河北省邢台市高一上学期数学12月份月考试卷

合集下载

河北省NT20名校联合体2023-2024学年高一上学期12月月考数学试卷

河北省NT20名校联合体2023-2024学年高一上学期12月月考数学试卷
A. b2 = 4c + 4
B.若1- b + c > 0 ,则 x02 < 1
C.若
x0
>
0
,则 cx2
- bx
+1
<
0
的解集为
æ ç
è
1 x0 +
2
,
1 x0
ö ÷ ø
D.
b
+
c
有最小值为
-
9 4
三、填空题
13.
x
>
0
时,
y
=
x2 (x +1)2
+
1 的值域为 x+1
.
14.写出一个函数 f ( x) 的解析式,满足:① f ( x) 是定义在 R 上的偶函数;② x ¹ 0 时,
æçè1,
16 9
ù úû
D.
é16 êë 9
,
2ùúû
二、多选题 9.已知 -1 £ a £ 3,1 £ b £ 2 ,则以下命题正确的是( )
A. -1 £ ab £ 6 C. -2 £ a - b £ 1 10.以下函数是偶函数的是( )
A. f ( x) = 2x + 2-x
B. 0 £ a + b £ 5
a
+ 2
b
³
2
-
ab ,即
a+
2
b ³ 4 ,即
a+
b ³2,

a
+b 2
³
2-
ab 是
a+
b ³ 2 的充要条件,故 D 错误.
故选:A. 8.D

2022-2023学年河北省高一上学期月考(12月)数学试卷含解析

2022-2023学年河北省高一上学期月考(12月)数学试卷含解析

2022-2023学年河北省高一上学期月考(12月)数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、单选题(本大题共10小题,共50.0分。

在每小题列出的选项中,选出符合题目的一项)1. 不等式x2>8的解集是( )A. (−2√2,2√2)B. (−∞,−2√2)∪(2√2,+∞)C. (−4√2,4√2)D. (−∞,−4√2)∪(4√2,+∞)2. 函数f(x)=e x+lnx,g(x)=e−x+lnx,g(x)=e−x−lnx的零点分别是a,b,c,则( )A. a<c<bB. c<b<aC. c<a<bD. b<a<c3. 考察函数:①y=|x|②y=|x|x ③y=−x2|x|④y=x+x|x|,其中(0,+∞)在上为增函数的有( )A. ①②B. ②③C. ③④D. ①④4. 函数f(x)=log a(x2−4x−5)(a>1)的单调递增区间是( )A. (−∞,−2)B. (−∞,−1)C. (2,+∞)D. (5,+∞)5. 若命题“∀x∈R,kx2−kx−1<0”是真命题,则实数k的取值范围是( )A. (−4,0)B. (−4,0]C. (−∞,−4]∪(0,+∞)D. (−∞,−4)∪[0,+∞)6. 若函数f(x)在区间[−2,2]上的图象是连续不断的曲线,且f(x)在(−2,2)内有一个零点,则f(−2)⋅f(2)的值( )A. 大于0B. 小于0C. 等于0D. 不能确定7. 计算(log 32+log 23)2−log 32log 23−log 23log 32的值为( ) A. log 26B. log 36C. 2D. 18. 已知f(x)是定义域为(−1,1)的奇函数,而且f(x)是减函数,如果f(m −2)+f(2m −3)>0,那么实数m 的取值范围是( )A. (1,53)B. (−∞,53)C. (1,3)D. (53,+∞)9. 已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A. f(x)=2xln|x|B. f(x)=2|x|ln|x|C. f(x)=1x 2−1D. f(x)=1|x|−1|x|10. 如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t(0≤t ≤a)经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y(图中阴影部分),若函数y =f(t)的大致图象如图,那么平面图形的形状不可能是( )A. B. C.D.二、多选题(本大题共2小题,共10.0分。

河北省邢台市信都区邢台市第一中学2024-2025学年高一上学期第二次月考数学试题(含答案)

河北省邢台市信都区邢台市第一中学2024-2025学年高一上学期第二次月考数学试题(含答案)

邢台一中2024-2025学年第一学期第二次月考高一年级数学试题考试范围:必修一第一章、第二章、第三章说明:1.本试卷共4页,满分150分.2.请将所有答案填写在答题卡上,答在试卷上无效.第Ⅰ卷(选择题 共58分)一、单选题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“”的否定是( )A .B .C .D .2.已知集合,则满足条件的集合的个数为( )A .5B .4C .3D .23.对于实数,“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数的定义域为,则)A .B .C .D .5.若“,使得不等式成立”是假命题,则实数的取值范围为( )A .B .C .D .6.若函数的部分图象如图所示,则( )2,220x x x ∃∈++≤R 2,220x x x ∀∈++>R 2,220x x x ∀∈++≤R 2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R {}{}*30,,40,A x x x B x x x =-≤∈=-≤∈N N A C B ⊆⊆C x 202xx+≥-2x ≤()y f x =[]1,4-y =31,2⎡⎫-⎪⎢⎣⎭31,2⎛⎤ ⎥⎝⎦(]1,935,2⎡⎤-⎢⎥⎣⎦x ∃∈R 23208kx kx ++≤k 03k ≤<03k <<30k -<≤30k -<<()22f x ax bx c=++()1f =A .B .C .D .7.已知函数,若,对均有成立,则实数的取值范围为( )A .B .C .D .8.记表示中最大的数.已知均为正实数,则的最小值为( )A.B .1C .2D .4二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的有( )A .函数在上是单调减函数B .函数与函数C .已知函数,则D .函数的单调增区间为10.二次函数是常数,且的自变量与函数值的部分对应值如下表: (012)……22…23-112-16-13-()221f x x x =-+[)2,x ∃∈+∞[]1,1a ∀∈-()22f x m am <-+m ()3,1-1,13⎛⎫- ⎪⎝⎭11,3⎛⎫- ⎪⎝⎭()1,3-{}max ,,x y z ,,x y z ,x y 2221max ,,4x y x y ⎧⎫+⎨⎬⎩⎭12()11f x x =-()(),11,-∞+∞ ()f t t =()g x =2211f x x x x⎛⎫-=+ ⎪⎝⎭()13f =y =[)1,+∞2(,,y ax bx c a b c =++0)a ≠x y x1-ymn且当时,对应的函数值.下列说法正确的有( )A .B .C .函数的对称轴为直线D .关于的方程一定有一正、一负两个实数根,且负实数根在和0之间11.若函数对定义域中的每一个都存在唯一的,使成立,则称为“影子函数”,以下说法正确的有( )A .“影子函数”可以是奇函数B .“影子函数”的值域可以是R C .函数是“影子函数”D .若都是“影子函数”,且定义域相同,则是“影子函数”第Ⅱ卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.当时,的最大值为______.13.已知幂函数图象经过点,若,则实数的取值范围是______;若,则______14.已知是定义域为的函数,且是奇函数,是偶函数,满足,若对任意的,都有成立,则实数的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)32x =0y <0abc >1009mn >12x =x 20ax bx c ++=12-()y f x =D 1x 2x D ∈()()121f x f x ⋅=()f x ()f x ()f x ()2(0)f x x x =>()(),y f x y g x ==()()y f x g x =⋅54x <14345y x x =-+-()f x x α=()4,2()()132f a f a +>-a 120x x <<()()122f x f x +122x x f +⎛⎫ ⎪⎝⎭()(),f x g x R ()f x ()g x ()()22f x g x ax x +=++1212x x <<<()()1225g x g x x ->--a设集合(1)是否存在实数,使是的充分不必要条件,若存在,求出实数的取值范围;若不存在,请说明理由;(2)若,求实数的取值范围.16.(15分)已知函数,对于任意,有.(1)求的解析式;(2)若函数在区间上的最小值为,求的值;(3)若成立,求的取值范围.17.(15分)丽水市某革命老区因地制宜发展生态农业,打造“生态特色水果示范区”.该地区某水果树的单株年产量(单位:千克)与单株施肥量(单位:千克)之间的关系为,且单株投入的年平均成本为元.若这种水果的市场售价为10元/千克,且水果销路畅通.记该水果树的单株年利润为(单位:元).(1)求函数的解析式;(2)求单株施肥量为多少千克时,该水果树的单株年利润最大?最大利润是多少?18.(17分)已知函数.(1)用单调性的定义证明函数在上为增函数;(2)是否存在实数,使得当的定义域为时,函数的值域为.若存在.求出的取值范围;若不存在说明理由.19.(17分)定义:对于定义域为的函数,若,有,则称为的不动点.已知函数.(1)当时,求函数的不动点;{}{}{}2212,40,A x a x a B x x x C y y x B=-≤≤+=-≤==∈a x B ∈x A ∈a A C C = a ()25f x ax bx =+-x ∈R ()()()22,27f x f x f -=+-=()f x ()f x [],3t t +8-t ()()()22,,(1)10x x m f x ∃∈+∞-≥+m ()x ϕx ()232,031645,36x x x x x ϕ⎧+≤≤⎪=⎨-<≤⎪⎩10x ()f x ()f x ()221x f x x-=()f x ()0,+∞λ()f x 11,(0,0)m n m n ⎡⎤>>⎢⎥⎣⎦()f x []2,2m n λλ--λD ()f x 0x D ∃∈()00f x x =0x ()f x ()()218,0f x ax b x b a =+-+-≠1,0a b ==()f x(2)若函数有两个不相等的不动点,求的取值范围;(3)设,若有两个不动点为,且,求实数的最小值.邢台一中2024-2025学年第一学期第二次月考答案1.A 2.B . 3.A 4.B 5.A 6.D 7.B 8.C 9.BC 10.BCD 11.AC12.答案:0 13. 14.15.解:(1)假定存在实数,使足的充分不必要条件,则,则或,解得或,因此,所以存在实数,使是的充分不必要条件,.(2)当时,,则,由,得,当,即时,,满足,符合题意,则;当,由,得,解得,因此,所以实数的取值范围是.16.解:(1)因为关于对称,即,又,则可解得,所以;(2)当,即时,,解得或(舍去);()221y x a x =-++12x x 、1221x x x x +()1,3a ∈()f x 12,x x ()121ax f x a =-b 23,32⎛⎤⎝⎦<5,4a ⎡⎫∈-+∞⎪⎢⎣⎭a x B ∈x A ∈B A Ü20124a a -≤⎧⎨+>⎩20124a a -<⎧⎨+≥⎩2a ≥2a >2a ≥a x B ∈x A ∈2a ≥04x ≤≤15≤≤{}15C x x =≤≤A C C = A C ⊆212a a ->+13a <A =∅A C ⊆13a <212a a -≤+A C ⊆12125a a ≤-≤+≤113a ≤≤1a ≤a 1a ≤()()()22,f x f x f x -=+2x =22ba-=()24257f a b -=--=1,4a b ==-()245f x x x =--32t +≤1t ≤-()()2min ()3(3)4358f x f t t t =+=+-+-=-2t =-0t =当,即时.,不符合题意;当时,,解得(舍去)或,综上,或.(3)由可得,因,依题意,,使成立.而,不妨设,因,则,设,因,则,当且仅当时等号成立,即当时,,故的最大值为2,依题意,,即的取值范围为.17.解:(1)当.时,,当时,,故;(2)当时,开口向上,其对称轴为,所以其最大值为,当当且仅当,即时,等结成立,综上,施肥量为3kg 时,单株年利润最大为380元.18.【详解】(1),设,且,则,因为,所以,所以,即,所以函数在上为增函数.23t t <<+12t -<<()man ()29f x f ==-2t ≥()2min ()458f x f t t t ==--=-1t =3t =2t =-3t =()()2(1)10x m f x -≥+()22(1)45x m x x -≥-+2245(2)10x x x -+=-+>()2,x ∃∈+∞22(1)45x m x x -≤-+22222(1)21241454545x x x x x x x x x x --+-==+-+-+-+2t x =-2x >220,451t x x t >-+=+()2221111t g t t t t=+=+++0t >12t t +≥1t =3x =max ()2g t =22(1)45x x x --+2m ≤m (],2-∞03x ≤≤()()223210101010320f x x x x x =+⨯-=-+36x <≤()1616045101045010f x x x x x ⎛⎫=-⨯-=- ⎪⎝⎭()21010320,0316045010,36x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪⎩03x ≤≤()21010320f x x x =-+12x =()23103103320380f =⨯-⨯+=36x <≤16010x x=4x =()222111x f x x x -==-()12,0,x x ∀∈+∞12x x <()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+⎛⎫--=--=== ⎪⎝⎭120x x <<(221212120,0,0x x x x x x -+>()()120f x f x -<()()12f x f x <()f x ()0,+∞(2)由(1)可知,在上单调递增,呂存在使得的值域为,则,即,因为,所以存在两个不相等的正根,所以,解得,所以存在使得的定义域为时,值域为.19.【解析】(1)当时,,令,即,解得或,所以的不动点为或4.(2)依题意,有两个不相等的实数根,即方程有两个不相等的实数根,所以,解得,或,且,所以,因为函数对称轴为,当时,随的增大而减小,若,则;当吋,随的增大而增大,若,则;故,所以的取值范围为.(3)令,即,则,当时,由韦达定理得,由题意得,故,于是得,则,令,则,所以,()f x 11,m n ⎡⎤⎢⎥⎣⎦λ()f x []2,2m n λλ--22112112f m mm f n n n λλ⎧⎛⎫=-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-=- ⎪⎪⎝⎭⎩221010m m n n λλ⎧-+=⎨-+=⎩0,0m n >>210x x λ-+=21212Δ40100x x x x λλ⎧=->⎪=>⎨⎪+=>⎩2λ>()2,λ∈+∞()f x 11,m n ⎡⎤⎢⎥⎣⎦[]2,2m n λλ--1,0a b ==()28f x x x =--()f x x =28x x x --=2x =-4x =()f x 2-()221x a x x -++=12x x 、()2310x a x -++=12x x 、22Δ(3)4650a a a =+-=++>5a <-1a >-12123,1x x a x x +=+=()22221212121221122(3)2x x x x x x x x a x x x x ++==+-=+-2(3)2y x =+-3x =-3x <-y x 5x <-2y >3x >-y x 1x >-2y >()2(3)22,a +-∈+∞1221x x x x +()2,+∞()f x x =()218ax b x b x +-+-=()2280,0ax b x b a +-+-=≠()1,3a ∈128b x x a -=()22f x x =()12121ax x x f x a ==-81b a a a -=-281a b a =+-1t a =-02,1t a t <<=+2(1)18101012t b t t t +=+=++≥+=当且仅当,即时取等号,所以实数的最小值为12.1t t=1,2t a ==b。

