红外光谱

合集下载

红外光谱解析

红外光谱解析
芳香烃: 在1650-1450 cm-1.范围内,寻找中等到强的苯的吸收双峰 C::C, CH伸 缩振动峰 比烯烃更弱。 5. 如果没有上述功能团,可以试着找烷烃 在3000 cm-1附近有个主吸收峰,是 C-H 伸缩峰. 谱图很简单, 1450 cm-1.还有 个峰. 6. 如果还是不能确定,可以寻找烷基溴 近寻找 C-H伸缩振动峰 比较简单的谱图上,可以在667 cm-1附
10 (cm ) (m)
1
4
各种振动方式及能量
分子振动方式分为:
伸缩振动 -----对称伸缩振动 s ----反对称伸缩振动 as 弯曲振动 ----面内弯曲振动 ----剪式振动 s -----平面摇摆 -----面外弯曲振动- ----非平面摇摆 -----扭曲振动 按能量高低为: as >
的,只有在立体结构上互相靠近的基团之间才能产生F效应, 例如:

环己酮 4,4-二甲基环己酮 2-溴-环己酮 4,4-二甲基-2-溴-环己酮
C=O
1712
1712
1716
1728
-氯代丙酮的三个异构体的C=O 吸收频率不同
氢键效应
氢键使吸收峰向低波数位移,并使吸收强度加强,
例如: - 和-羟基蒽醌
二氧化碳的IR光谱





O=C=O

对称伸缩振动 不产生吸收峰
O=C=O

反对称伸缩振动 2349
O=C=O

面内弯曲振动 667
O=C=O

面外弯曲振动 667
因此O=C=O的 IR光谱只有2349 和 667/cm 二个吸收峰
二、IR光谱得到的结构信息
IR光谱表示法:

红外光谱产生的原理

红外光谱产生的原理

红外光谱产生的原理红外光谱是一种常用的分析方法,它通过测量物质对红外辐射的吸收、散射或透射来确定物质的化学组成和结构。

红外光谱具有非破坏性、快速、高灵敏度、无污染等优点,因此在化学、生物、环境、食品等领域得到了广泛应用。

红外光谱的产生原理可以通过电磁辐射的能量变化来解释。

电磁辐射是由电场和磁场通过振荡产生的,其频率范围划分为不同的区域,其中包括红外区域。

红外光谱所使用的辐射主要来自于红外辐射源,该源产生的电磁辐射频率与分子或原子的振动频率相匹配。

分子或原子在红外辐射的作用下,会发生振动、转动和电子跃迁等过程。

其中,红外辐射主要引起分子或原子的振动。

分子振动是分子中原子相对于彼此的运动,包括拉伸、弯曲、扭转等运动模式。

不同的分子或原子具有不同的振动频率和形式,因此在红外光谱图中呈现出不同的吸收峰。

分子或原子的振动能量与红外光谱中的光子能量相匹配,当振动频率与红外辐射频率相同或相近时,分子或原子可以吸收红外光子的能量,从而产生光谱吸收峰。

吸收峰的强度与物质中特定键的吸收强度成正比,通过测量光谱吸收峰的强度可以获取物质中特定官能团的存在和浓度。

红外光谱的产生涉及到一系列的光学元件,包括红外光源、样品室、光学分析仪器等。

红外光源主要用于产生红外辐射,常用的光源包括热电偶、半导体激光器、四极管等。

样品室则用于容纳样品,并提供适当的环境条件,以确保测量的准确性和可靠性。

光学分析仪器是红外光谱的核心部分,它包括光学元件和光学检测器。

光学元件用于对红外辐射进行分光和聚焦,以分离出各个波长的光子,并准确地聚焦到检测器上。

光学检测器则将光子转化为电信号,通过电子学处理和数据转换,最终得到红外光谱图。

红外光谱的测量方法有很多种类,包括红外吸收光谱、红外发射光谱、红外散射光谱等。

每种方法都有其特定的应用范围和优缺点。

总之,红外光谱的产生是通过物质吸收红外辐射能量而引起的,通过测量物质对红外光的吸收特征可以得知物质的化学组成和结构信息。

红外光谱

红外光谱

不明显
醇、酚、醚
C-O RNH2 R2NH

特征峰
类别 醛、酮
键和官能团
C=O R-CHO C=O

1750-1680 2720
伸 (cm-1)


