图像增强技术要点

图像增强技术要点
图像增强技术要点

数字图像处理期中论文

图像增强技术综述

学院信息工程学院

专业电子信息工程

方向信息处理方向

姓名何娜娜

学号200710113081

中国传媒大学

2010 年11 月27 日

图像增强技术综述

内容摘要

数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。

关键词:图像增强直方图增强对比度增强平滑锐化彩色图像增强

Abstract

Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm. The application of occasions, and its image enhancement method of performance evaluation.

Keywords:Image Enhancement histogram enhancement contrast enhancement smoothing sharpening

1 图像增强概述

1.1 图像增强背景及意义

在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚

至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像,有效地去除图像中的噪声、增强图像中的边缘或其他感兴趣的区域,从而更加容易对图像中感兴趣的目标进行检测和测量。处理后的图像是否保持原状已经是无关紧要的了,不会因为考虑到图像的一些理想形式而去有意识的努力重现图像的真实度。图像增强的目的是增强图像的视觉效果,将原图像转换成一种更适合于人眼观察和计算机分析处理的形式。它一般要借助人眼的视觉特性,以取得看起来较好地视觉效果,很少涉及客观和统一的评价标准。增强的效果通常都与具体的图像有关系,靠人的主观感觉加以评价。

1.2 图像增强的应用

目前图像增强处理的应用已经渗透到医学诊断、航空航天、军事侦察、指纹识别、无损探伤、卫星图片的处理等领域。如对x射线图片、CT影像、内窥镜图像进行增强,使医生更容易从中确定病变区域,从图像细节区域中发现问题;对不同时间拍摄的同一地区的遥感图片进行增强处理,侦查是否有敌人军事调动或军事装备及建筑出现;在煤矿工业电视系统中采用增强处理来提高工业电视图像的清晰度,克服因光线不足、灰尘等原因带来的图像模糊、偏差等现象,减少电视系统维护的工作量。图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。

2 图像增强的基本理论

2.1 图像增强的定义

为了改善视觉效果或者便于人和机器对图像的理解和分析,根据图像的特点或存在的问题采取的简单改善方法或者加强特征的措施称为图像增强。

一般情况下,图像增强是按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程。图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。

2.2 图像增强的分类及方法

图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。

图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。

在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。 基于空域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。

2. 3 常用的图像增强方法

(1) 直方图均衡化

有些图像在低值灰度区间上频率较大,使得图像中较暗区域中的细节看不清楚。这时可以通过直方图均衡化将图像的灰度范围分开,并且让灰度频率较小的灰度级变大,通过调整图像灰度值的动态范围,自动地增加整个图像的对比度,使图像具有较大的反差,细节清晰。 (2) 对比度增强法

有些图像的对比度比较低,从而使整个图像模糊不清。这时可以按一定的规则修改原来图像的每一个象素的灰度,从而改变图像灰度的动态范围。 (3) 平滑噪声

有些图像是通过扫描仪扫描输入、或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。这些噪声的存在直接影响着后续的处理过程,使图像失真。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。 (4) 锐化

平滑噪声时经常会使图像的边缘变的模糊,针对平均和积分运算使图像模糊,可对其进行反运算采取微分算子使用模板和统计差值的方法,使图像增强锐化。图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。

3 数字图像的基本概念

3.1 数字图像的表示

图像并不能直接用计算机来处理,处理前必须先转化成数字图像。早期一般用picture 代表图像,随着数字技术的发展,现在都用image 代表离散化了的数字图像。

由于从外界得到的图像多是二维(2-D )的,一幅图像可以用一个2-D 数组),(y x f 表示。这里x 和y 表示二维空间XY 中一个坐标点的位置,而f 则代表图像在点),(y x 的某种性质数值。为了能够用计算机对图像进行处理,需要坐标空间和性质空间都离散化。这种离散化了的图

像都是数字图像,即),(y x f 都在整数集合中取值。图像中的每个基本单元称为图像那元素,简称像素。

3.2 图像的灰度

常用的图像一般是灰度图,这时f 表示灰度值,反映了图像上对应点的亮度。亮度是观察者对所看到的物体表面反射光强的量度。作为图像灰度的量度函数),(y x f 应大于零。人们日常看到的图像一般是从目标上反射出来的光组成的,所以),(y x f 可看成由两部分构成:入射到可见场景上光的量;场景中目标对反射光反射的比率。确切地说它们分别称为照度成分),(y x i 和反射成分),(y x r 。),(y x f 与),(y x i 和),(y x r 都成正比,可表示成),(y x f =),(y x i ×),(y x r 。

将二维坐标位置函数),(y x f 称为灰度。入射光照射到物体表面的能量是有限的,并且它永远为正,即0<),(y x i < ;反射系数为0时,表示光全部被物体吸收,反射系数为1时,表示光全部被物体反射,反射系数在全吸收和全反射之间,即0<),(y x r <1。因此图像的灰度值也是非负有界的。

3.3 灰度直方图

灰度直方图是数字图像处理中一个最简单、最有用的工具,它反映了数字图像中每一灰度级与其出现频率之间的统计关系。可以有针对性地通过改变直方图的灰度分布状况,使灰度均匀地或按预期目标分布于整个灰度范围空间,从而达到图像增强的效果。

4 图像增强方法及算法

4.1 直方图增强

灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更

加明显。灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像增强。

4.1.1 直方图

图像的直方图是图像的重要统计特征,它可以认为是图像灰度密度函数的近似。图像的灰度直方图是反映一幅图像的灰度级与出现这种灰度级的概率之间的关系的图形。

灰度直方图是离散函数,一般的来讲,要精确的得到图像的灰度密度函数是比较困难的,在实际中,可以使数字图像灰度直方图来代替。归纳起来,直方图主要有一下几点性质:

