【解析】如果0a ≤时,220(1)limlim ln(1)xxa ax x ln t dt x t dt x -→+∞→+∞+=⋅+=+∞⎰⎰,显然与已知矛盾,故0a >.当0a >时,又因为22230110000ln(1)ln(1)1limlim lim lim 0xaaa a x x x x t dt x x x x ax ax a++++---→→→→++===⋅=⎰.所以30a ->即3a <.又因为223201222ln(1)ln(1)210lim lim lim lim (1)(1)1xa a a a x x x x xt dt x x x x ax a a x a a x ---→+∞→+∞→+∞→+∞+++====--+⎰所以32a -<,即1a >,综合得13a <<.(16)(本题满分11分)【解析】因为221()1dyt dt y x dx t dt -'==+,2222222231(12(1)(1)2141(),(1)1(1)t d t t t t t t y x dx dt t t t dt-+--⋅+''=⋅=⋅=+++令()0y x '=得1t =±,当1t =时,53x =,13y =-,此时0y ''>,所以13y =-为极小值.当1t =-时,1x =-,1y =,此时0y ''<,所以1y =为极大值.令()0y x ''=得0t =,13x y ==.当0t <时,13x <,此时0y ''<;当0t >时,13x >,此时0y ''>.所以曲线的凸区间为13⎛⎫-∞ ⎪⎝⎭,,凹区间为13⎛⎫+∞ ⎪⎝⎭,,拐点为11(,)33.(17)(本题满分9分)【解析】[],()z f xy yg x =[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂[][]211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''=++∂∂[]{}21222(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+.因为()g x 在1x =可导,且为极值,所以(1)0g '=,则21111121|(1,1)(1,1)(1,1)x y d zf f f dxdy =='''''=++.(18)(本题满分10分)【解析】由题意可知当0x =时,0y =,'(0)1y =,由导数的几何意义得tan y α'=,即arctan y α'=,由题意()arctan d dyy dx dx '=,即21y y y '''='+.令y p '=,y p '''=,则21p p p '=+,3dpdx p p =+⎰⎰,即21dp p dp dx p p -=+⎰⎰⎰,211ln ||ln(1)2p p x c -+=+,即2211x p ce -=-.当0x =,1p =,代入得2c =,所以'y =则0()(0)t xxy x y -==⎰⎰004t t xxx d π===⎰.又因为(0)0y =,所以()arcsin 24x y x e π=-.(19)(本题满分10分)【解析】(Ⅰ)设()()1ln 1,0,f x x x n ⎡⎤=+∈⎢⎥⎣⎦显然()f x 在10,n⎡⎤⎢⎥⎣⎦上满足拉格朗日的条件,()1111110ln 1ln1ln 1,0,1f f n n n n n ξξ⎛⎫⎛⎫⎛⎫⎛⎫-=+-=+=⋅∈ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭所以10,n ξ⎛⎫∈ ⎪⎝⎭时,11111111101n n n n ξ⋅<⋅<⋅+++,即:111111n n n ξ<⋅<++,亦即:111ln 11n n n⎛⎫<+< ⎪+⎝⎭.结论得证.(II)设111111ln ln 23nn k a n n n k==++++-=-∑ .先证数列{}n a 单调递减.()111111111ln 1ln ln ln 1111n n n n k k n a a n n k k n n n n ++==⎡⎤⎡⎤⎛⎫⎛⎫-=-+--==-+⎪ ⎢⎥⎢⎥+++⎝⎭⎝⎭⎣⎦⎣⎦∑∑,利用(I)的结论可以得到11ln(1)1n n <++,所以11ln 101n n ⎛⎫-+< ⎪+⎝⎭得到1n n a a +<,即数列{}n a 单调递减.再证数列{}n a 有下界.1111ln ln 1ln nnn k k a n n k k ==⎛⎫=->+- ⎪⎝⎭∑∑,()11112341ln 1ln ln ln 1123nnk k k n n k k n ==++⎛⎫⎛⎫⎛⎫+==⋅⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∏ ,()1111ln ln 1ln ln 1ln 0nn n k k a n n n n k k ==⎛⎫=->+->+-> ⎪⎝⎭∑∑.得到数列{}n a 有下界.利用单调递减数列且有下界得到{}n a 收敛.(20)(本题满分11分)【解析】(I)容器的容积即旋转体体积分为两部分12V V V =+()()1222211221y y dy y dyππ-=-+-⎰⎰232123y y π⎛⎫=- ⎪⎝⎭+13213y y π-⎛⎫- ⎪⎝⎭=π1534⎛⎫+-⎪⎝⎭=94π.