上的氢) (C=O上的氢) 上的氢
与CH3和CH2容易区分 和 容易区分
羧酸 OH 酰卤 酸酐 酯 酰胺 腈 C=O C=O C=O; C-O-C C=O NH2 C≡N ≡
2、必须能引起分子偶极矩变化的振动才能产生红外 必须能引起分子偶极矩变化的振动才能产生红外 偶极矩变化 吸收光谱 偶极矩变化与原子电负性、 偶极矩变化与原子电负性、振动类型以及分子 的对称性有关。 的对称性有关。
H2、O2、N2 电荷分布均匀,振动不能引起红外吸收。 电荷分布均匀,振动不能引起红外吸收。 C≡C
3、影响吸收峰减少的因素 、 (1) (2) (3) 偶极矩不发生变化的, 偶极矩不发生变化的,没有红外吸收 发生峰的简并 吸收峰在中红外区外
(4) 吸收强度太弱 (5) 强峰对弱峰的覆盖
三、分子的振动类型 (1) ) 伸缩振动: 伸缩振动:
沿轴振动,只改变键长,不改变键角
C
称 缩 动 对 伸 振 (νs) -1 (2853 cm )
二、分子振动 1、双原子分子振动为近似的简谐振动 、双原子分子振动为近似 近似的简谐振动 简正振动:反映的是某一化学键的键长和键角变化, 简正振动:反映的是某一化学键的键长和键角变化, 吸收频率为化学键的特征吸收峰。 吸收频率为化学键的特征吸收峰。 光谱选律为 双原子分子可产生 红外吸收峰 ∆ν =±1 的振动。 ∆ν = ± 3的振动。 ∆ν = ± 1 的跃迁所产生的吸收 ∆ν = ± 2 的跃迁所产生的吸收 ∆ν = ± 2或

红外光谱(最全-最详细明了)

红外光谱(最全-最详细明了)

1. 收集谱图数据
通过红外光谱仪获取样品的光 谱数据。
3. 峰识别与标记
识别谱图中的特征峰,并对其 进行标记。
5. 结果输出
得出样品成分的红外光谱解析 结果。
谱图解析技巧
1. 峰归属参考
查阅相关资料,了解常见官能团或分子结构 的红外光谱峰归属。
3. 多谱图比对
将待测样品谱图与标准样品谱图进行比对, 提高解析准确性。
红外光谱与其他谱学的联用技术
红外光谱与拉曼光谱联用
拉曼光谱可以提供分子振动信息,与红外光 谱结合,可更全面地解析分子结构和化学组 成。
红外光谱与核磁共振谱联用
核磁共振谱可以提供分子内部结构的详细信息,与 红外光谱结合,有助于深入理解分子结构和化学键 。
红外光谱与质谱联用
质谱可以提供分子质量和结构信息,与红外 光谱结合,有助于对复杂化合物进行鉴定和 分析。
红外光谱在大数据与人工智能领域的应用
红外光谱数据的处理与分析
利用大数据技术对大量红外光谱数据进行处理、分析和挖掘,提取有用的化学和物理信息 。
人工智能在红外光谱中的应用
利用人工智能技术对红外光谱数据进行模式识别和预测,提高红外光谱的解析能力和应用 范围。
红外光谱数据库的建立与完善
建立和完善红外光谱数据库,为科研和工业界提供方便、快捷的红外光谱查询和服务。
分子振动与转动能级
1 2
分子振动
分子中的原子或分子的振动,产生振动能级间的 跃迁。
转动能级
分子整体的转动,产生转动能级间的跃迁。
3
振动与转动能级间的耦合
某些特定的振动模式会导致分子的转动能级发生 跃迁。
红外光谱的吸收峰与跃迁类型
吸收峰
由于分子振动或转动能级间的跃迁,导致光谱上出现暗线或 暗带。