(1)直方图中不包含位置信息。直方图只是反应了图像灰度分布的特性,和灰度所在

的位置没有关系,不同的图像可能具有相近或者完全相同的直方图分布。

(2)直方图反应了图像的整体灰度。直方图反应了图像的整体灰度分布情况,对于暗色图像,直方图的组成集中在灰度级低(暗)的一侧,相反,明亮图像的直方图则倾向于灰度级高的一侧。直观上讲,可以得出这样的结论,若一幅图像其像素占有全部可能的灰度级并且分布均匀,这样的图像有高对比度和多变的灰度色调。

(3)直方图的可叠加性。一幅图像的直方图等于它各个部分直方图的和。

(4)直方图具有统计特性。从直方图的定义可知,连续图像的直方图是一位连续函数,它具有统计特征,例如矩、绝对矩、中心矩、绝对中心矩、熵。

(5)直方图的动态范围。直方图的动态范围是由计算机图像处理系统的模数转换器的灰度级决定。

MATLAB 图像处理工具箱提供了imhist 函数来计算和显示图像的直方图,灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,如图4.1所示,(b )为图像(a )的灰度直方图,其横坐标表示像素的灰度级别,纵坐标表示该灰度出现的频率(像素的个数)。

图4.1

当图像对比度较小时,它的灰度直方图只在灰度轴上较小的一段区间上非零,较暗的图像由于较多的像素灰度值低,因此它的直方图的主体出现在低值灰度区间上,其在高值灰度区间上的幅度较小或为零,而较亮的图像情况正好相反。

4.1.2 直方图均衡化

直方图均衡化过程如下:

(1)计算原图像的灰度直方图)(K r r P ;

(2)计算原图像的灰度累积分布函数k s ,进一步求出灰度变换表;

(3)根据灰度变换表,将原图像各灰度级映射为新的灰度级。

在MATLAB中,histeq函数可以实现直方图均衡化。该命令对灰度图像I进行变换,返回有N级灰度的图像J,J中的每个灰度级具有大致相同的像素点,所以图像J的直方图较为平坦,当N小于I中灰度级数时,J的直方图更为平坦,缺省的N值为64。

以下展示了直方图均衡化的效果:

图4.2

从直方图统计可以看出,原始图的灰度范围大约是110到250之间,灰度分布的范围比较狭窄,所以整体上看对比度比较差,而直方图均衡化后,灰度几乎是均匀的分布在0到255的范围内,图像明暗分明,对比度很大,图像比较清晰明亮,很好的改善了原始图的视觉效果。

优势:能够使得处理后图像的概率密度函数近似服从均匀分布,其结果扩张了像素值的动态范围,是一种常用的图像增强算法。

不足:不能抑制噪声。

4.1.3 图像二值化

图像的二值化处理就是将图像上的像素点的灰度值设置为0或255,也就是讲整个图像呈现出明显的黑白效果。

将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局

部特征的二值化图像。在数字图像处理中,二值图像占有非常重要的地位,首先,图像的二值化有利于图像的进一步处理,使图像变得简单,而且数据量减小,能凸显出感兴趣的目标的轮廓。其次,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像。

所有灰度大于或等于阀值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。

下图为图像二值化的效果:

图 4.3

4.2 对比度增强

对比度增强是图像增强技术中一种比较简单但又十分重要的方法。这种方法是按一定的规则修改输入图像每一个像素的灰度,从而改变图像灰度的动态范围。它可以是灰度动态范围扩展,也可以使其压缩,或者是对灰度进行分段处理,根据图像特点和要求在某段区间中进行压缩在另外区间进行扩展。

例如,观察图4.4可以发现,该图的对比度不高其灰度直方图没有低于35或高于210的值,如果将图像数据映射到整个灰度范围内,则图像的对比度将大大增大。

图4.4

设输入图像为f(x,y),处理后的图像为g(x,y),则对比度增强可以表示为下面的数学

变幻式:

g(X,Y)=T[f(X,Y)]

其中T 表示输入图像和输出图像对应点的灰度映射关系。实际中由于曝光不足或成像系统非线性的影响,通常照片或电子系统生成图像对比对不良,利用对比度增强变换可以有效地改善图像的质量。

4.2.1 灰度调整

1. imadjust 函数

MATLAB 软件中,imadjust 函数可以实现图像的灰度变换,通过直方图变换调整图像的对比度。

()gamma top bottom high low I imadjust

J ],[],[,= 其中,gamma 为校正量r ,][high low 为原图像中要变换的灰度范围,][top bottom 指定了变换后的灰度范围。

以下展示了常用对比度扩展法的结果:

图4.5

从图4.5【原图】可以看出原始图像动态范围较小,整体较暗,反映在直方图上像素主

要集中在低灰度的一侧,如【原图的灰度直方图】所示。经过对比度调整,图像变亮,可以看到更多的细节如图【原图直方图均衡化】和【均衡后的灰度直方图】所示。

优势:可以充分利用图像中的亮度信息,明显改善图像质量,是一种常用的图像增强算法。

不足:对于受噪声影响明显的图像,该算法增强效果不明显。即不能有效地抑制噪声。而且,仅仅利用了图像中的局部信息。

从原理上讲,我们也可以用一些数学上的非线性函数进行变换,如平方、指数、对数等,但其中有实际意义的还是对数变换。

2.对数变换

对数变化常用来扩展低值灰度,压缩高值灰度,这样可以使低值灰度的图像细节更容易看清。对数变换的表达式为:

g(x,y)=log[f(x,y)+1]

运用对数变换的结果如图4.6:

图 4.6

从图像对数变换前后的效果比较,可以知道,对数变换确实能够扩展低值灰度,而压缩高值灰度,使低值灰度的图像细节更容易看清。

3 指数变换

指数变换可以扩展低值灰度,压缩高值灰度,也可以扩展高值灰度,压缩低值灰度,但是由于与人的视觉特性不太相同,因此不常采用。

4.2.2 Gamma校正

Gamma校正也是数字图像处理中常用的图像增强技术。Imadjust函数中的gamma因子即是这里所说的Gamma校正的参数。Gamma因子的取值决定了输入图像到输出图像的灰度映射方式,即决定了增强低灰度还是增强高灰度。当Gamma等于1时,为线性变换。

图 4.7

4.3 平滑滤波

平滑技术用于平滑图像中的噪声。平滑噪声可以在空间域中进行,基本方法是求像素灰度的平均或中值。为了既平滑噪声又保护图像信号,也有一些改进的技术,比如在频域中运用低通滤波技术。

4.3.1 线性滤波

输出图像的值等于输入图像滤波后值的局部平均,各个项具有相同的权。下面是平滑窗口分别为矩形和圆形的情况。

???