河北省高一上学期12月月考数学试卷

河北省高一上学期12月月考数学试卷

河北省高一上学期12月月考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,2,3},B={y|y=x2 ,x∈A},则(∁UA)∩B等于()A . {4}B . {9}C . {0,1}D . {4,9}2. (2分) (2018高二下·虎林期末) 函数在处有极值为 ,则()A . -4或6B . 4或-6C . 6D . -43. (2分) (2020高三上·信阳月考) 已知定义在上的函数,满足,函数的图象关于点中心对称,对于任意、,,都有成立.则的解集为()A .B .C .D .4. (2分)数列的一个通项公式可能是()A .B .C .D .5. (2分) (2019高一上·舒城月考) 若定义在实数集上的满足:时,,对任意,都有成立. 等于()A .B .C .D .6. (2分) (2017高一下·玉田期中) 若正数x,y满足x+3y=xy,则3x+4y的最小值为()A . 24B . 25C . 28D . 307. (2分) (2016高一上·黑龙江期中) 设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A . {﹣2}B . {2}C . {﹣2,2}D . ∅8. (2分) (2019高一上·兴庆期中) 设集合,则 =()A .B .C .D .9. (2分) (2017高一下·景德镇期末) 函数f(x)=(kx+4)lnx﹣x(x>1),若f(x)>0的解集为(s,t),且(s,t)中只有一个整数,则实数k的取值范围为()A . (﹣2,﹣)B . (﹣2,﹣ ]C . (﹣,﹣1]D . (﹣,﹣1)10. (2分) (2019高二上·榆林期中) 不等式(m+1)x2-mx+m-1<0的解集为,则m的取值范围()A . m<-1B . m≥C . m≤-D . m≥ 或m≤-11. (2分) (2019高一上·长沙月考) 函数的一条对称轴方程为()A .B .C .D .12. (2分)已知全集U=R,集合M={x||x﹣1|≤2},则CUM=()A . {x|﹣1<x<3}B . {x|﹣1≤x≤3}C . {x|x<﹣1,或x>3}D . {x|x≤﹣1,或x≥3}二、填空题 (共4题;共7分)13. (3分)函数f(x)=lg(9﹣x2)的定义域为________单调递增区间为________3f(2)+f(1)= ________14. (1分) (2017高一下·泰州期末) 若x>0,则x+ 的最小值为________.15. (1分) (2016高一上·潍坊期中) 已知函数f(x)=x2﹣2x(x∈[﹣1,2])的值域为集合A,g(x)=ax+2(x∈[﹣1,2])的值域为集合B.若A⊆B,则实数a的取值范围是________.16. (2分)设函数f(x)在区间[a,b]上满足f′(x)<0,则函数f(x)在区间[a,b]上的最小值为________,最大值为________.三、解答题 (共5题;共35分)17. (5分) (2017高一上·绍兴期末) 已知集合A={x|x2﹣2x﹣3≥0},集合B={x|x≥1}.(Ⅰ)求集合A;(Ⅱ)若全集U=R,求(∁UA)∪B.18. (5分) (2016高一上·铜陵期中) 已知集合A={x|﹣2≤x≤5},集合B={x|p+1≤x≤2p﹣1},若A∩B=B,求实数p的取值范围.19. (5分) (2019高一上·纳雍期中) 设全集为R,,,求及.20. (10分) (2017高一上·眉山期末) 某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在图中的两条线段上(如图).该股票在30天内(包括第30天)的日交易量Q(万股)与时间t(天)的函数关系式为Q=40﹣t(0≤t≤30且t∈N).(1)根据提供的图象,求出该种股票每股的交易价格P(元)与时间t(天)所满足的函数关系式;(2)用y(万元)表示该股票日交易额(日交易额=日交易量×每股的交易价格),写出y关于t的函数关系式,并求出这30天中第几天日交易额最大,最大值为多少.21. (10分) (2019高三上·榕城月考) 已知函数, .(1)若不等式的解集为,求不等式的解集;(2)若函数在区间上有两个不同的零点,求实数的取值范围.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共7分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共5题;共35分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:。

河北省高一上学期12月月考数学试题(解析版)

河北省高一上学期12月月考数学试题(解析版)