红外光谱的原理及应用综述

红外光谱的原理及应用综述

红外光谱的原理及应用综述红外光谱是一种通过测定物质吸收或散射红外辐射来研究物质结构和化学反应的分析方法。

红外光谱所使用的光源主要是红外区域的线状源以及红外分光仪。

下面将对红外光谱的原理和应用进行综述。

红外光谱基于物质在红外区域的吸收和散射现象,红外光谱的原理与分子的振动、转动和拉伸等有关。

当分子的振动与辐射光子的能量相等时,分子吸收辐射光子并发生光谱峰的吸收峰。

红外光谱通常分为近红外、中红外和远红外三个区域,其中近红外(2500-4000 cm-1)是最常用的区域。

分子的振动通常包括对称拉伸、不对称拉伸、弯曲与扭转等形式,不同化学物质的分子结构和键的种类会导致不同的振动频率和模式,进而表现为不同的红外光谱。

1.化学研究:红外光谱可以对化学物质的分子结构、键信息和有机化学反应进行分析。

通过测量样品的红外吸收峰,可以推断样品中存在的化学官能团、碳氢化合物以及其他功能团。

2.化学品鉴定:红外光谱可以用于鉴定未知化合物,通过比对红外光谱图谱可以确定样品的分子结构和元素组成,进而鉴定样品的化学品种类和纯度。

3.药物分析:红外光谱可以对药物的分子结构进行分析,评估药物的纯度、稳定性和结构特征。

4.食品检测:红外光谱可以用于食品杂质的检测和分析,如添加剂、农药残留、重金属含量等。

5.石油和燃料分析:红外光谱可以用于石油、燃料和润滑油等的成分分析,如鉴定有机功能团、饱和度和微量元素含量。

6.环境监测:红外光谱可以应用于环境监测,如水质分析、大气污染检测和土壤分析等。

7.生物医学研究:红外光谱可用于生物体内的组织和生物分子的研究,用于分析生物标志物、蛋白质结构和药物作用机制等。

红外光谱在以上领域的应用不仅具有快速、非破坏性、灵敏度高等特点,还可以进行实时监测和定量分析。

然而,红外光谱也存在分辨率较低、峰值重叠以及含水样品的干扰等问题,为了克服这些问题,可以结合其他分析方法,如红外光谱-质谱联用、拉曼光谱等。

总结起来,红外光谱作为一种广泛应用于化学分析和材料科学等领域的工具,不仅可以用于分析物质的结构和化学反应,还可以解决许多实际问题,为科研和生产提供了重要的支持。

红外光谱计算公式

红外光谱计算公式

红外光谱计算公式红外光谱是一种用于研究物质结构和特性的重要分析方法。

它通过检测物质对红外辐射的吸收或散射来确定物质的分子组成、化学结构和功能基团等信息。

红外光谱计算公式可以帮助解释红外光谱的吸收带和峰值位置,进一步了解物质的性质。

1.波数和波长的换算关系光谱中所用的波数和波长之间存在一定的换算关系,常用的换算公式为:波长(λ)=c/波数(ν)其中,λ表示波长,ν表示波数,c为光速。

2.峰值强度的计算红外光谱中吸收峰的强度通常用吸收峰的阿贝尔吸收系数计算。

阿贝尔吸收系数与吸收能级大小和浓度成正比。

一般情况下,峰值强度与阿贝尔吸收系数呈线性关系。

3.波数和振动模式的关系红外光谱可以提供物质的分子振动信息。

不同的振动模式对应特定的波数范围。

例如:- C-H伸缩振动的波数范围为2850-3000 cm^-1- C=O伸缩振动的波数范围为1630-1850 cm^-1- N-H伸缩振动的波数范围为3200-3600 cm^-14.化学官能团和峰位的关系红外光谱中的吸收峰位可以与特定的化学官能团相关联。