?????????????=1111111111111111111111111

251],[k j h rect ???

??

??

?

?????

???=0111011111

11111

1111101110

211],[k j h circ

对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。

邻域平均法是空间域平滑噪声技术。用一像素邻域内各像素灰度平均值来代替该像素原来的灰度,即是邻域平均技术。

另外,频域处理的基础是频域滤波,例如,理想的低通滤波器:

其中[

]2

122

)

2/()2/(),(N v M u v u D -+-=。

??

?≥≤=0

),(0),(1),(D v u D D v u D v u

H

如图4.8(a)为线性平滑滤波的例子:

图 4.8(a)

如图4.8(b)为利用低通邻域平均模板进行平滑的例子:

图 4.8(b)

优势:实现简单,去噪效果明显。

不足:去噪的同时会导致结果图像边缘位置的改变和细节模糊甚至丢失。

4.3.2 非线性滤波

中值滤波是一种最常用的图像增强技术,是非线性滤波。对椒盐噪声有很好的去噪效果。下图是加高斯噪声后,中值滤波和平均滤波的滤波效果对比:

图 4.9(a)

如图可见,对于高斯噪声,均值滤波效果比均值滤波效果好。原因:

(1)高斯噪声是幅值近似正态分布,但分布在每点像素上。

(2)因为图像中的每点都是污染点,所以中值滤波选不到合适的干净点。

(3)因为正态分布的均值为0,所以均值滤波可以消除噪声。(实际上只能减弱,不能消除。)

但对于椒盐噪声,中值滤波效果比均值滤波效果好。原因:

(1)椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。

(2)中值滤波是选择适当的点来替代污染点的值,所以处理效果好。

(3)因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。

中值滤波是基于一个移动窗口并计算输入图像在窗口内的像素亮度值的中值作为输出图像窗口中心的像素值而产生的。给定的图像f(x,y)中的每一个点(m,n),取其领域s。设s含有M个像素{a1,a2,?,aM},将其按大小排序,若M是奇数时,则位于中间的那个象素值就是修改后图像g(x,y)在点(m,n)处的像素值;若M是偶数则取中间两个象素的平均值作为修改后图像g(x,y)在点(m,n)处的象素值。我们在这里先人为的加上一些噪声,然后在matlab中实现中值滤波的效果图如下:

图 4.9(b)

比较经过加入椒盐噪声的图像和经过中值滤波的图像,可以发现,图像的噪声点被去除;但是比较原始图像和经过滤波的图像后会发现,图像的边缘稍微的变得模糊,这是平滑算法不可避免的缺点。

下图为高通滤波边缘增强的例子:

图 4.9(c)

优势:去噪效果明显,并且能够较好的保持图像边缘位置和细节。

不足:非线性滤波算法的实现相对线性滤波比较困难。

4.4 锐化

图像锐化处理的作用是使灰度反差增强,从而使模糊图像变得更加清晰。图像模糊的实质就是图像受到平均运算或积分运算,因此可以对图像进行逆运算,如微分运算以突出图像细节使图像变得更为清晰。

由于拉普拉斯是一种微分算子,它的应用可增强图像中灰度突变的区域,减弱灰度的慢变化区域。因此,锐化处理可选择拉普拉斯算子对原图像进行处理产生描述灰度突变的图像,再将拉普拉斯图像与原始图像叠加而产生锐化图像。拉普拉斯锐化的基本方法可以由下式表示:

x

y

x

f

y

-

g?

x

=

f

(

,

)

)

,

,

(2y

)

(

这种简单的锐化方法既可以产生拉普拉斯锐化处理的效果,同时又能保留背景信息:将原始图像叠加到拉普拉斯变换的处理结果中去,可以使图像中的各灰度值得到保留、灰度突变处的对比度得到增强,最终结果是在保留图像背景的前提下,突现出图像中小的细节。

图4.10展示了在MATLAB中进行图像锐化的处理结果:

图4.10

比较原始模糊图像和经过拉氏算子运算的图像,可以发现,图像模糊的部分得到了锐化,特别是模糊的边缘部分得到了增强,边界更加明显。但是,图像显示清楚的地方,经过滤波发生了失真,这也是拉氏算子增强的一大缺点。

4.5 利用sym4函数进行小波变换进行图像增强

某些传统图像增强方法往往带来比较严重的负效应。为此,人们一直在寻找更好的图像增强方法。小波分析因其分析信号的“数学显微镜’、多分辨分析能力,与图像增强的结合成为一种必然。

基于小波分析的图像增强,就是突出图像的边缘细节,尽可能的消除负面因素,从而达到增强图像的目的。基于小波分析的图像增强是采用小波变换,对低频成分进行特殊处理,以增强图像中的目标信息。

效果如图 4.11所示:

图 4.11

4.6 彩色增强

用于增强图像对比度的方法很多,要根据应用目的加以选择。伪彩色变换是增强图像显示效果和提高视觉分辨率的一种常用的、最有效的手段,但伪彩色增强不可能增加图像的有效信息;伪彩色增强的视觉效果由所选择的彩色映射决定,在选择映射函数时,尽可能使三通道的函数不相关。伪彩色处理增强视觉效果明显,常用于医学、遥感图像显示。

真彩色图像增强需要考虑彩色特征空间的选择,同样的运算在不同的特征空间效果不同。

4.6.1 伪彩色增强

伪彩色(pseudo color),非彩色图像(灰度、二值)人为映射成彩色图像。伪彩色增强是将一个波段或单一的黑白图像变换为彩色图像,从而把人眼不能区分的微小的灰度差别显示为明显的色彩差异,更便于解译和提取有用信息。伪彩色增强的方法主要有以下三种:(1)密度分割法:

密度分割或密度分层是伪彩色增强中最简单的一种方法,它是对图像亮度范围进行分割,使一定亮度间隔对应于某一类地物或几类地物从而有利于图像的增强和分类。它是把黑白图像的灰度级从0(黑)到M0(白)分成N个区间Li,i=1,2,…,N。给每个区间Li指定一种彩色Ci,这样,便可以把一幅灰度图像变成一幅伪彩色图像。此法比较直观简单,缺点使变换出的彩色数目有限。

(2)空间域灰度级-彩色变换:

空间域灰度级-彩色变换是一种更为常用的、比密度分割更有效的伪彩色增强法。它是根据色度学的原理,将原图像的灰度分段经过红、绿、蓝三种不同变换,变成三基色分量,然后用它们分别去控制彩色显示器的红、绿、蓝电子枪,便可以在彩色显示器的屏幕上合成一幅彩色图像。彩色的含量由变换函数的形状而定。

(3)频率域伪彩色增强:

频率域伪彩色增强时先把黑白图像经傅立叶变换到频率域,在频率域内三个不同传递特性的滤波器分离成三个独立分量,然后对它们进行逆傅立叶变换,便得到三幅代表不同频率分量的单色图像,接着对这三幅图像作进一步的处理(直方图均衡化),最后将它们作为三

基色分量分别加到彩色显示器的红、绿、蓝显示通道,从而实现频率域分段的伪彩色增强。效果如图:

图 4.12

4.6.2 真彩色增强

真彩色(true-color)是指图像中的每个像素值都分成R、G、B三个基色分量,每个基色分量直接决定其基色的强度,这样产生的色彩称为真彩色。例如图像深度为24,用R:G:B=8:8:8来表示色彩,则R、G、B各占用8位来表示各自基色分量的强度,每个基色分量的强度等级为28=256种。图像可容纳224=16 M种色彩。这样得到的色彩可以反映原图的真实色彩,故称真彩色。

图 4.13

4.6.3 假彩色增强

假彩色:有三种形式第一,把真实景物图像的象元逐个地映射为另一种颜色。第二,把多光谱图像中任三个光谱图像映射为可见光rgb,在合成为一幅彩色图像第三,把黑白图像,用灰度级映射或频谱映射而成为类似真实彩色的处理。

伪彩色,相当于假彩色中的一个特例,即指定某灰度为某种彩色。相当于第三中形式。

图 4.14

5图像增强小结

增强图象中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。

图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。

基于空域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。

6源程序:

1、图 4.1

%灰度直方图

I=imread('D:\image\rice.bmp');%读取图像

subplot(2,1,1);

Imshow(I);%显示图像

title('(a)原图');

subplot(2,1,2);

imhist(I);%绘制图像的灰度直方图

title('(b)原图的灰度直方图');

2、图 4.2

%灰度直方图均衡化

I=imread('D:\image\bubbles.bmp');%读取图像

subplot(2,2,1);

Imshow(I);%显示图像

title('原图');

subplot(2,2,2);

imhist(I);%绘制图像的灰度直方图

title('原图的灰度直方图');

subplot(2,2,3);

J=histeq(I,64);%对图像进行均衡化处理,返回有64级灰度的图像J Imshow(J);%显示图像

title('原图直方图均衡化');

subplot(2,2,4);

imhist(J);%绘制图像的灰度直方图

title('均衡后的灰度直方图');

3、图 4.3

%图像二值化(选取一个域值,(5) 将图像变为黑白图像)

I=imread('beauty.tif');

bw=im2bw(I,0.5);%选取阈值为0.5

subplot(1,3,1);

imshow(I);

title('原图');

subplot(1,3,2);

imshow(bw);

title('显示二值图像');

J=find(I<150);

I(J)=0;

J=find(I>=150);

I(J)=255;

subplot(1,3,3);

imshow(I);

title(' 图像二值化 ( 域值为150 ) ');

4、图 4.5

%imadjust函数

I=imread('D:\image\rice.bmp');%读取图像

subplot(2,2,1);

Imshow(I);%显示图像

title('原图');

subplot(2,2,2);

imhist(I);%绘制图像的灰度直方图

title('原图的灰度直方图');

subplot(2,2,3);

J=imadjust(I,[0.3 0.7],[]);%对图像进行灰度变换

Imshow(J);%显示图像

title('原图直方图均衡化');

subplot(2,2,4);

imhist(J);%绘制图像的灰度直方图

title('均衡后的灰度直方图');

5、图 4.6

%对数变换

I=imread('beauty.tif');%读取图像

I=mat2gray(I);%对数变换不支持uint8类型数据,将一个矩阵转化为灰度图像的数据格式(double)

J=log(I+1);

subplot(1,2,1);

Imshow(I);%显示图像

title('原图');

subplot(1,2,2);

Imshow(J);

title('对数变换后的图像')

6、图 4.7

%Gamma校正

for i=0:255;

f=power((i+0.5)/256,1/2.2);

LUT(i+1)=uint8(f*256-0.5);

end

img=imread('gg.bmp');

img0=rgb2ycbcr(img);

R=img(:,:,1);

G=img(:,:,2);

B=img(:,:,3);