高一上学期12月月考数学试题一、单选题1.已知角,则的弧度数为( ) 15α=o αA .B .C .D .3π4π10π12π【答案】D【分析】利用角的度数与弧度数互化关系求解作答.【详解】因,因此,1180π=o151518012ππ=⨯=所以的弧度数为.α12π故选:D2.已知集合,则( ) {}{}2,Z ,1,2,3,4,5A xx k k B ==∈=∣()B A B ⋂=ðA . B . C . D .{}2,4{}1,3,5{}2,4,6{}1,3【答案】B【分析】首先计算,再求补集.A B ⋂【详解】集合中的元素是偶数,所以,所以. A {}2,4A B = (){}1,3,5B A B ⋂=ð故选:B3.已知,则用表示为( ) 103,105x y ==,x y 9lg 2A .B .C .D .21xy-3x y21x y +-21x y -+【答案】C【分析】利用指对互化,求,再表示. ,x y 9lg2【详解】,,103lg 3x x =⇔=105lg 5y y =⇔=. ()9lglg 9lg 22lg 31lg 52lg 3lg 51212x y =-=--=+-=+-故选:C4.若,则是的( ) 0x >2x >24x >A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】在时解不等式,即可得出结论.0x >24x >【详解】因为,由可得,故当时,是的充分必要条件, 0x >24x >2x >0x >2x >24x >故选:C.5.若不计空气阻力,则以初速度竖直上抛的物体距离抛出点的高度与时间满足关系式0v y t ,其中.现有一名同学以初速度竖直向上抛一个排球,则该排球在距2012y v t gt =-210m/s g =12m/s 离抛出点以上的位置停留的时间约为( )1m )5.6≈A . B .C .D .2.24s 1.12s 1s 0.5s 【答案】A【分析】将初始值代入解析式,转化为解不等式,即可求解. 21251y t t =-≥【详解】由条件可知,,, 012m/s v =210m/s g =则,即21251y t t =-≥251210t t -+≤t ≤≤即,所以停留的时间约为. 0.08 2.32t ≤≤ 2.320.08 2.24s -=故选:A6.已知,,,则( ) 3log 4a =4log 5b =32c =A . B . a b c <<a b c >>C . D .b c a >>b a c <<【答案】D【分析】利用作差法结合基本不等式可得出、的大小关系,利用对数函数的单调性可得出、a b a 的大小关系,即可得出结论.c 【详解】因为 ()()22234ln 3ln 5ln 4ln 4ln 3ln 5ln 4ln 52log 4log 5ln 3ln 4ln 3ln 4ln 3ln 4a b +⎛⎫- ⎪-⋅⎝⎭-=-=-=>⋅⋅,即,0=>a b >又因为,因此,. 333log 4log 2a c =<==b ac <<故选:D.7.已知函数,则有( )12()log f x =()f x A .最小值B .最大值 2log 3-2log 3-C .最小值D .最大值32-32-【答案】B【分析】()f x 的最大值,即可得出结论. 【详解】,,==2t =≥()2g t t t=+[)2,t ∈+∞,任取、且,则,,1t [)22,t ∈+∞12t t >120t t ->124t t >所以, ()()()()()()12121212121212121222220t t t t t t g t g t t t t t t t t t t t ---⎛⎫⎛⎫-=+-+=--=> ⎪⎪⎝⎭⎝⎭则,所以函数在上单调递增, ()()12g t g t >()g t [)2,+∞故当时,,2t ≥()()23g t g ≥=,3=≥又因为函数为减函数,故. 12log y u =()122log 3log 3f x =≤=-故选:B.8.已知定义域为的函数在上为减函数,且为奇函数,则给出下列结论:R ()f x (),2-∞()2f x +①的图象关于点对称;②在上为增函数;③.其中正确结论的个()f x ()2,0()f x ()2,+∞()20f =数为( ) A .0 B .1C .2D .3【答案】C【分析】将平移后得到具有对称中心判断①是否正确,根据有对称中心的函()2y f x =+()y f x =数两侧的单调性特征可判断②是否正确;在为奇函数的代数表达式中令即可得到()2f x +0x =的值.()2f 【详解】因为为奇函数,所以的中心为,将的图象向右平移()2f x +()2y f x =+()0,0()2y f x =+2个单位得到的图象,故的中心为,所以①正确;()y f x =()y f x =()2,0有对称中心的函数在对称中心两侧的单调性相同,故在上为减函数,所以②不正确; ()f x ()2,+∞因为为奇函数,所以,令得,故,所以()2f x +()()22f x f x +=--+0x =()()22f f =-()20f =③正确; 故选:C二、多选题9.已知,则下列不等式一定成立的是( ). a b >A .B .C .D .11a b <33a b >22a b m m >a b >【答案】BC【分析】根据不等式的性质,对选项逐一判断,即可得到结果. 【详解】对于A ,令,,有,故A 错误; 1a =1b =-11a b>对于B ,当时,由不等式的性质得:;0a b >≥33a b >当,有,所以,即,∴; 0b a <≤0b a ->-≥()()33b a ->-33b a ->-33a b >当,时,显然,故B 正确; 0a >0b <33a b >对于C ,,故C 正确. 2220a b a b m m m --=>对于D ,令,,有,故D 错误, 1a =1b =-a b =故选:BC .10.设函数,对于任意的,下列命题正确的是( )()2xf x =()1212,x x x x ≠A . B .()()()1212f x x f x f x +=()()()1212f x x f x f x ⋅=+C .D .()()12120f x f x x x ->-()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭【答案】ACD【分析】根据指数运算法则可知A 正确,利用反例可知B 错误;根据指数函数单调性可知C 正确;结合基本不等式可确定D 正确.【详解】对于A ,,A 正确;()()()12121212222x x x xf x f x f x x +=⋅==+对于B ,令,,则,,,11x =22x =()()1224f x x f ==()12f x =()24f x =,B 错误;()()()1212f x x f x f x ∴≠+对于C ,为定义在上的增函数,,C 正确;()f x R ()()12120f x f x x x -∴->对于D ,,()()1212122222x x x x f x f x f +⎛⎫+=+>== ⎪⎝⎭,D 正确. ()()121222f x f x x x f æö++ç÷\<ç÷èø故选:ACD.11.若,,且,则下列说法正确的是( ) 0a >0b >22a b +=A .ab 的最大值为 B .的最大值为2 12224a b +C .的最小值为2 D .的最小值为4 224a b +2+aa b【答案】ACD【分析】利用基本不等式,结合已知条件,对每个选项进行逐一分析,即可判断和选择.【详解】对:,,当且仅当时,等号成立, A 22+= a b 22∴=+≥a b 12≤ab 21a b ==此时ab 取得最大值,故正确;12A 对:由可得, BC A 22214(2)4444422+=+-=-≥-⨯=a b a b ab ab 当且仅当时取得最小值2,即有最小值2 ,故错误,正确;21a b ==224a b +B C对:由,得, D 22a b +=22224a a b a b a a b a b a b ++=+=++≥+=当且仅当,即时等号成立,即取得最小值4,故正确.b aa b =23a b ==2+a a b D 故选:ACD.12.已知函数,,则下列结论正确的是( )()2|1|22x a f x x x +=+++R a ∈A .函数图象为轴对称图形 ()f x B .函数在单调递减()f x (),1-∞-C .存在实数,使得有三个不同的解m ()f x m =D .存在实数a ,使得关于x 的不等式的解集为 ()5f x ≥(][),20,-∞-+∞ 【答案】ABD【分析】根据函数的对称性、单调性、方程的解、不等式的解等知识对选项进行分析,从而确定正确选项.【详解】,()()212|1|22121x x x f x x a x a ++=+++=+++-,,()2121xf x x a -+=++-()()21211xf x x a f x --=++-=-+所以的图象关于直线对称,A 选项正确.()f x =1x -由于函数在区间上递减,在区间上递减,()21y x =+(),1-∞-12x y +=(),1-∞-所以函数在单调递减,B 选项正确.()()21121x x x a f +=+++-(),1-∞-由上述分析可知:的图象关于直线对称,在区间上递减,在区间()f x =1x -()f x (),1-∞-()1,-+∞上递增,所以不存在实数使得有三个不同的解,C 选项错误.m ()f x m =有上述分析可知:的图象关于直线对称,在区间上递减,在区间()f x =1x -()f x (),1-∞-()1,-+∞上递增,令,解得, ()()112121501215f a f a ⎧-=++-=⎪⎨=++-=⎪⎩3a =此时不等式的解集为,D 选项正确. ()5f x ≥(][),20,-∞-+∞ 故选:ABD三、填空题13.已知函数,则______.()221,12,1x x f x x x x ⎧+<=⎨+≥⎩()()0f f =【答案】8【分析】根据函数解析式求得正确答案.【详解】,()00212f =+=.()()()2022228f f f ==+⨯=故答案为:814.方程的一根大于1,一根小于1,则实数的取值范围是__________.()2250a x x a --++=a 【答案】(),2-∞-【分析】利用一元二次方程的根的分布与系数的关系,结合二次函数的性质即得.【详解】∵方程 的一根大于1,另一根小于1,()2250a x x a --++=令,()22()5a x x f x a --++=则, ()(1)1025a f a --++<=解得. 2a <-故答案为:.(),2-∞-15.已知函数,,若对任意的,均存在使得()2xf x =()2221g x x ax a a =-++-(]1,0x ∈-∞2R x ∈,则实数的取值范围是______.()()12f x g x =a 【答案】(],1-∞【分析】求在区间上的值域以及的值域,从而求得的取值范围. ()f x (],0-∞()g x a 【详解】在区间上递增,所以在区间上的值域为,()f x (],0-∞()f x (],0-∞(]0,1的开口向上,对称轴为直线,()2221g x x ax a a =-++-x a =,所以的值域为,()222211g a a a a a a =-++-=-()g x [)1,a -+∞由于对任意的,均存在使得, (]1,0x ∈-∞2R x ∈()()12f x g x =所以,, 10a -≤1a ≤所以的取值范围是. a (],1-∞故答案为:(],1-∞16.