(II)所做的功为22(2)(1)(2)(2)dw g y y dy g y y y dyπρπρ=--+--12222112(2)(1)(2)(2)w g y y dy g y y y dyπρπρ-=--+--⎰⎰1232322112(22)44)g y y y dy y y y dy πρ-⎛⎫=--+++-+ ⎪⎝⎭⎰⎰111224322312222221111211122242243243yy y yy g y yπρ----⎛⎫⎪=--++-+ ⎪ ⎪⎝⎭3271033758g g ππ⨯==.(21)(本题满分11分)【解析】因为(,1)0f x =,(1,)0f y =,所以(,1)0x f x '=.110(,)xyI xdx yf x y dy ''=⎰⎰11(,)x xdx ydf x y '=⎰⎰()()111000,|,x x xdx yf x y f x y dy ⎡⎤''=-⎢⎥⎣⎦⎰⎰()1100(,1)(,)x x xdx f x f x y dy''=-⎰⎰1100(,)x xdx f x y dy '=-⎰⎰1100(,)x dy xf x y dx '=-⎰⎰111000(,)|(,)dy xf x y f x y dx ⎡⎤=--⎢⎥⎣⎦⎰⎰1100(1,)(,)dy f y f x y dx ⎡⎤=--⎢⎥⎣⎦⎰⎰(,)Df x y dxdy =⎰⎰a =.(22)(本题满分11分)【解析】(I)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123113101(,,,,,)12401313115a ⎛⎫⎪= ⎪⎪⎝⎭βββααα113101011112023014a ⎛⎫ ⎪→- ⎪ ⎪-⎝⎭113101011112005210a ⎛⎫ ⎪→- ⎪ ⎪--⎝⎭.当5a =时,1231231(,,)2(,,,)3r r ββββββα=≠=,此时,1α不能由123,,βββ线性表示,故123,,ααα不能由123,,βββ线性表示.(II)对123123(,,,,,)αααβββ进行初等行变换:123123101113(,,,,,)013124115135⎛⎫ ⎪= ⎪⎪⎝⎭αααβββ101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪--⎝⎭1002150104210001102⎛⎫ ⎪→ ⎪ ⎪--⎝⎭,故112324βααα=+-,2122βαα=+,31235102βααα=+-.(23)(本题满分11分)【解析】(I)由于111100001111A -⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,设()()121,0,1,1,0,1T T αα=-=,则()()1212,,A αααα=-,即1122,A A αααα=-=,而120,0αα≠≠,知A 的特征值为121,1λλ=-=,对应的特征向量分别为()1110k k α≠,()2220k k α≠.由于()2r A =,故0A =,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()3123,,Tx x x α=,则13230,0,T T⎧=⎨=⎩αααα即13130,0x x x x -=⎧⎨+=⎩.解此方程组,得()30,1,0Tα=,故30λ=对应的特征向量为()3330k k α≠.(II)由于不同特征值对应的特征向量已经正交,只需单位化:))()3121231231,0,1,1,0,1,0,1,0T T Tαααβββααα==-====.令()123,,Q βββ=,则110TQ AQ -⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭,T A Q Q =Λ22022012200110220010022⎛⎫-⎛⎫ ⎪ ⎪ ⎪-⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎪⎝⎭2202200012200000002210022010022⎛-⎛⎫ - ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪==⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭.。

最新2011年与考研数学二大纲变化对比表汇总

最新2011年与考研数学二大纲变化对比表汇总
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
对比:无变化
本章的重点内容之一是极限,考生不仅要准确的理解极限的概念和极限存在的充要条件,而且还要能正确求出各种极限,由于篇幅所限,有关求极限的各种方法和本章的其它考点,详见由高等教育出版社出版的《2011年全国硕士研究生入学统一考试数学考试大纲配套强化指导》第二部分,第一篇,第一章 函数、极限、连续。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年全国硕士研究生入学统一考试数学考试大纲--数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学78%线性代数22%四、试卷题型结构试卷题型结构为:单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和 .4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。

相关文档
最新文档