数字图像处理技术试题答案

数字图像处理技术试题库 一、单项选择题:(本大题 小题, 2分/每小题,共 分) 1.自然界中的所有颜色都可以由()组成 A.红蓝绿 B.红黄绿 C.红黄蓝绿 D.红黄蓝紫白 2. 有一个长宽各为200个象素,颜色数为16色的彩色图,每一个象素都用R(红)、G(绿)、B(蓝)三个分量表示,则需要()字节来表示 A.100 B.200 C.300 D. 400 3.颜色数为16种的彩色图,R(红)、G(绿)、B(蓝)三个分量分别由1个字节表示,则调色板需要()字节来表示 A.48 B.60 C.30 D. 40 4.下面哪一个不属于bmp 文件的组成部分 A .位图文件信息头 B. 位图文件头 C.调色板 D. 数据库标示 5.位图中,最小分辨单元是 A.像素 B.图元 C.文件头 D.厘米 6.真彩色的颜色数为 A.888?? B. 161616?? C.128128128?? D.256256256?? 7.如果图像中出现了与相邻像素点值区别很大的一个点,即噪声,则可以通过以下方式去除 A.平滑 B.锐化 C. 坐标旋转 D. 坐标平移 8.下面哪一个选项不属于图像的几何变换() A.平移 B.旋转 C. 镜像 D. 锐化 9.设平移量为x x t t (,),则平移矩阵为() A .1 0 00 1 0 1x y t t ?????????? B. 1 0 00 -1 0 1x y t t ??-???????? C.1 0 00 1 0 - 1x y t t ????????-?? D.1 0 00 1 0 - -1x y t t ?????????? 10.设旋转角度为a ,则旋转变换矩阵为() A .cos() sin() 0sin() cos() 00 0 1a a a a -?????????? B .cos() sin() 0sin() cos() 00 0 1a a a a ?????????? C .sin() cos() 0 sin() cos() 0 0 0 1a a a a -?????????? D .cos() sin() 0sin() cos() 00 0 1a a a a -????-?????? 11.下面哪一个选项是锐化模板 A .-1 -1 -1-1 9 -1-1 -1 -1??????????g B .-1 -1 -1-1 -9 -1-1 -1 -1??????????g C .-1 -1 -1-1 8 -1-1 -1 -1??????????g D .-1 -1 -1-1 6 -1-1 -1 -1?????????? g 12.真彩色所能表示的颜色数目是 A .128128? B .256256256 ?? C .256 D .6059

图像增强算法综述

图像增强算法研究综述 刘璐璐 宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100) E-mail:375212239@https://www.360docs.net/doc/411615865.html, 摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。 关键词:图像增强直方图均衡化直方图规定化平滑处理 近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。 1.图像增强概念及现实应用 1.1 图像增强技术 图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。 1.2图像增强技术的现实应用 目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。 1

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

图像增强研究现状

在借鉴国外相对成熟理论体系与技术应用体系的条件下,国内的增强技术与应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期与应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别就是出现了CT与卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理与分析遥感图像,以有效地进行资源与矿藏的勘探、调查、农业与城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像与生物切片显微图像等进行处理,提高图像的清晰度与分辨率。在工业与工程方面,主要应用于无损探伤、质量检测与过程自动控制等方面。在公共安全方面,人像、指纹及其她痕迹的处理与识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强就是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入与发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择与亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时她们也考虑太阳位置与月球环境的影响,最终成功地绘制出了月球表面地图。随后她们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究与设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末与20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测与天文学等领域。X射线就是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N、Hounsfield先生与Allan M、Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理就是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备与分析处理三维图像的系统已经研制成功了,图像处理技术

图像增强技术要点

数字图像处理期中论文 图像增强技术综述 学院信息工程学院 专业电子信息工程 方向信息处理方向 姓名何娜娜 学号200710113081 中国传媒大学 2010 年11 月27 日

图像增强技术综述 内容摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键词:图像增强直方图增强对比度增强平滑锐化彩色图像增强 Abstract Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm. The application of occasions, and its image enhancement method of performance evaluation. Keywords:Image Enhancement histogram enhancement contrast enhancement smoothing sharpening 1 图像增强概述 1.1 图像增强背景及意义 在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚

图像增强研究现状

在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X 射线图像、超声图像和生物切片显微图像等进行处理,提高图像的清晰度和分辨率。在工业和工程方面,主要应用于无损探伤、质量检测和过程自动控制等方面。在公共安全方面,人像、指纹及其他痕迹的处理和识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时他们也考虑太阳位置和月球环境的影响,最终成功地绘制出了月球表面地图。随后他们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究和设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末和20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测和天文学等领域。X射线是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N. Hounsfield先生和Allan M. Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20

MATLAB数字图像处理技术

MATLAB 数字图像处理技术 4 MATLAB 图像增强 4.1 原理、方法及体系结构 三个阶段:图像预处理、特征抽取阶段、识别分析阶段。 目的:改善图像的视觉效果,提高图像成分的清晰度;是图像变得有利于计算机处理。 方法:空间域增强方法、频域增强方法。 体系: 图像增强:空间域、频率域、彩色增强 空间域:像素点处理(图像灰度变换、直方图修正(中值滤波、均值滤波))、领域处理(图像平滑滤波、图像锐化滤波) 频率域:低通滤波、高通滤波、同态滤波 彩色处理:真彩色处理、伪彩色处理(灰度分层法、灰度变换法、频域伪彩色) 4.2 对比度增强 线性变换:(,)[(,)]N n g x y f x y m n M m -= -+-。其中功能是把函数的灰度值(,)f x y 从 范围[m,M]变为[n,N]。 非线性变换:分为对数变换和Gamma 变换。前者表达式为(,)log[(,)1]g x y c f x y =+, 其中c 为常数。后者表达式为r f cr =,r 为CCD 图像传感器或胶片等的入射光的强度,为 常数,灰度与光强成正比,则有1 ()r f g kr k c ==,k 为常数通常为1,1/r 取0.4~0.8。 我们可以用一个函数imadjust 函数来实现: J=imadjust(I); J=imadjust(I,[low_in;high_in],[low_out;high_out]); J=imadjust(I,[low_in;high_in],[low_out;high_out],gamma)。 其中灰度范围用归一化灰度值,范围[0,1]。整个图像的[low_in;high_in]可以用函数stretch 函数来获得。 MATLAB image toolbox5.4还提供一个手动调节的控制面板,调用函数imconstrast 。 4.3 空域变换增强 分为基于像素点和基于模板的两类方法。 像素选择:pixval 和impixel 。用法如下: Pixval(‘on/off ’);pixval ;pixval(fig,option); [C,R,P]=impixel(X,MAP)。 说明:MAP 仅仅当是索引图的时候采用此参数。C 为像素的颜色,R,P 为像素的坐标。Pixval 可以得到更多的像素信息,impixel 可以返回指定像素的颜色值。 强度描述图:improfile ,用以描述图像一条线段或多条线段的强度值。格式:

数字图像处理技术的研究现状与发展方向.