若函数在区间上的最大值为,最小值为,则()()2221221x xx f x x -++-=+[]2022,2022-M m ______. M m +=【答案】4【分析】将原函数化为,然后令,可得函数为奇函()242221x x x f x x -+-=++()24221x xx g x x -+-=+()g x 数,再根据奇函数与最值的性质即可求解. 【详解】因为, ()()222222122242224222111x xx x x xx x x x f x x x x ---++-+++-+-===++++令,,则, ()24221x xx g x x -+-=+[]2022,2022x -∈()()2f x g x =+又因为,()()()()()2242242211x x x x x x g x g x x x -----+--+--===-+-+所以函数为奇函数, ()g x 因为奇函数的图象关于原点对称,所以函数区间上的最大值和最小值之和为0,即, ()g x []2022,2022-()()max min 0g x g x +=因为,()()2f x g x =+所以,, ()()max max 2M f x g x ==+()()min min 2m f x g x ==+所以. ()()max min 224M x m g g x +=+++=故答案为:4.四、解答题17.已知函数,且的解集为. ()232f x ax x =+-()0f x >{2}(2)xb x b <<<∣(1)求的值;,a b (2)若对于任意的,不等式恒成立,求实数的取值范围. []1,2x ∈-()2f x m ≥+m 【答案】(1),; 1a =-1b =(2)实数的取值范围为. m (],8∞--【分析】(1)依题意为方程的两根,根据根与系数关系列方程组,解方程即,2b 2ax 3x 20+-=可;(2)依题意,求出函数的最小值可求出参数的取值范围.()2min34m x x ≤-+-【详解】(1)因为的解集为,且,()0f x >{}2(2)x b x b <<<()232f x ax x =+-所以,且为方程的两根,所以,, a<0,2b 2ax 3x 20+-=32b a +=-22b a=-所以,;1a =-1b =(2)由(1)可得,不等式可化为,所以 ()2f x m ≥+2322x x m -+-≥+234m x x ≤-+-因为对于任意的,不等式恒成立, []1,2x ∈-()2f x m ≥+所以对于任意的,不等式恒成立,[]1,2x ∈-234m x x ≤-+-即,其中,()2min34m x x ≤-+-[]1,2x ∈-因为,其中,22373424y x x x ⎛⎫=-+-=--- ⎪⎝⎭[]1,2x ∈-所以当时,取最小值,最小值为, =1x -234y x x =-+-8-所以,故实数的取值范围为.8m ≤-m (],8∞--18.若函数满足()f x ()2121f x x x +=++(1)求函数的解析式;()f x (2)若函数,试判断的奇偶性,并证明.()()1g x f x f x ⎛⎫=- ⎪⎝⎭()g x 【答案】(1)()2f x x =(2)偶函数,证明见解析【分析】(1)利用凑配法求得.()f x (2)根据函数奇偶性的定义证得的奇偶性. ()g x 【详解】(1)由于,()()221211f x x x x +=++=+所以.()2f x x =(2),()()()22110g x f x f x x x x ⎛⎫=-=-≠ ⎪⎝⎭为偶函数,证明如下: ()g x 的定义域为,()g x {}|0x x ≠且, ()()()()222211g x x x g x x x -=--=-=-所以是偶函数.()g x 19.设函数()()()23,R f x ax a x b a b =-++∈(1)若不等式的解集为,求的值; ()0f x <()1,3,a b (2)若,时,求不等式的解集. =3b 0a >()0f x >【答案】(1)1,=3a b =(2)答案见解析【分析】(1)不等式解集区间的端点是方程的解,运用韦达定理可得;(2)含参的一元二次不等式需要分情况进行解决.【详解】(1)函数 ,()()()23,R f x ax a x b a b =-++∈由不等式的解集为,得,()0f x <()1,30a >且1和3是方程的两根;则,()230ax a x b -++=3133=a ab a +⎧+=⎪⎪⎨⎪⎪⎩解得1,=3a b =(2)时,不等式为,=3b ()2330ax a x -++>可化为,()()130x ax -->因为,所以不等式化为,0a >()31(0x x a-->当时,,解不等式得或;0<3a <31a>1x <3x a >当时,不等式为,解得; =3a ()210x ->1x ≠当时,,解不等式得或;>3a 31a<3x a <1x >综上:时,不等式的解集为; 0<3a <()3,1,a -∞+∞ ()当时,不等式的解集为; =3a {}|1x x ≠当时,不等式的解集为. >3a ()3,1,a-∞+∞ ()20.兴泉铁路起于江西,途经三明,最后抵达泉州(途经站点如图所示).这条“客货共用”铁路是开发沿线资源、服务革命老区的重要铁路干线,是打通泉州港通往内陆铁路货运的重要方式,将进一步促进山海协作,同时也将结束多个山区县不通客货铁路的历史.目前,江西兴国至清流段已于2021年9月底开通运营,清流至泉州段也具备了开通运营条件,即将全线通车.预期该路线通车后,列车的发车时间间隔t (单位:分钟)满足.经市场调研测算,列车载客量与发车时220t ≤≤间间隔t 相关,当时列车为满载状态,载客量为720人;当时,载客量会减1020t ≤≤210t ≤<少,减少的人数与的平方成正比,且发车时间间隔为3分钟时的载客量为396人.记列车载(12)t -客量为.()p t(1)求的表达式;()p t (2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路()()236060p t Q t t-=-每分钟的净收益最大,并求出最大值.【答案】(1) 2496144,210()720,1020t t t p t t ⎧-++≤<=⎨≤≤⎩(2)时间间隔为3分钟时,每分钟的净收益最大为84元【分析】(1)当时,,当时,可设,由题可求出1020t ≤<()720p t =210t ≤<2()720(12)p t k t =--,即可得到答案.k (2)由(1)知: ,结合基本不等式和函数单调性即可求出的净收()721328,210108060,1020t t t Q t t t⎧--≤<⎪⎪=⎨⎪-≤≤⎪⎩益最大值.【详解】(1)由题知,当时,1020t ≤<()720p t =当时,可设,210t ≤<2()720(12)p t k t =--又发车时间间隔为3分钟时的载客量为396人,∴,解得.2(3)720(123)396p k =--==4k 此时,22()7204(12)496144p t t t t =-⨯-=-++210t ≤<∴ 2496144,210()720,1020t t t p t t ⎧-++≤<=⎨≤≤⎩(2)由(1)知: , ()721328,210108060,1020t t t Q t t t⎧--≤<⎪⎪=⎨⎪-≤≤⎪⎩∵时,,当且仅当等号成立, 210t ≤<()13284Q t ≤-==3t ∴时,,210t ≤<max ()(3)84Q t Q ==当上,单调递减,则,1020t ≤≤()Q t max ()(10)48Q t Q ==综上,时间间隔为3分钟时,每分钟的净收益最大为84元.21.已知定义在R 上的奇函数,当时.()f x 0x <2(1)2f x x x =++(1)求函数的表达式;()f x (2)请画出函数的图像;并写出函数的单调区间.()f x ()f x 【答案】(1) 2221,0()0,021,0x x x f x x x x x ⎧++<⎪==⎨⎪-+->⎩(2)作图见解析,函数的递增区间为,递减区间为 ()f x (1,0),(0,1)-(,1),(1,)-∞-+∞【分析】(1)利用奇函数的定义即可求出函数解析式;(2)利用函数解析式带点即可画出函数图像,根据函数图像即可写出单调区间.【详解】(1)解:设,则,,0x >0x -<2()21f x x x ∴-=-+又是定义在R 上的奇函数,,()f x ()()f x f x ∴-=-所以,2()21,(0)f x x x x =-+->当时,,0x =(0)0f =所以;2221,0()0,021,0x x x f x x x x x ⎧++<⎪==⎨⎪-+->⎩(2)解:图像如下图:由图可知,函数的递增区间为,递减区间为.()f x (1,0),(0,1)-(,1),(1,)-∞-+∞22.已知函数在区间单调递减,在区间单调递增. ()0k y x k x =+>()+∞(1)求函数在区间的单调性;(只写出结果,不需要证明) 2y x x=+(),0∞-(2)已知函数,若对于任意的,有恒成立,求实数的()()2131x ax f x a x ++=∈+R x N *∈()5f x ≥a 取值范围.【答案】(1)在区间的单调递增,在区间的单调递减;(2).(,-∞()2,3⎡⎫-+∞⎪⎢⎣⎭【解析】(1)利用对勾函数的性质,直接写出结论即可;(2)利用不等式恒成立的关系,把问题从恒成立,()5f x ≥转化为对于任意的,恒成立,利用参变分离的方法,等价于x N *∈21351x ax x ++≥+,然后,根据对勾函数的性质进行求解即可 ()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N 【详解】解:(1)因为函数在单调递减,在单调递增, k y x x =+()0k >()+∞所以,当时函数在单调递减,在单调递增. 2k =2y xx =+()+∞易知函数为奇函数, 2y x x =+所以函数在区间的单调递增;y x=+(,-∞在区间的单调递减.()(2)由题意,对任意的,有恒成立,x N *∈()5f x ≥即对于任意的,恒成立, x N *∈21351x ax x ++≥+等价于. ()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N 设, ()()8g x x x x *=+∈N易知,当且仅当,即取得最小值, 8x x=x =()g x由题设知,函数在上单调递减,在上单调递增. ()g x (0,()+∞又因为,且,,而, x N *∈()26g =()1733g =()()23g g >所以当时,. 3x =()min 173g x =所以,即, 81725533x x ⎛⎫-+≤-=- ⎪⎝⎭23a ≥-故所求实数的取值范围是. a 2,3⎡⎫-+∞⎪⎢⎣⎭【点睛】关键点睛:解题的关键在于,利用参变分离法,把问题转化为证明()85a x x x *⎛⎫≥-+∈ ⎪⎝⎭N 恒成立,进而利用对勾函数性质求解,属于中档题。