通过对红外光谱的解析,可以确定物质中存在的化学官能团。

例如,瞬时电偶极矩较大的双键会导致吸收峰位置向高波数方向移动。

5.标准物质和未知物质的比较红外光谱通常会与已知化合物的光谱进行比较,以确定物质的成分。

比较时,需要注意相同官能团或化学键所对应的吸收峰的位置和强度。

如果未知物质的红外光谱与其中一种标准物质的光谱非常接近,可以确定未知物质与标准物质的化学结构相似。

总的来说,红外光谱计算公式主要涉及波数与波长的换算、峰值强度的计算、波数与振动模式的关系、化学官能团与峰位的关系以及未知物质的比较等方面。

通过运用这些计算公式,可以准确解读红外光谱,深入了解物质的结构和特性。

红外光谱计算公式的应用广泛,对于化学、材料科学、生物医药等领域的研究有着重要意义。

红外光谱


Bionanotextile
红外光谱的功能 (2)
定量分析:红外光谱适用于一些异构体和 特殊体系的定量分析,它们的红外光谱尤 其是指纹区的光谱各有特征,因此可利用 各自特征吸收峰的强度定量。 鉴定无机化合物:不要认为红外光谱只能 鉴定有机物,它也是鉴定无机物很好的手 段之一,例如络合物的研究,地矿科学的 研究也普遍采用红外光谱。
Bionanotextile
分子振动
双原子分子中原子是通过化学键联结起来的, 可以把两个原子看成是两个小球,把化学键 看作质量可以忽略不计的弹簧。它们在平衡 位置附近作简谐振动。
双原子分子振动示意图 A—平衡状态;B—伸展状态
Bionanotextile
基团特征频率
根据虎克定律双原子分子的频率公式为:
红外光谱
概述
红外光谱具有测定方法简便、迅速、所需 试样量少,得到的信息量大的优点,而且 仪器价格比核磁共振谱和质谱便宜,因此 红外光谱在结构分析中得到广泛的应用。 红外光谱主要用于有机和无机物的定性和 定量分析,其应用领域十分广泛:如石油 化工、高聚物(塑料、橡胶、合成纤维)、 纺织、农药、医药、环境监H H
对称伸缩 3650 cm-1
非对称伸缩 3760 cm-1
剪式弯曲 1595 cm-1
Bionanotextile
官能团的特征吸收频率 (1)
4000~1500cm-1范围称为官能团特征区,为基团和 化学键的特征频率(基频),特征区的信息对结构 鉴定是很重要的。 1500~400cm-1 范围称为指纹区,主要是单键伸缩 振动和X-H的变形振动频率。 各种单键的特征峰和X-H变形振动的特征峰互相 重叠干扰,因此1500~400cm-1 范围内出现的吸收 谱带是不特征的。但它对分子结构的变化十分敏 感,就像人的指纹一样,两个化合物的指纹区光 谱不会完全相同。两个结构相近的化合物特征区 的光谱可能大同小异。但只要结构上有细微的差 异,就会引起指纹区光谱的显著改变。所以指纹 区的信息对结构鉴定也同样重要。