2012年 12月 第 4期 数字图像处理技术的研究现状与发展方向孔大力崔洋 (山东水利职业学院 , 山东日照 276826 摘要 :随着计算机技术的不断发展 , 数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词 :数字图像处理 ; 特征提取 ; 分割 ; 检索 引言 图像是指物体的描述信息 , 数字图像是一个物体的数字表示 , 图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理 , 它是一门新兴的应用学科 , 其发展速度异常迅速 , 应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代 , 图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业 , 对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大 , 而计算机运行处理速度相对较慢 , 这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高 , 运行速度大大提高 , 价格迅速下降 , 图像处理设备从中、小型计算机迅速过渡到个人计算机 , 为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计 , 在人类获取的信息中 , 视觉信息占 60%, 而图像正是人类获取

信息的主要途径 , 因此 , 和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言 , 对图像进行加工和分析主要有以下三方面的目的 [1]: (1提高图像的视感质量 , 以达到赏心悦目的目的。如去除图像中的噪声 , 改变图像中的亮度和颜色 , 增强图像中的某些成分与抑制某些成分 , 对图像进行几何变换等 , 从而改善图像的质量 , 以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2提取图像中所包含的某些特征或特殊信息 , 以便于计算机进行分析 , 例如 , 常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面 , 如频域特性、灰度 /颜色特性、边界 /区域特性、纹理特性、形状 /拓扑特性以及关系结构等。 (3对图像数据进行变换、编码和压缩 , 以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分 , 主要有以下三类 , 即图像到图像的处理、图像到数据的处理和数据到图像的处理 [2]。 (1 图像到图像。图像到图像的处理 , 其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先 , 各类图像系统中图像的传送和转换中 , 总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因 , 只将图像中感兴趣的特征有选择地突出 , 衰减次要信息 , 提高图像的可读性 , 增强图像中某些特征 , 使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如 , 对图像的灰度值进行修正 , 可以增强图像的对比度 ; 对图像进行平滑 , 可以抑制混入图像的噪声 ; 利用锐化技

数字图像增强技术项目应用可行性研究分析报告

数字图像增强技术项目可行性研究 分析报告

摘要 图像作为一种有效的信息载体,是人类获取和交换信息的主要来源。人类感知的外界信息80%以上是通过视觉得到的。因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。 图像增强是指按特定的需要采用特定方法突出图像中的某些信息,同时削弱或去除无关信息,或将原图转换成一种更适合人或机器进行分析处理的形式的图像处理方法。 本文围绕图像增强算法而展开,在阐明图像增强处理基本方法的基础上,就几种有代表性的图像增强算法,进行了研究、比较,分析了各自的优缺点并指明了其最佳适用场景,以期从中总结出一套行之有效的图像增强算法的应用 指导规则。 关键词:图像;图像增强;算法 目录 摘要...................................................................................................................................... I Abstract ............................................................................................................................ II 第1章绪论.. (1) 1.1课题背景 (1) 1.2图像增强的研究及发展现状 (2) 1.3论文工作内容 (3) 本章小结 (4) 第二章图像增强的基本理论 (5)

2.1.1数字图像的表示 (5) 2.1.2图像的灰度 (5) 2.1.3灰度直方图 (6) 2.2数字图像增强概述 (6) 2.3图像增强概述 (7) 2.3.1图像增强的定义 (7) 2.3.2常用的图像增强方法 (8) 2.4图像增强流程图 (10) 本章小结 (10) 第三章图像增强方法与原理 (11) 3.1图像变换 (11) 3.1.1离散图像变换的一般表达式 (11) 3.1.2离散沃尔什变换 (12) 3.2灰度变换 (13) 3.2.1线性变换 (13) 3.2.2分段线性变换 (14) 3.2.3非线性变换 (14) 3.3直方图变换 (15) 3.3.1直方图修正基础 (15) 3.3.2直方图均衡化 (16) 3.3.3直方图规定化 (18)

虚拟现实增强技术综述_周忠

中国科学:信息科学2015年第45卷第2期:157–180 https://www.360docs.net/doc/411615865.html, 虚拟现实增强技术综述 周忠x*,周颐x,肖江剑y x北京航空航天大学虚拟现实技术与系统国家重点实验室,北京100191 y中国科学院宁波工业技术研究院,宁波315201 *通信作者.E-mail:zz@https://www.360docs.net/doc/411615865.html, 收稿日期:2014–04–08;接受日期:2014–07–07;网络出版日期:2014–12–16 国家自然科学基金(批准号:61170188,61273276)和国家高技术研究发展计划(“863”计划)(批准号:2012AA011801,2012AA01 1803)资助项目 摘要随着近年来计算机三维处理能力的增长和低成本传感显示元件的出现,虚拟现实得到了快速发展,特别是与现实世界产生了越来越多的结合技术,从虚拟和现实的两个角度对虚拟现实进行增强.论文重点围绕近几年的发展趋势,论述了增强现实与增强虚拟环境的技术特点,介绍了虚拟现实增强技术的相关硬件设备发展;然后分别介绍了增强现实和增强虚拟环境技术的发展现状,讨论了移动互联网上的虚实增强技术与应用,并结合作者参与ISO/IEC的工作,介绍了相关国际标准制定最新情况;最后进行总结并提出需要解决的问题. 关键词增强虚拟环境增强现实虚实增强混合现实 1引言 虚拟现实技术建立人工构造的三维虚拟环境,用户以自然的方式与虚拟环境中的物体进行交互作用、相互影响,极大扩展了人类认识世界,模拟和适应世界的能力.虚拟现实技术从20世纪60~70年代开始兴起,90年代开始形成和发展,在仿真训练、工业设计、交互体验等多个应用领域解决了一些重大或普遍性需求,目前在理论技术与应用开展等方面都取得了很大的进展.虚拟现实的主要科学问题包括建模方法、表现技术、人机交互及设备这三大类,但目前普遍存在建模工作量大,模拟成本高,与现实世界匹配程度不够以及可信度等方面的问题[1]. 针对这些问题,已经出现了多种虚拟现实增强技术,将虚拟环境与现实环境进行匹配合成以实现增强,其中将三维虚拟对象叠加到真实世界显示的技术称为增强现实,将真实对象的信息叠加到虚拟环境绘制的技术称为增强虚拟环境.这两类技术可以形象化地分别描述为“实中有虚”和“虚中有实”.虚拟现实增强技术通过真实世界和虚拟环境的合成降低了三维建模的工作量,借助真实场景及实物提高了用户体验感和可信度,促进了虚拟现实技术的进一步发展. 搜索热度代表了大众对于该词的关注程度,一般来说,新技术会引起搜索高潮,然后慢慢下降,在技术取得突破或出现某热点事件时激增,最终趋于稳定.我们使用Google trends对比了虚拟现实,增强现实,增强虚拟环境和混合现实等词的全球搜索热度,为了有所参照,以人机交互(HCI)作为参考,搜索结果对比如图1所示.可以看出,和人机交互一样,虚拟现实的搜索热度逐渐下降并趋于稳定,这说