高一(上)12月月考数学试卷 (1)

高一(上)12月月考数学试卷 (1)

高一(上)12月月考数学试卷一.选择题:1.已知,集合,,则A. B. C. D.2.有个命题:三点确定一个平面.梯形一定是平面图形.平行于同一条直线的两直线平行.垂直于同一直线的两直线互相平行.其中正确命题的个数为()A. B. C. D.3.函数的图象是()A. B.C. D.4.已知直线与直线垂直,面,则与面的位置关系是()A. B.C.与相交D.以上都有可能5.如图的正方体中,异面直线与所成的角是()A. B. C. D.6.已知、为两条不同的直线、为两个不同的平面,给出下列四个命题①若,,则;②若,,则;③若,,则;④若,,则.其中真命题的序号是()A.①②B.③④C.①④D.②③7.若函数,则函数的定义域为()A. B. C. D.8.设是定义在上的奇函数,且当时,,则的值等于()A. B. C. D.9.定义在上的函数满足:对任意的,,有,则()A. B.C. D.10.一长方体的长,宽,高分别为,,,则该长方体的外接球的体积是()A. B.C. D.11.已知函数,在下列区间中,包含零点的区间是()A. B. C. D.12.已知两条直线和,与函数的图象从左至右相交于点,,与函数的图象从左至右相交于,.记线段和在轴上的投影长度分别为,,当变化时,的最小值为()A. B. C. D.二.填空题:13.函数的值域是________.14.一个圆锥的底面半径是,侧面展开图为四分之一圆面,一小虫从圆锥底面圆周上一点出发绕圆锥表面一周回到原处,其最小距离为________.15.函数的零点个数是________.16.所在的平面,是的直径,是上的一点,,分别是点在,上的射影,给出下列结论:① ;② ;③ ;④ 平面.其中正确命题的序号是________.三.解答题17.17.. . .18.如图为一个几何体的三视图画出该几何体的直观.求该几何体的体积.求该几何体的表面积.19.如图,在正方体中.如图求与平面所成的角如图求证:平面.20.是定义在上的偶函数,当时,;当时,.当时,求满足方程的的值.求在上的值域.21.已知定义域为的函数是奇函数求,的值.判断的单调性,并用定义证明若存在,使成立,求的取值范围.22.已知函数,.求的最小值;关于的方程有解,求实数的取值范围.答案1. 【答案】A【解析】根据集合的基本运算进行求解即可.【解答】解:∵或,∴ ,则,故选:2. 【答案】C【解析】由公理三及其推论能判断、的正误,由平行公理能判断的正误,垂直于同一直线的两直线相交、平行或异面,由此能判断的正误.【解答】解:不共线的三点确定一个平面,故错误;∵梯形中有一组对边互相平行,∴梯形一定是平面图形,故正确;由平行公理得平行于同一条直线的两直线平行,故正确;垂直于同一直线的两直线相交、平行或异面,故错误.故选:.3. 【答案】A【解析】由函数解析式,此函数是一个指数型函数,且在指数位置带有绝对值号,此类函数一般先去绝对值号变为分段函数,再依据此分段函数的性质来确定那一个选项的图象是符合题意的.【解答】解:,即由解析式可以看出,函数图象先是反比例函数的一部分,接着是直线的一部分,考察四个选项,只有选项符合题意,故选.4. 【答案】D【解析】以正方体为载体,利用空间中线线、线面、面面间的位置关系求解.【解答】解:在正方体中,,平面,平面;,平面,平面;,平面,与平面相交.∴直线与直线垂直,面,则与面的位置关系是或或与相交.故选:.5. 【答案】C【解析】连接,根据正方体的几何特征及异面直线夹角的定义,我们可得即为异面直线与所成的角,连接后,解三角形即可得到异面直线与所成的角.【解答】解:连接,由正方体的几何特征可得:,则即为异面直线与所成的角,连接,易得:故故选6. 【答案】D【解析】,,则或与是异面直线;若,则垂直于中所有的直线,,则平行于中的一条直线,故,;若,,则;,,则,或,相交,或,异面.【解答】解:,,则或与是异面直线,故①不正确;若,则垂直于中所有的直线,,则平行于中的一条直线,∴ ,故.故②正确;若,,则.这是直线和平面垂直的一个性质定理,故③成立;,,则,或,相交,或,异面.故④不正确,综上可知②③正确,故答案为:②③.7. 【答案】B【解析】要使函数有意义,则有,解不等式组即可得.到答案.【解答】解:要使函数有意义,则,.解得:.∴函数的定义域为:.故选:.8. 【答案】B【解析】先根据是定义在上的奇函数,把自变量转化到所给的区间内,即可求出函数值.【解答】解:∵ 是定义在上的奇函数,∴ ,又∵当时,,∴ ,∴ .故答案是.9. 【答案】D【解析】根据函数单调性的等价条件,即可到底结论.【解答】解:若对任意的,,有,则函数满足在上单调递减,则,故选:.10. 【答案】C【解析】长方体的对角线就是外接球的直径,求出长方体的对角线长,即可求出球的半径,外接球的体积可求.【解答】解:由题意长方体的对角线就是球的直径.长方体的对角线长为:,外接球的半径为:外接球的体积.故选:.11. 【答案】C【解析】可得,,由零点的判定定理可得.【解答】解:∵,∴ ,,满足,∴ 在区间内必有零点,故选:12. 【答案】C【解析】由题意设,,,各点的横坐标分别为,,,,依题意可求得为,,,的值,,,下面利用基本不等式可求最小值【解答】解:设,,,各点的横坐标分别为,,,,则,;,;∴ ,,,.∴ ,,∴又,∴,当且仅当时取“ ”号,∴,∴的最小值为.故选:.13. 【答案】【解析】根据复合函数单调性之间的性质进行求解即可.【解答】解:,∴,∵,∴,即函数的值域为.故答案为:.14. 【答案】【解析】根据已知,求出圆锥的母线长,进而根据小虫爬行的最小距离是侧面展开图中的弦长,可得答案.【解答】解:设圆锥的底面半径为,母线长为,∵圆锥的侧面展开图是一个四分之一圆面,∴,∴ ,又∵小虫爬行的最小距离是侧面展开图中的弦长,如下图所示:故最小距离为:,故答案为:.15. 【答案】【解析】分段讨论,当时,解得,即在上有个零点,当时,在同一坐标系中,作出与,根据图象,易知有个交点,即可求出零点的个数.【解答】解:当时,,解得,即在上有个零点,当时,,即,分别画出与的图象,如图所示:由图象可知道函数,与函有个交点,函数的零点有个,综上所述,的零点有个,故答案为:.16. 【答案】①②③【解析】对于①②③可根据直线与平面垂直的判定定理进行证明,对于④利用反证法进行证明,假设面,而面,则,显然不成立,从而得到结论.【解答】解:∵ 所在的平面,所在的平面∴ ,而,∴ 面,又∵ 面,∴ ,而,∴ 面,而面,∴ ,故③正确;而面,∴ ,而,∴ 面,而面,面∴ ,,故①②正确,∵ 面,假设面∴ ,显然不成立,故④不正确.故答案为:①②③.17. 【答案】(本题满分分)解:原式.; 原式.【解析】直接利用对数运算法则化简求解即可.; 利用有理指数幂的运算法则化简求解即可.【解答】(本题满分分)解:原式.; 原式.18. 【答案】(本题满分分)解:由几何体的三视图得到几何体的直观图为一个三棱椎,如右图,其中平面,,,.; 由知,∴该几何体的体积.; 该几何体的表面积:.【解析】由几何体的三视图能作出几何体的直观图为一个三棱椎.; 先求出,由此能求出该几何体的体积.; 该几何体的表面积,由此能求出结果.【解答】(本题满分分)解:由几何体的三视图得到几何体的直观图为一个三棱椎,如右图,其中平面,,,.; 由知,∴该几何体的体积.; 该几何体的表面积:.19. 【答案】(本题满分分).解:在正方体,连接交于点,连接,如图①,则又∵ 平面,平面,∴又∵ ,∴ 平面,∴ 是与平面所成的角,在中,,∴ ,∴ 与平面所成的角为.证明:; 连接交于点,连结,如图②则,又,∴∵ 平面,平面,∴ 平面.【解析】连接交于点,连接,则,,从而平面,是与平面所成的角,由此能求出与平面所成的角.; 连接交于点,连结,则,由此能证明平面.【解答】(本题满分分).解:在正方体,连接交于点,连接,如图①,则又∵ 平面,平面,∴又∵ ,∴ 平面,∴ 是与平面所成的角,在中,,∴ ,∴ 与平面所成的角为.证明:; 连接交于点,连结,如图②则,又,∴∵ 平面,平面,∴ 平面.20. 【答案】解:当时,则,此时,∵ 是定义在上的偶函数,∴ ,即,当时,由得,即,即,则,即,解得.即方程的根.; ∵ 时,,∴当时,由得,若,则函数在上单调递减,则函数的值域为.若,此时函数在上的最大值为,最小值为,则函数的值域为.若,则此时,此时函数在在上的最大值为,最小值为,函数的值域为.【解析】当时,利用函数奇偶性的对称性求出函数的表达式,解对数方程即可求满足方程的的值.; 讨论的取值范围,结合对数函数和一元二次函数的性质即可求在上的值域.【解答】解:当时,则,此时,∵ 是定义在上的偶函数,∴ ,即,当时,由得,即,即,则,即,解得.即方程的根.; ∵ 时,,∴当时,由得,若,则函数在上单调递减,则函数的值域为.若,此时函数在上的最大值为,最小值为,则函数的值域为.若,则此时,此时函数在在上的最大值为,最小值为,函数的值域为.21. 【答案】解: ∵ 是上的奇函数,∴即∴∴即∴∴经验证符合题意.∴ ,;在上是减函数,证明如下:任取,,且,∵ ∴∴ 即∴ 在上是减函数.; ∵ ,是奇函数.∴又∵ 是减函数,∴ ∴设,∴问题转化为,∴【解析】根据函数奇偶性的性质建立方程关系进行求解.; 利用函数单调性的定义进行证明即可.; 根据函数单调性和奇偶性的性质将不等式进行转化求解即可.【解答】解: ∵ 是上的奇函数,∴即∴∴即∴∴经验证符合题意.∴ ,;在上是减函数,证明如下:任取,,且,∵ ∴∴ 即∴ 在上是减函数.; ∵ ,是奇函数.∴又∵ 是减函数,∴ ∴设,∴问题转化为,∴22. 【答案】解:令,则当时,关于的函数是单调递增∴,此时当时,当时,当时,.; 方程有解,即方程在上有解,而∴,可证明在上单调递减,上单调递增为奇函数,∴当时∴ 的取值范围是.【解析】先把函数化简为的形式,令,则可看作关于的二次函数,并根据的范围求出的范围,再利用二次函数求最值的方法求出的最小值.; 关于的方程有解,即方程在上有解,而把与分离,得到,则只需求出的范围,即可求出的范围,再借助型的函数的单调性求范围即可.【解答】解:令,则当时,关于的函数是单调递增∴,此时当时,当时,当时,.; 方程有解,即方程在上有解,而∴,可证明在上单调递减,上单调递增为奇函数,∴当时∴ 的取值范围是.。