红外光谱技术的原理与应用

红外光谱技术的原理与应用近年来,红外光谱技术因其在分析领域中的广泛应用而备受瞩目。

它是一种非破坏性的分析技术,能够准确地确定目标物质的分子结构和功能组成。

本文将介绍红外光谱技术的原理、基础知识和应用。

一、红外光谱技术的原理红外光谱技术是一种利用物质对红外辐射的吸收和发射谱线进行分析的技术。

红外辐射可以被物质中的化学键吸收或发射,这些化学键的振动和转动运动产生了特定的谱线,对应于物质的分子结构。

红外光谱图展示了分子内各个化学键的谱线,可用于确定样品中不同分子的存在和浓度。

二、基础知识:红外光谱图的读取红外光谱图由x轴和y轴组成。

x轴表示波数(单位为cm-1),而y轴则表示对应波数下吸收带的相对强度。

红外光谱图的预处理非常重要。

为了获得最佳效果,我们需要对光谱图进行基线校正、去除噪声、调整基于吸收线强度等组合过程的光谱数据。

在光谱图上,各吸收带也需要进行标记和解释。

三、红外光谱技术的应用1. 化学分析红外光谱技术可以用于分析有机化合物的结构和组成。

化学家们可以用红外光谱图来检测样品中特定的化学键,以及确定这些化学键的类型和位置。

这项技术对于药物合成、有机化学和聚合物工程等领域的研究非常重要。

2. 食品安全红外光谱技术可以用于检测食品中的有害物质和营养成分。

例如,它可以用于测量食品中各种脂肪、糖类和蛋白质的含量。

此外,红外光谱技术还可以分析食品中的添加剂和农药残留情况。

3. 医学诊断红外光谱技术对于疾病的早期诊断和治疗也具有很大的帮助作用。

例如,红外光谱技术可以用于分析血液样品中患者的代谢物质,以及检测特定疾病标志物的存在。

此外,它还可以用于研究不同组织和器官的结构和组成。

4. 环境监测红外光谱技术可以用于分析环境样品中的有害物质和化学物质。

例如,可以通过分析水体中的化学物质来确保其安全饮用。

它还可以测定大气中的污染物质和土壤中的重金属含量。

四、未来发展随着科技的进步和新技术的出现,红外光谱技术也在不断发展。

红外光谱

红外光谱法一、红外光谱1.1 简介各种物质对不同波长(或波数)红外辐射的吸收程度是不同的,因此当不同波长(或波数)的红外辐射依次照射到样品物质时,由于某些波长的辐射能被样品选择吸收而减弱于是形成红外吸收光谱。

通常用透过(或吸收)与波长(或波数)所作的红外吸收光谱曲线来表征各种物质的红外吸收光谱,简称红外图谱或红外谱图。

1.2红外光谱分析原理将一束不同波长的红外射线照射到物质的分子上,分子发生振动能级迁移,某些特定波长的红外射线被吸收,从而形成这一分子的红外吸收光谱。

每种分子都有其组成和结构决定的独有的红外吸收光谱,红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。

红外光谱的范围很广,为0.75~1000μm(13300~10 cm-1)。

按应用波段不同,红外光谱划分为三个区域:a.近红外(NIR)区:0.75~2.5μm(13300~4000 cm-1),b.中红外(MIR)区:2.5~25μm(4000~400 cm-1).远红外(FIR)区25~1000 μm(400~10 cm-1)。

远红外光谱主要由小分子的转动能级跃迁产生的转动光谱。

此外还包括离子晶体、原子晶体和分子晶体产生的晶格振动光谱以及原子量较大或键力常数较小分子的振动光谱;中红外和近红外光谱是由分子振动能级跃迁产生的振动光谱。

在各类分子中只有简单的气体或气态分子才产生纯转动光谱,而对于大量复杂的气、液、固态物质分子主要产生振动光谱。

并且目前被广泛应用于化合物定性、定量和结构分析以及其他化学过程研究的红外吸收光谱,主要是波长处于中红外区的振动光谱。

在红外光谱分析中,2.5~15μm(4000~667 cm-1)的中红外区域是应用最广泛的光潜区。

其中2.5~7.5μm(4000~1330 cm-1)称为特征谱带区。

因为羟基、胺基、甲基、亚甲檗、各类羰基和羧酸盐基等官能团的特征吸收峰都出现在这区域,所以又称它为基团区;7.5~15μm(1330~667cm-1)称为指纹区,物质分子的红外吸收峰在这一区域特别多,像人的指纹一样稠密,又有一定的特征性,所以称它为指纹区。

红外光谱

材料分析测试技术一、名词解析:1.红外光谱(Infrared Spectroscopy, IR)是利用试样吸收红外光的特征对物质进行结构鉴定的表征技术。

2.拉曼光谱(Raman Spectroscopy)就是利用光经过试样产生的拉曼散射特征对物质进行结构鉴定的表征技术。

3.Raman位移就是Stokes或Anti-Stokes线频率与入射光频率的差值。

4.核磁共振(Nuclear Magnetic Resonance, NMR)是记录处于外磁场中磁核能级之间跃迁的一种技术。

5.化学位移:由于质子所处的化学环境不同,其周围的微磁场自然不同,因此,核磁共振发生时外加的磁场强度并不相同,而是相对有一定的位移,这种吸收峰位置的差距被称为化学位移。

6.凝胶渗透色谱(Gel Permeation Chromatography, GPC)是一种色谱技术,它用高度多孔性的、非离子型的凝胶小球将溶液中多分散的聚合物逐级分开,配合分子量检测器使用即可得到分子量分布,是目前测定分子量分布最广泛应用的方法。

7.X射线衍射如果试样具有周期性结构(结晶),则X射线被相干散射(相对于入射光,散射光没有波长和相关系的改变),该现象被称为X射线衍射8.漫射X射线衍射如果试样具有不同电子密度的非周期性结构,则X射线被不相干散射(相对于入射光,散射光有波长和相关系的改变),该现象被称为漫射X 射线衍射(简称散射)。