基于matlab的图像增强方法研究 开题报告

毕业设计(论文)开题报告 学生姓名:学号: 专业: 设计(论文)题目:基于matlab的图像增强方法研究 指导教师: 年月日

开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在系审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于10篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2002年4月26日”或“2002-04-26”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述 1.1课题研究的目的和意义 图像作为自然界景物的客观反映,是人类感知世界的视觉基础,也是人类获取信息、表达信息和传递信息的重要手段。据统计,人类获得的信息大约75%是以图像的形式,通过视觉系统获得的。图像时人类重要的信息源,“百闻不如一见”、“眼见为实”即时图像对于人类重要性的简明概括。[1] 图像是物体透射或反射的光信息,通过人的视觉系统接受后,在大脑中形成的印象或认识,是自然景物的客观反映。一般来说,凡是能为人类视觉系统所感知的有形信息,或人们心目中的有形想象都统称为图像。图像作为一种有效的信息载体,是人类获取和交换信息的主要来源。实践表明,人类感知的外界信息,80%以上是通过视觉得到的。 然而,在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。所谓图像处理,就是通过某些数学运算对图像信息进行加工和处理,以满足人的视觉心理和实际应用需求[2]。图像增强是图像处理的一个重要环节,在整个图像处理过程中起着承前启后的重要作用。 随着图像处理设备性能的不断提高以及图像数字化和图像显示设备的普及化和低价化,人们对图像质量的要求越来越高。而图像质量的含义[3]包括两个方面的内容,即图像的保真度(Fidelity)和理解度(Intelligibility)。保真度是指被评价图像与标准图像的偏离程度,两者属于同一个映像,只是由于传输和处理等原因造成了偏差,因此保真度往往指的是图像细节方面的差异。理解度表示图像能向人或机器提供信息的能力,其中主要包括清晰度和美感等,因此,理解度通常指的是图像整体和细节的总体概念。

图像增强综述(终稿)

图像增强综述 XXX (长沙理工大学电路与系统学号:0000000000) 摘要:本文介绍了数字图像增强的国内外应用状况,对图像增强的目的与意义进行了阐述,对图像增强的两种主要算法做了简单介绍,介绍了图像增强在航空航天、生物医学、工业生 产、公共安全等领域的应用情况。 关键字:图像增强;空间域;频率域;算法 An Overview of Image Enhancement Abstract:This paper introduces the application state of digital image enhancement at home and abroad,the purpose of image enhancement and significance of image enhancement are described,the two main algorithm of image enhancement are introduced in brief,introduces the application of image enhancement in aerospace, biological medicine, industrial production, public security and other areas. Keywords:image enhancement;spatial domain;frequency domain;algorithm 1 图像增强技术的国内外发展现状 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题[1-3]。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。20世纪60年代末和20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测和天文学等领域。20世纪70年代Godfrey N. Hounsfield 先生和Allan M. Cormack教授共同发明计算机轴向断层技术。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备和分析处理三维图像的系统已经研制成功了,图像处理技术得到了广泛的应用。进入20世纪90年代,图像增强技术已经逐步涉及人类生活和社会发展的各个方面。 在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是

图像增强理论简述

图像增强方法研究 一、图像增强研究现状 图像增强是图像处理的基本内容之一,图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要信息的处理方法,其目的是使得处理后的图像对某种特定的应用,比原始图像更合适。处理的结果使图像更适应于人的视觉特性或机器的识别系统。 二、图像增强所要借助的软件MATLAB MATLAB 是MATrix LABoratory(“矩阵实验室”)的缩写,是由美国MathWorks 公司开发的集数值计算、符号计算和图形可视化三大基本功能于一体的,功能强大、操作简单的语言。是国际公认的优秀数学应用软件之一。 三、图像增强方法分类 1、频域图像增强方法 2、小波域图像增强方法 3、空域图像增强方法 (一)频域图像增强方法 频域图像增强是对图像经傅立叶变换后的频谱成分进行操作,然后逆傅立叶变换获得所需结果。其原理如下图所示: 频域图像增强原理图 1、平滑噪声 有些图像是通过扫描仪扫描输入、或传输通道传输过来的。图像中往往包含有各种各样的噪声。这些噪声一般是随机产生的,因此具有分布和大小不规则性的特点。这些噪声的存在直接影响着后续的处理过程,使图像失真。图像平滑就是针对图像噪声的操作,其主要作用是为了消除噪声,图像平滑的常用方法是采用均值滤波或中值滤波,均值滤波是一种线性空间滤波,它用一个有奇数点的掩模在图像上滑动,将掩模中心对应像素点的灰度值用掩模内所有像素点灰度的平均值代替,如果规定了在取均值过程中掩模内各像素点所占的权重,即各像素点所乘系数,这时就称为加权均值滤波;中值滤波是一种非线性空间滤波,其与均值滤波的区别是掩模中心对应像素点的灰度值用掩模内所有像素点灰度值的中间值代替。 2、锐化 平滑噪声时经常会使图像的边缘变的模糊,针对平均和积分运算使图像模糊,可对其进行反运算采取微分算子使用模板和统计差值的方法,使图像增强锐化。图像边缘与高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。 (二)小波域图像增强方法 小波是近几年发展起来的一种时频分析工具,它同时具有时频局部化能力和多分辨率分析的能力,因此它更适用于信号处理领域。 之前的图像降噪大多采用低通滤波器直接滤除高频信息,因此使得在去除噪声的同时,也去掉了一些有用的高频信息,损失了图像的细节。而采用小波进行去噪,由于其多分辨率特性,它用不同中心频率的带通滤波器对信号进行滤波,把主要反映噪声频率的尺度系数去掉,再