河北省高一上学期数学12月月考试卷

河北省高一上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高一上·石嘴山期中) 下列等式成立的是().A . log2(8-4)=log2 8-log2 4B . =C . log2 23=3log2 2D . log2(8+4)=log2 8+log2 42. (2分) (2016高一上·绍兴期中) 函数y=ax﹣1(a>0且a≠1)恒过定点()A . (0,1)B . (1,1)C . (1,0)D . (2,1)3. (2分) (2019高一上·陕西期中) 已知方程的两根为,,则()A .B .C .D . 124. (2分) (2020高三上·龙海月考) 设点P是函数f(x)=sinωx的图象C的一个对称中心,若点P到图象C的对称轴的距离的最小值是,则f(x)的最小正周期是()A .B . πC . 2πD .5. (2分) (2019高二下·温州期中) 如图,函数(其中)与坐标轴的三个交点满足为的中点,,则的值为()A .B .C .D .6. (2分) (2019高一下·阳春期末) 已知函数,则下列说法正确的是()A . 图像的对称中心是B . 在定义域内是增函数C . 是奇函数D . 图像的对称轴是7. (2分)已知函数f(x)的部分图象如图所示,则f(x)的解析式是()A .B .C .D .8. (2分) (2017高一上·和平期中) 设函数,t=f(2)﹣6,则f(t)的值为()A . ﹣3B . 3C . ﹣4D . 49. (2分)设向量,,定义一种向量积:.已知向量,,点在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则在区间上的最大值是()A . 4B . 2C .D .10. (2分)函数y=esinx(﹣π≤x≤π)的大致图象为()A .B .C .D .11. (2分)已知函数,则函数在上的所有零点之和为()A .B .C .D .12. (2分)(2019·晋城模拟) 为了得到的图象,可将的图象()A . 横坐标压缩为原来的,再向左平移个单位长度B . 横坐标扩大为原来的3倍,再向右平移个单位长度C . 横坐标扩大为原来的3倍,再向左平移个单位长度D . 横坐标压缩为原来的,再向右平移个单位长度二、填空题 (共3题;共3分)13. (1分)已知sinα= ,cos(α+β)=﹣,且α,β∈(0,),则sin(α﹣β)的值等于________.14. (1分) (2016高三上·浦东期中) 函数y=f(x)是奇函数且周期为3,f(﹣1)=1,则f(2017)=________15. (1分) (2020高一上·杭州期末) 已知正实数、满足,(是自然对数的底数),则 ________.三、双空题 (共1题;共1分)16. (1分) (2020高一下·上海期末) 把函数的图象向右平移个单位,得函数()的图象,则的值等于________.四、解答题 (共6题;共65分)17. (10分) (2015高一下·济南期中) 已知角α终边上一点P(﹣4,3),求的值.18. (10分) (2019高一上·新津月考) 已知二次函数(且),当时,有;当时,有,且 .(1)求的解析式;(2)若关于x的方程有实数解,求实数m的取值范围.19. (10分) (2016高一上·嘉峪关期中) 已知f(x)为定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数解析式为.(Ⅰ)求f(x)在[0,1]上的解析式;(Ⅱ)求f(x)在[0,1]上的最值.20. (10分)已知幂函数f(x)=x﹣m2+m+2(m∈Z)在(0,+∞)上单调递增.(1)求函数f(x)的解析式;(2)设g(x)=f(x)﹣ax+1,a为实常数,求g(x)在区间[﹣1,1]上的最小值.21. (10分)(2014·广东理) 已知函数f(x)=Asin(x+ ),x∈R,且f()= .(1)求A的值;(2)若f(θ)+f(﹣θ)= ,θ∈(0,),求f(﹣θ).22. (15分)已知f(x)= 是定义在R上的奇函数.(1)求n,m的值;(2)若对任意的c∈(﹣1,1),不等式f(4c﹣2c+1)+f(2•4c﹣k)<0恒成立,求实数k的取值范围.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共3题;共3分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、双空题 (共1题;共1分)答案:16-1、考点:解析:四、解答题 (共6题;共65分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:。