9.热分析(Thermal Analysis, TA)是指在程序控温下测量物质的物化性质与温度关系的一类技术10.热重分析(Thermalgravimetry or Thermalgravimetric analysis, TG or TGA)是在程序控温下测量试样质量对温度的变化。

11.热机械分析(Thermomechanical analysis, TMA)是在程序控温和加载静态载荷(压或拉)下测量样品尺寸对温度的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10 4 波数(cm 1) 波长()
E振 h 2 k h 2 k (m1 m2 ) m1 m2

1 2c
1 2
k
k (m1 m 2 ) m1 m 2
k
质量效应
1 1 h E hc 2 2 2
返回
各种化学键的红外吸收位置
外在因素(测定条件)
样品所处物态、制备样品的方法、溶剂的性质、氢键、 结晶条件、吸收池厚度、色散系统以及测试温度等
正己酸在液态和气态的红外光谱 a 蒸气(134℃)b 液体(室温)
质量效应
X-H 键的伸缩振动波数(cm-1)
化学键 C-H 波数(cm-1) 3000 化学键 F-H Cl-H Br-H I-H Si-H Ge-H Sn-H 波数(cm-1) 4000 2890 2650 2310 2150 2070 1850
C=C-H
Ar-H C C-H
3100-3000
3100-3000 3300
X H X D X D X H
m X mD m X mD m X mH m X mH
m X mH mD m X mD mH
2(m X 1) mX 2
将(mX+1)/(mX+2)近似为1,则上式可简化为:
X H 2 X D
电子效应
诱导效应、中介效应、和共轭效应
• 诱导效应
诱导效应
诱导效应:RCOR中极性基团的取代使C=O 移向高波数
化合物 RCHO RCOR
1715
RCOCl
1800
RCOF
1920
ClCOCl
1828
FCOF
1928
C=O
1713
共轭效应:使C=O 移向低波数 R-CH=CH2

常见术语
• 基频峰、倍频峰、合频峰、热峰
• 基频峰是分子吸收光子后从一个能级跃迁到相邻的高 一能级产生的吸收。V =0 V=1 • 倍频峰(2)是分子吸收比原有能量大一倍的光子之后, 跃迁两个以上能基产生的吸收峰,出现在基频峰波数n 倍处。2 为弱吸收。 • 合频峰是在两个以上基频峰波数之和(组频 1+ 2)或 差(1 - 2处出现的吸收峰。合频峰均为弱峰。 • 热峰来源于跃迁时低能级不是基态的一些吸收峰。
返回
红外光谱的吸收强度
红外吸收强度及其表示符号
摩尔消光系数(ε) 强度 符号
>200
75~200 25~75 5~25 0~5