数字图像处理技术练习

1.图像中每个像素点的灰度值如下图所示: 分别求经过邻域平滑模板、邻域高通模板和中值滤波处理后的结果。其中不能处理的点保持不变如果处理后的值为负数则变为0。邻域平滑模 板 010 1 1 01 4 010 H ?? ?? =?? ?? ?? ,邻域高通模板 010 141 010 H - ?? ?? =-- ?? ?? - ?? ,中值滤波窗口取3×3矩阵,窗口中心为原点。 2.图像中每个像素点的灰度值如下图所示: 分别求经过邻域平滑模板、邻域高通模板和中值滤波处理后的结果。其中不能处理的点保持不变如果处理后的值为负数则变为0。邻域平滑模板 111 1 101 8 111 H ?? ?? =?? ?? ?? ,邻域高通模板 111 181 111 H --- ?? ?? =-- ?? ?? --- ?? ,中值滤波窗口取3×3矩阵,窗口中心为原点。 3.设有以下信源符号w1,w2,w3,w4,w5和概率P(w1)=0.3, P(w2)=0.2, P(w3)=0.2, P(w4)=0.2, P(w5)=0.1。请对此信源进行Huffman编码,并计算熵,平均码长和 编码效率。 (log 2 0.3= -1.737,log 2 0.2= -2.322,log 2 0.1=-3.322) 4.设有以下信源符号w1,w2,w3,w4,w5和概率P(w1)=0.5, P(w2)=0.2, P(w3)=0.1, P(w4)=0.1, P(w5)=0.1, 请对此信源进行Huffman编码,并计算熵,平均码长和 编码效率。(log 2 0.5= -1, log 2 0.2= -2.322, log 2 0.1=-3.322)

医学图像增强方法研究

医学图像增强方法研究 摘要:简要介绍医学图像增强的概念和主要目的。从传统图像增强方法、基于区域的增强方法和基于小波变换的增强方法三方面对医学图像增强方法进行讨论。最后介绍图像增强效果的评价方案。 关键词:图像增强,算法,区域,小波变换,评价 图像增强根据图像的模糊情况采用了各种特殊的技术突出图像整体或局部特征,常用的图像增强技术有灰度变换、直方图处理、平滑滤波(高斯平滑),中值滤波、梯度增强、拉普拉斯增强以及频率域的高通低通滤波等,然而,这些算法运算量大、算法复杂、处理速度低。 目前,图像增强没有统一的标准,医学图像增强的主要目的是满足医生诊断的临床应用需要。因此,如何提高医学图像质量,是图像处理的一个重要课题。 图像增强可归纳为两方面[2]:(1)消除噪声;(2)边缘增强和结构信息的保护。(图像增强方法的研究) 图像增强方法主要分为频域法、空域法两大类[2]。频域法通常计算量大,变换参数的选取需要较多的人工干预;空域法主要包括直方图均衡化、直方图变换、灰度拉伸、局部对比度增强、平滑滤波和反锐化掩模[4~ 6]等。直方图均衡化是最常见的图像增强方法,其主要缺点是图像易出现不平滑灰度过渡。当图像直方图含多个波峰时,会出现过度增强,不仅丢失了部分图像细节信息,而且会明显放大噪声,影响图像增强的效果。平滑滤波可去除一定噪声,但会使图像模糊,对比度增强不明显。反锐化掩模可以增强图像的边缘和细节,但同时也会增强噪声。此外,图像的高频细节区域相对低频区域增强显著,易出现过增强现象。利用这些空间域图像增强算法处理医学图像,存在对噪声敏感且易陷入欠增强或过增强等不足。(基于量子概率统计的医学图像增强算法研究) 图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的【3]。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。 目前,许多新的增强算法都充分利用了周围邻域这一重要的信息,形成了很多局部处理的灰度调整算法,该方法主要利用了邻域的统计特性【4]。自适应增强的研究主要集中在以下三大类增强算法: 1.既能平滑又能保护边缘的自适应滤波器。自适应滤波的基本思想是滤波器的参数可根据像素所在的邻域情况而自适应选取,也可描述为加权平均滤波器。(1)在提高算法的抗噪性能方面,文献〔5]【6〕介绍了几种方法。这些方法可以较好的平滑噪声区域,并能保护较显著的边缘,但对图像细节的保护较差。(2)在提高算法的细节保护能力方面,Saint一Marc【7】利用梯度来决定权值,建立了指数形式的权函数,较好的保护了图像细节。但该算法对脉冲噪声敏感,而且模型的性能受参数的影响比较大。另外,文献【8〕【9]还提出了各向异性扩散思想的改进方法,需要求解热传导方程。这些改进算法多数集中在权值的自适应选取上,但是由于自适应调整的参数较少,仍然不能很好的解决细节保护的问题。 2.基于图像建模和估计理论的增强算法。这类算法的基本思想是提出一个图像的模型,如果这个模型的参数由一种估计方法估计出来,则窗口中心的灰度值可由估计出来的参数计算得到。最简单的例子就是中值滤波器,对脉冲型噪声有很好的效果。但是,这类算法由于是以估计理论为基础,所以所采用的估计方法的鲁棒性对算法的性能有很大的影响。估计方

相关文档
最新文档