河北邢台市高一上学期月考一数学试卷

【最新】河北邢台市高一上学期月考一数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若集合{}2,0,1,3A =-, {}1,1,3B =-,则A B ⋃元素的个数为( ) A .2 B .4 C .5 D .72.函数()f x =的定义域为( )A .1(,)3-+∞B .1[,)3-+∞C .1(,)3+∞D .1[,)3+∞3.已知函数24()231f x x x =-+,则(2)f 等于( ) A .0 B .43-C .-1D .24.已知集合1{(,)|273}9x yM x y ==,则下列说法正确的是( ) A .(3,5)M ∈ B.(1,5)M ∈ C.(1,1)M -∈ D.1,M -∈5.设:21f x x →+是集合A 到集合B 的映射,若{2,1,3,}A m =-,{9,,1,5}B n =--,则m n -等于( )A.-4B.-1C.0D.106.已知集合{|12513}A x x =≤+≤,3{|2,}2B y y x x A ==+∈,则A B 等于( ) A.∅ B.[1,4]- C.[2,4]- D.[4,2]-7.已知2a m =,3a n =,则72a 等于( )A.32m nB.2mnC.4m nD.23m n8.若函数23,1,(){23,1,x x f x x x x +≤=-++>,则函数()f x 与函数2()g x x=的图象交点的个数为( ) A .0 B .1 C .2D .39.已知集合{5,3,1,2,3,4,5,6}U =--,集合2{|7120}A x x x =-+=,集合2{,21,6}B a a =-.若{4}A B =,且B U ⊆,则a 等于( )A.2或52B.2±C.2D.-210.已知函数()f x 为奇函数,且当[0,)x ∈+∞时,2()4f x x x =-,则()f x 在区间[4,1]-上的最大值为( )A.-3B.0C.4D.32 11.已知函数()()210a f x ax a x+=->,若()()2213f m f m m +>-+,则实数m 的取值范围是 ( )A .2,B .(),2-∞C .()2,-+∞D .(),2-∞-12.若0b <,且33bb-+=,则33b b --等于( )A.3±B.-2C.-3D.913.当[0,2]x ∈时,函数2()4(1)3f x ax a x =+--在2x =时取得最大值,则a 的取值范围是( )A.1[,)2-+∞ B.[0,)+∞ C.[1,)+∞ D.2[,)3+∞14.设min{,,}p q r 为表示,,p q r 三者中较小的一个, 若函数2()min{1,27,1}f x x x x x =+-+-+,则不等式()1f x >的解集为( )A.(0,2)B.(,0)-∞C.(1,)+∞D.(1,3)二、填空题15.已知全集U =R ,集合4[]1A =-,,(0,3)B =,则右图中阴影部分所表示的集合为________.16.132332(8)(0.2)()a b ---=________.17.已知定义域为R 的函数()f x 满足:(3)2(2)f x f x x +=+- .若(1)2f =,则(3)f =________.18.方程1323x x -+=+的解为_________. 19.已知函数1,0,()2,0,x f x x ≥⎧=⎨-<⎩,若1x ,2x 均满足不等式(1)(1)5x x f x +-+≤,则12x x -的最大值为__________.20.若函数()f x 为偶函数,且当0x ≥时,23()1x f x x -=+,则不等式(31)1f x ->的解集为__________.三、解答题 21.设函数23()21x f x a x -=++在3[0,]2的值域为集合A,函数()g x =的定义域为集合B . (1)若0a =,求()R C A B ;(2)若AB A =,求实数a 的取值范围.22.已知函数22,0,(),0.x x f x x x ⎧≤⎪=⎨->⎪⎩(1)求[(2)]f f 并判断函数()f x 的奇偶性;(2)若对任意[1,2]t ∈,22(2)(2)0f t t f k t -+-<恒成立,求实数k 的取值范围. 23.已知函数21()f x ax x =-,且11()4()32f f -=. (1)用定义法证明:函数()f x 在区间(0,)+∞上单调递增;(2)若存在[1,3]x ∈,使得()|2|f x x m <-+,求实数m 的取值范围.参考答案1.C【解析】试题分析:由集合元素的互异性得{}2,1,0,1,3A B ⋃=--,则A B ⋃元素的个数为个,故选项为C. 考点:集合的运算. 2.B 【解析】试题分析:由题意得310x +≥,即13x ≥-,故选项为B. 考点:函数的定义域. 3.C 【详解】 试题分析:由421x =+得1x =,∴2(2)2131f =⨯-=-,故选项为C. 考点:函数值的计算. 4.B 【解析】试题分析:1{(,)|273}{(,)|320}9x yM x y x y x y ===-+=,经验得(1,5)M ∈,故选项为B.考点:集合的意义. 5.D 【解析】试题分析:由题意得219m -+=-,231n -⨯+=,得5m =,5n =-,则10m n -=,故选项为D. 考点:映射的概念. 6.B 【解析】试题分析:∵[2,4]A =-,∴[1,8]B =-,则[1,4]A B =-,故选项为B.考点:集合的运算. 7.A【解析】试题分析:323272(89)89(2)(3)aaaaa a m n =⨯===,故选项为A. 考点:幂的运算. 8.D 【详解】试题分析:作图可得函数()y f x =与2()g x x=的图象有3个交点,故选项为D.考点:函数图象的交点. 9.D 【解析】试题分析:∵{3,4}A =,{4}AB =,∴4B ∈.当24a =时,得2a =±,若2a =,则213a -=,∴{3,4}AB =,不合题意;若2a =-,则215a -=-,∴{4}A B =,符合题意;当214a -=时,得52a =,B U ⊂≠,不合题意.综上,a 的值为2-,故选项为D. 考点:(1)交集的运算;(2)子集的概念.【方法点睛】本题主要考查集合的基本运算,属于基础题.要正确判断两个集合间的关系,必须对集合的相关概念有深刻的理解,善于抓住代表元素,认清集合的特征.由{4}AB =,得4B ∈,然后分为24a =,214a -=两种情况,对所求的每一个a 的值都要进行验证,主要是验证是否满足集合元素的互异性以及题中的已知条件B U ⊆. 10.C 【解析】试题分析: 当[0,)x ∈+∞时,22()4(2)44f x x x x =-=--≥-,又()f x 为奇函数,则()f x 在区间[4,1]-上的最大值为4,故选项为C.考点:(1)函数的奇偶性;(2)函数的最值. 11.A 【详解】试题分析:因为0a >,所以()2210a f x a x+=+>'在(0,)+∞上恒成立,所以函数()f x 在(0,)+∞单调递增,因为210m +>且230m m -+>,()()2213f m f m m +>-+,所以2213m m m +>-+,解得2m >,故选A.考点:函数的单调性的应用. 12.C 【解析】试题分析:由33bb-+=两边平方得22(3)(3)11b b -+=,则222(33)(3)(3)29b b b b ---=+-=.∵0b <,∴330b b --<,则333b b --=-,故选项为C. 考点:幂的运算. 13.D 【解析】试题分析:当0a =时,()43f x x =--在[0,2]上为减函数,不合题意;当0a ≠时,此时()f x 为二次函数,其对称轴为22x a =-.由题意知:0221a a >⎧⎪⎨-≤⎪⎩或0221a a<⎧⎪⎨-≥⎪⎩,解得23a ≥.也可取特值0与23验证,故选项为D. 考点:二次函数的性质.【方法点睛】本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于基础题.由函数在2x =时取得最大值,得其在[0,2]x ∈单调递增,由于二次项系数中含有参数,故应分当0=a 时、当0>a 时、当0<a 时三种情况,讨论对称轴与所给区间之间的关系,分别求得实数a 的取值范围,再取并集,即得所求. 14.D试题分析:由题意得21,0,1,02,27,2,x x x x x x x +<⎧⎪-+≤≤⎨⎪-+>⎩,作出函数()f x 的图象如图所示,则()1f x >的解集为(1,3),故选项为D.考点:分段函数的性质. 15.[4,0]- 【解析】试题分析:图中阴影部分所表示的集合为()[4,0]U A C B ⋂=-,故答案为[4,0]-. 考点:集合的运算. 16.225-【详解】原式3322332222?2525a ba b--=-=-,故答案为225-. 考点:幂的运算. 17.【解析】试题分析: 令1x =-,则(2)2(1)15f f =+=;令0x =,则(3)2(2)10f f ==,故答案为.考点:函数的值. 18.试题分析:123233?(3)2?310(3?31)(31)0xx x x x x -+=+⇒+-=⇒-+= .∵310x +>,∴3?310x -=,解得1x =-,故答案为.考点:指数的运算性质. 19.6 【解析】试题分析:原不等式10,15x x x +≥⎧⇔⎨+-≤⎩或10,2(1)5,x x x +<⎧⎨--≤⎩解得13x -≤≤或31x -≤≤,∴原不等式的解集为[3,3]-,则12max ()3(3)6x x -=--=,故答案为6. 考点:一元二次不等式. 20.5(,1)(,)3-∞-⋃+∞ 【解析】试题分析:当0x ≥时,由23()11x f x x -=>+得4x >,∵函数()f x 为偶函数,∴314x -<-或314x ->,即1x <-或53x >,故答案为5(,1)(,)3-∞-⋃+∞.考点:(1)分式不等式;(2)函数的奇偶性.【方法点睛】本题主要考查了分式不等式的解法,函数的奇偶性,以及通过奇偶性解决解不等式的能力,借助于偶函数的图象所具有的对称性,可以有更为直观的理解,难度中档;对于(31)1f x ->,可利用整体思想,令,即,运用分式不等式的解法得其结果,且偶函数关于轴对称,由数形结合,得最后结果.21.(1)()()+∞⋃-∞-,02,;(2)[1,2]. 【解析】试题分析:(1)由函数23()21x f x a x -=++的单调性,求出其值域即集合A ,由20,20x x +≥⎧⎨-≥⎩得函数()g x =B ,最后求()RC AB ;(2)若A B A =,则A B ⊆,由数轴得⎩⎨⎧≤-≥-223a a ,得解.试题解析:∵234()12121x f x a a x x -=+=+-++在区间3[0,]2上单调递增, ∴max 3()()2f x f a ==,min ()(0)3f x f a ==-,∴[3,]A a a =-. 由20,20x x +≥⎧⎨-≥⎩得22x -≤≤,∴[2,2]B =-.(1)当0a =时,[3,0]A =-,则[2,0]A B =-,∴()(,2)(0,)R C A B =-∞-+∞.(2)若AB A =,则A B ⊆,∴32,122,a a a -≥-⎧⇒≤≤⎨≤⎩,则实数a 的取值范围是[1,2].考点:(1)函数的定义域;(2)函数的值域;(3)集合的运算.【方法点睛】本题考查的知识点是函数的定义域,函数的值域,集合的交集、并集运算,其中求出集合A ,B 是解答的关键.在求函数值域过程中主要是通过函数的单调性,熟练掌握初等函数的性质尤为重要,常见函数定义域的求法:1、偶次根式下大于等于0;2、分母不为0;3、对数函数的真数部分大于0等等;对于函数参数的集合运算主要通过借助于数轴进行理解.22.(1)16,奇函数;(2)(8,)+∞. 【解析】试题分析:(1)先求()2f ,再代入求[(2)]f f ,当0≥x 时满足()()x f x f -=-;当0<x 时也满足()()x f x f -=-,故其为奇函数;(2)结合单调性与奇偶性将22(2)(2)0f t t f k t -+-<恒成立,转化为2222t t t k ->-恒成立,即22k t t >+对任意[1,2]t ∈恒成立,求其最值即可.试题解析:(1)22[(2)](2)(4)(4)16f f f f =-=-=-=. 设0x >,则2()f x x =-且0x -<, ∴2()()f x x f x -==-.当0x <,同理有()()f x f x -=-,又(0)0f =,x R ∈,∴函数()f x 是奇函数.(2)∵函数()f x 在(0,)+∞上为减函数,且函数()f x 是奇函数,∴函数()f x 在R 上为减函数,∵()f x 是奇函数,∴由22(2)(2)0f t t f k t -+-<得22(2)(2)f t t f t k -<-, 则对任意[1,2]t ∈,2222t t t k ->-恒成立,即22k t t >+对任意[1,2]t ∈恒成立,当2t =时,22t t +取最大值8,∴8k >,故实数k 的取值范围是(8,)+∞.考点:(1)函数的奇偶性;(2)函数的单调性;(3)函数恒成立问题.【方法点睛】本题主要考查了求分段函数的值,判断函数的奇偶性以及函数单调性的应用,转化与化归思想与函数恒成立问题,属于函数的综合应用,难度适中;对于分段函数奇偶性的判断必须分段验证满足()()x f x f -=-为奇函数,满足()()x f x f =-为偶函数;类似于22(2)(2)0f t t f k t -+-<形式的抽象函数不等式,主要是通过奇偶性与单调性结合求解.23.(1)证明见解析;(2)(1,)+∞.【解析】试题分析:(1)由11()4()32f f -=求出a 的值,确定函数解析式,设120x x <<,作差()()21x f x f -,化简比较其和0的关系,得其单调性;(2)设()m x xg +-=2,题意转化为存在[1,3]x ∈,使得()()0<-x g x f 成立,即()()[]0min <-x g x f ,当1x =时,()x f 取最小值,()x g 取最大值,即()()x g x f -最小,得10m -<.试题解析:(1)∵11()4()32f f -=, ∴192163a a --=-,解得3a =,∴21()3f x x x =-,设120x x <<,则 2212121212121222222212121211()()333()()(3)x x x x f x f x x x x x x x x x x x x x -+-=--+=-+=-+.∵1222120x x x x +>,120x x -<,∴12()()0f x f x -<,即12()()f x f x <, ∴函数()f x 在区间(0,)+∞上单调递增.(2)设()m x x g +-=2,[1,3]x ∈,则当1x =或3时,max ()1g x m =+,由(1)知函数()y f x =在[1,3]上单调递增,∴1x =时,()f x 取最小值2,()()y f x g x =-在[1,3]上的最小值为(1)(1)1f g m -=-. 若存在[1,3]x ∈,使得()|2|f x x m <-+,∴10m -<,即1m >,∴m 的取值范围是(1,)+∞.考点:(1)函数的单调性;(2)函数成立问题.【方法点睛】本题主要考查了利用定义证明函数的单调性,函数成立问题转化与化归思想,属于基础题;利用定义证明函数的单调性主要分为以下几步:1、取值;2、作差;3、化简,判断符号;4、下结论.在化简过程中主要是通过因式分解,判断各因式的符号.对于函数成立问题主要分为任意和存在两种情况,即任意x 属于某区间,()0<x r 恒成立等价于()0max <x r 成立;存在x 属于某区间,()0<x r 恒成立等价于()0min <x r 成立.。