影响红外光谱吸收频率的因素
• 外在因素 • 内部因素

• • • • •
质量效应 电子效应 空间效应 氢键效应 偶极场效应 振动的偶合
二氧化碳的IR光谱
• •




O=C=O

对称伸缩振动 不产生吸收峰
O=C=O

反对称伸缩振动 2349
O=C=O

面内弯曲振动 667
O=C=O
面外弯曲振动 667
因此O=C=O的 IR光谱只有2349 和 667/cm 二个吸收峰
IR光谱得到的结构信息
• IR光谱表示法: 横坐标为吸收波长(m),或吸收频率(波数/cm) 纵坐标常用百分透过率T%表示 • 从谱图可得信息: 1 吸收峰的位置(吸收频率) 2 吸收峰的强度 ,常用 vs (very strong), s (strong), m (medium), w (weak), vw (very weak), b (broad) ,sh (sharp),v (variable) 表示 3 吸收峰的形状 (尖峰、宽峰、肩峰)
When you analyze the spectra, it is easier if you follow a series of steps in examining each spectrum.
1. Look first for the carbonyl C::O band. Look for a strong band at 1820-1660 cm-1. This band is usually the most intense absorption band in a spectrum. It will have a medium width. If you see the carbonyl band, look for other bands associated with functional groups that contain the carbonyl by going to step 2. If no C::O band is present, check for alcohols and go to step 3. 2. If a C::O is present you want to determine if it is part of an acid, an ester, or an aldehyde or ketone. At this time you may not be able to distinguish aldehyde from ketone and you will not be asked to do so. ACID Look for indications that an O-H is also present. It has a broad absorption near 3300-2500 cm1. This actually will overlap the C-H stretch. There will also be a C-O single bond band near 11001300 cm-1. Look for the carbonyl band near 1725-1700 cm-1. ESTER Look for C-O absorption of medium intensity near 1300-1000 cm-1. There will be no O-H band. ALDEHYDE Look for aldehyde type C-H absorption bands. These are two weak absorptions to the right of the C-H stretch near 2850 cm-1 and 2750 cm-1 and are caused by the C-H bond that is part of the CHO aldehyde functional group. Look for the carbonyl band around 1740-1720 cm-1. KETONE The weak aldehyde CH absorption bands will be absent. Look for the carbonyl CO band around 1725-1705 cm-1.
返回
红外光谱仪及样品制备技术
• 色散型红外光谱仪 • 傅立叶变换红外光谱仪(FTIR) • 红外样品的制备
色散型红外光谱仪
傅立叶变换红外光谱仪
迈克逊干涉仪
干涉图
FTIR光谱仪的优点
• 扫描速度快(几十次/秒),信号累加,信噪比提高 (可达60:1)。 • 光通量大,所有频率同时测量,检测灵敏度高,样品 量减少。 • 扫描速度快,可跟踪反应历程,作反应动力学研究, 并可与GC、LC联用。 • 测量频率范围宽,可达到4500~6cm-1 • 杂散光少,波数精度高,分辨率可达0.05/cm • 对温度、湿度要求不高。 • 光学部件简单,只有一个动镜在实验中运动,不易磨 损。
CH3CN
RCOOR
(C2H5)2C=C(CN)COOC2H5
C=C 1650 C=N 2255 C=O 1735 C=C 1629 , C=N
2224,
C=O
1727
中介效应
OR C NHR O N+HR R C
• 在许多情况下,诱导效应和共轭效应会同时存 在:
• C=O RCOOR 1735 R1CO-NR2 1690 RCOS-Ar 1710
υ υ
C=C
-1 1645cm -1 3017cm
-1 1610cm
-1 1565cm -1 3060cm
=C
H
-1 3040cm
空间位阻
跨环共轭效应
返回
偶极场效应
• 偶极场效应(Field effect)是通过分子内空间相对位置 起作用的,只有在立体结构上互相靠近的基团之间才 能产生F效应,例如: • 环己酮 4,4-二甲基环己酮 2-溴-环己酮 4,4-二甲基-2-溴-环己酮
• 红外光谱的产生:
用波长2.5~25m,频率4000~400/cm的光波照射样品,引起分子内 振动和转动能级跃迁所产生的吸收光谱。
• 分子振动的类型
• 双原子分子振动
多原子分子振动
中红外区的频率常用波数ν表示,波数的单位是cm-1 , 标准红外谱图标有频率和波长两种刻度。波长和波数的 关系是:
红外光谱的分区
• • • • 400-2500cm-1:这是X-H单键的伸缩振动区。 2500-2000cm-1:此处为叁键和累积双键伸缩振动区 2000-1500cm-1:此处为双键伸缩振动区 1500-600cm-1:此区域主要提供C-H弯曲振动的信息
各种有机化合物的红外光谱
• • • • • • • • • 饱和烃 不饱和烃 醇、酚和醚 含羰基化合物 含氮化合物 其他含杂原子有机化合物 金属有机化合物 高分子化合物 无机化合物
返回
影响红外光谱吸收强度的因素
振动中偶极矩的变化幅度越大,吸收强度越大 • 极性大的基团,吸收强度大,C=O 比 C=C 强, CN 比CC强 • 使基团极性降低的诱导效应使吸收强度减小,使基团 极性增大的诱导效应使吸收强度增加。 • 共轭效应使π电子离域程度增大,极化程度增大,吸收 强度增加。 • 振动耦合使吸收增大,费米振动使倍频或组频的吸收 强度显著增加。 • 形成氢键使振动吸收峰变强变宽。 • 能级跃迁的几率,v=0 v=2 比 v=0 v=1 能阶大, 但几率小,吸收峰弱
相关文档
最新文档