河北邢台高一上学期第二次月考数学试题

上学期第二次月考高一年级数学试题第I 卷(选择题共60分)一、选择题:(每小题5分,共60分)1. 下列各组函数表示相等函数的是( )A . 242--=x x y 与2+=x y B .32-=x y 与3-=x y C .)0(12≥-=x x y 与)0(12≥-=t t s D .0x y =与1=y2. 函数21lg 1)(--=x x x f 的定义域是( )A . ),10()10,1[+∞B .),23(+∞ C . ),23()23,1[+∞ D .),10()10,1(+∞ 3. 下列有关函数性质的说法,不正确的是( )A . 若)(x f 为增函数,)(x g 为增函数,则)()(x g x f +为增函数B . 若)(x f 为减函数,)(x g 为增函数,则)()(x g x f -为减函数C . 若)(x f 为奇函数,)(x g 为偶函数,则)()(x g x f -为奇函数D . 若)(x f 为奇函数,)(x g 为偶函数,则)(|)(|x g x f -为偶函数 4. 已知52)12(2--=+x x x f ,则)(x f 的解析式为( )A .64)(2-=x x fB .4152341)(2--=x x x f C .4152341)(2-+=x x x f D .52)(2--=x x x f 5. 已知2)(3+-+=x c bx ax x f ,若5)3(=f ,则)3(-f 的值为( ) A . 3 B .1- C .7 D .3-6. 下列函数中既不是奇函数也不是偶函数的是( )A . 22-=x yB . )1ln(2++=x x yC . x e x y -=D .x x e e y 12-= 7. 函数12)21(-=x y 的单调递增区间为( ) A .]0,(-∞ B .),0[+∞ C .),1(+∞- D .)1,(--∞8. 下列各式(各式均有意义)不正确的个数为( )①N M MN a a a log log )(log += ②NM N M a a a l o g l o g )(l o g =- ③m nm na a 1=- ④ n m n m a a =)( ⑤b n b a a n l o g l o g -= A . 2 B . 3 C . 4 D . 59. 若不等式012≥--ax x 对]3,1[∈x 恒成立,则实数a 的取值范围为( )A . 0≤aB .38≤a C . 380≤≤a D .0≤a 或38≥a 10.函数)10(22)32(log ≠>+-=a a x y a 且的图象恒过定点P ,且P 在幂函数)(x f 的图象上,则)4(f =( )A . 2B . 21C . 41 D . 1611. 已知)(x f 是定义在R 上的偶函数,且在]0,(-∞上单调递减,若|)2(|)21(-<-a f a f ,则实数a 的取值范围为( )A . 1<aB . 1>aC . 11<<-aD .1.-<a 或1>a12. 已知211315,2ln ,2log --===c b a ,则( )A . c b a <<B . c a b <<C . a b c <<D .b a c <<第II 卷(非选择题共90分)二、填空题(每小题5分,共计20分)13. 0)](log [log log 257=x ,则52-x的值为 .14. 已知幂函数592)1()(a x a a x f +⋅+-=是偶函数,则实数a 的值为 .15. 若关于x 的函数)10)(1(log ≠>+=a a ax y a且在]2,3[--上单调递减,则实数a 的取值范围为 .16 若关于x 的方程k x =-|13|)(R k k ∈为常数且有两个不同的根,则实数k 的取值范围为.三、解答题(共70分)(解答题应写出文字说明、证明过程或演算步骤)17. (本小题满分10分) 已知集合}63|{},723|{≥≤=+<<-=x x x B a x a x A 或(1)当3=a 时,求B A ;(2)若φ=B A ,求实数a 的取值范围.18. (本小题满分12分) 求下列函数在给定区间上的值域: (1)])4,2[(323-∈+-=x x x y ; (2)126421+⋅-=+xx y ]2,1[-∈x .19. (本小题满分12分)解下列关于x 的不等式: (1)1)31(22>-x x ; (2)423)2(log log 22<+x x . 20. (本小题满分12分) 对于函数)(131)(R a a x f x ∈++= (1)判断并证明函数)(x f 的单调性;(2)是否存在实数a 使函数)(x f 为奇函数?若存在求出a 值;若不存在,请说明理由.21. (本小题满分12分)经市场调查,某种商品在过去50天的销售量与价格均为销售时间t (天)的函数,且销售量近似的满足),501(2002)(N t t t t f ∈≤≤+-=,前30天价格为),301(3021)(N t t t t g ∈≤≤+=,后20天价格为),5031(45)(N t t t g ∈≤≤=. (1)写出该种商品的日销售额S 与时间t 的函数关系;(2)求日销售额S 的最大值.22. (本小题满分12分)若)(x f 是定义在),0(+∞上的增函数,且对一切0,>y x ,满足)()()(y f x f yx f -=, (1)求)1(f 的值;(2)证明)0)((2)(2>=x x f x f ;(3)若1)4(=f ,解关于x 不等式2)31()3(2<-+f x x f .邢台上学期第二次月考高一年级数学试题答案一、 选择题1-12 CACBB C A B A B CD二、 填空题 13. 41 14. 1 15. 30<<a 16. 10<<k17. (1))13,6[]3,0((2)φ=A 时,34-≤a ; φ≠A 时,2134-≤<-a ; 综上 ,21-≤a 18. (1)]710,8[- (2)]9,27[- 19. (1))2,0( (2))22,0( 20. (1)单调递减;(2)存在,21-=a 21.(1) ⎩⎨⎧∈≤≤+-∈≤≤++-=)5031(900090)301(6000402N t t t N t t t t S 且且 (2)6400,20==S t22. (1)0;(3))34,0()3,4( --。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省邢台市高一上学期数学12月份月考试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共12分)
1. (1分) (2015高一上·莆田期末) cos240°的值是()
A .
B .
C .
D .
2. (1分) (2017高一上·桂林月考) 已知全集,集合,,则()
A .
B .
C .
D .
3. (1分) (2019高一上·工农月考) 已知函数,若,则a的值是
A . 3或
B . 或5
C .
D . 3或或5
4. (1分) (2016高一上·厦门期中) 已知幂函数f(x)=xa的图象过点(2,),则f()=()
A . ﹣
B . 2
C .
D . 3
5. (1分) (2018高一上·鹤岗月考) 设扇形的周长为,面积为,则扇形的圆心角的弧度数
是()
A . 1
B . 2
C . 3
D . 4
6. (1分) (2018高一上·北京期中) 函数的零点所在区间为()
A .
B .
C .
D .
7. (1分)函数y=Asin(ωx+φ)(ω>0,|φ|<,x∈R)的部分图象如图所示,则函数表达式()
A . y=﹣4sin(x﹣)
B . y=4sin(x﹣)
C . y=﹣4sin(x+)
D . y=4sin(x+)
8. (1分) (2019高一上·沈阳月考) 已知函数,当时是增函数,当
时是减函数,则等于()
A . -3
B . 13
C . 7
D .
9. (1分)已知a=, b=, c=,那么a,b,c的大小关系是()
A . c<a<b
B . c<b<a
C . a<b<c
D . b<a<c
10. (1分)(2016·海口模拟) 已知函数f(x)=sin2(ωx)﹣(ω>0)的最小正周期为,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为()
A .
B .
C .
D .
11. (1分) (2018高一下·六安期末) 设是各项为正数的等比数列,是其公比,是其前项的积,且,,则下列结论错误的是()
A .
B .
C .
D . 与均为的最大值
12. (1分)定义在R上的函数在(6, +∞)上为减函数,且函数y=f(x+6)为偶函数,则()
A . f(4)>f(5)
B . f(4)>f(7)
C . f(5)>f(7)
D . f(5)>f(8)
二、填空题 (共4题;共4分)
13. (1分) (2018高一上·杭州期中) 计算: ________
14. (1分) (2017高三上·重庆期中) 已知函数f(x)=ln(﹣3x)+1,则f(1)+f(﹣1)=________.
15. (1分) (2019高一上·浙江期中) 已知全集R ,集合A={x|y=ln(1-x)},B={x|2x(x-2)<1},则A∪B=________,A∩(∁RB)=________.
16. (1分)(2020·海南模拟) 设函数在区间上的值域是,则的取值范围是________.
三、解答题 (共6题;共12分)
17. (1分) (2019高一上·南康月考) 已知二次函数满足试求:
(1)求的解析式;
(2)若,试求函数的值域.
18. (2分) (2020高一下·开鲁期中) 已知函数
(1)化简;
(2)若,求的值.
19. (1分) (2019高一上·郑州月考) 已知是定义域为R的偶函数,当时,,
(1)求的解析式;
(2)求不等式的解集.
20. (2分) (2019高一上·龙江期中) 已知二次函数满足,且的图象经过原点.
(1)求的解析式;
(2)求函数在上的最大值和最小值.
21. (3分) (2017高一下·禅城期中) 已知函数f(x)=2cosx(sinx+cosx).
(Ⅰ)求f()的值;
(Ⅱ)求函数f(x)的最小正周期及单调递增区间.
22. (3分)如图甲,一个正方体魔方由27个单位(长度为1个单位长度)小立方体组成,把魔方中间的一层EFGH﹣E1F1G1H1转动α,如图乙,设α的对边长为x
(1)试用α表示x;
(2)求魔方增加的表面积的最大值.
参考答案一、选择题 (共12题;共12分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、
考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、
考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共4题;共4分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、
考点:
解析:
答案:16-1、
考点:
解析:
三、解答题 (共6题;共12分)答案:17-1、
答案:17-2、
考点:
解析:
答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、答案:19-2、
考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、考点:
解析:
答案:22-1、考点:
解析:。

相关文档
最新文档