函数的概念(区间的概念)
北师大版高一数学函数的概念2--区间

一、温故迎新
1.什 么是函数呢?
初中定义:在一个变化过程中,有两个变量x和y,如 果给定一个x值,相应地就确定了一个y值,那么我 们称y是x的函数。其中x叫自变量,y叫因变量.
A
2 3 5
乘2
B
4 6 10
A
平方 B
A 1
求倒数
B 1 1 2
6
12
1 -1 2 -2 3 -3
【例2】.试判断以下各组函数是否是相等函数:
(1)f(x)=x,g(x)= x2 x2-9 (2)f(x)= ,g(x)=x+3 x-3 (3)f(x)=x2,g(x)=(x+1)2 (4)f(x)=(x-1)0,g(x)=1
【解析】 (1)定义域相同,都是R,但是g(x)=|x|,即它们的解析式不同, 也就是对应关系不同,故不相等. (2)f(x)=x+3(x≠3),它与g(x)=x+3的定义域不同,故不是相等函数. (3)定义域相同,都是R,但是它们的解析式不同,也就是对应关系不同,
(1) 对应法则—— f
2、函数的三要素
(2) 定 义 域 ——A (3) 值 域——{f(x)|x∈A}
求函数的定义域。
x+12 【例】 求函数 y= - 1-x的定义域; x+1
解:
x+1≠0, 要使函数有意义,须满足 1-x≥0,
解得 x≤1,且 x≠-1, ∴函数的定义域是{x|x≤1,且 x≠-1}.
3<x<7 } ;
;
(3,7)
例1:用区间表示下列实数集合。
① {x|-18≤x<6 }; ② {x|x>6} ; ③ {x|3<x≤8};
[-18,6)ຫໍສະໝຸດ (6, +∞ )(3,8]
高中一年级《函数的概念及表示》

(1)y= 2x+3+x-1 1;(2)y=(x+2-1)x0
【思路点拨】 分析所给函数解析式 ―→ 列不等式组 ―→ 求x范围,得定义域 【解析】 (1)要使函数有意义,需满足2x- x+13≠≥00, ,
x (x≥1) 【思路点拨】 初中阶段我们已经知道,一次函数的图象是直线,二次函 数图象是拋物线,反比例函数图象是双曲线.现在我们只要结合定义域,找 到一些关键点,便可画出函数的大致图象.
必修一第二章第二节
【解析】 (1)当x=1时,y=1,所画函数图象如图1; (2)y=x2-4x+3=(x-2)2-1, 且x=1,3时,y=0; 当x=2时,y=-1, 所画函数图象如图2.
图
能形象直观地表示出函数的变化 只能近似地求出自变量的值所对 象
情况
应的函数值,而且有时误差较大
法
必修一第二章第二节
2.关于分段函数 (1)分段函数虽由几部分构成,但代表的是一个函数.只不过在定义域内的不 同部分取值时,函数对应关系不同.其值域也是各段上的函数值集合的并集. (2)求分段函数的有关函数值的关键是“分段归类”,即自变量的取值属于 哪一段,就用哪一段的解析式. (3)作分段函数的图象时,则应分段分别作出其图象,在作每一段图象时, 先不管定义域的限制,用虚线作出其图象,再用实线保留定义域内的一段图象 即可.
必修一第二章第二节
x+4 3.若 f(x)=x2-2x
-x+2 (1)求 f(f(f(5)))的值; (2)若 f(a)=-1,求 a 的值.
(x≤0) (0<x≤4) , (x>4)
高一数学函数的概念2

的实数的x集合叫做半开半闭区间,表示为[a,b);
(4)满足不等式 a x b 的实数
的x集合叫做也叫半开半闭区间,表示为(a,b];
说明:
① 对于[a,b],(a,b),[a,b),(a,b]都称数a和 数b为区间的端点,其中a为左端点,b为右 端点,称b-a为区间长度; ② 引入区间概念后,以实数为元素的集合就 有四种表示方法: 不等式表示法:3<x<7(一般不用); 集合表示法:{x|3<x<7}; 区间表示法:(3,7);Venn图
2.关于求定义域:
例1、(1)若函数 y
ax2 ax 1
a
的定义域是R,求实数a 的取值范围。
(2) 若函数 y f (x)的定义域为[1,1],
求函数 y f (x 1) f (x 1)的定义域。
4
4
0
( x 0)
例2 、 已知
f
(
x)
x 1
的定义域应由不等式 a g(x) b 解出。
3.关于求值域:
例3、求下列函数的值域① y=3x+2(-1≤x≤1)
②f (x) 2 4 x
③y x
④y x2 4x 1, x [0,5]
x 1
;
⑤y 2x 4 1 x
例4、①已知函数f(x)= - x2+2ax+1-a在0≤x≤1 时有最大值2,求a的值。
( x 0) ( x 0)
求f (1)、f (1)、f (0)、f { f [ f (1)]}
2.关于求定义域: (1)分母不等于零;偶次根式不小于零; 每个部分有意义的实数的集合的交集;符 合实际意义的实数集合
高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念二、函数知识点8:函数的概念以及区间 1》函数概念设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域.2》区间和无穷大①设a 、b 是两个实数,且a<b ,则:{x|a ≤x ≤b}=[a,b] 叫闭区间; ②{x|a<x<b}=(a,b) 叫开区间;③{x|a ≤x<b}=[,)a b , {x|a<x ≤b}=(,]a b ,都叫半开半闭区间.④符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.典例分析题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( )A 、x y x f 21)(=→ B 、x y x f 31)(=→ C 、x y x f 32)(=→ D 、x y x f =→)(例2:下列对应关系是否是从A 到B 的函数:①}{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方;③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。
高一数学:1.2.1《区间的概念》课件

课题: 区间的概念
问题提出
1.什么叫函数?用什么符号表示函数? 2. 什么是函数的定义域?值域?
3.函数 f (x) = 1− | x |的定义域、值域如何?
分别怎样表示? 4. 上述集合还有更简单的表示方法吗?
知识探究(一)
思考1:设a,b是两个实数,且a<b,介于这两个 数之间的实数x用不等式表示有哪几种可能情况?
的实数x的集合也可以看成区间,那么这些集合 如何用区间符号表示?
[a,+∞),(a,+∞), (-∞,a],(-∞,a).
思考3:将实数集R看成一个大区间,怎样用区间 表示实数集R?
(-∞,+∞)
理论迁移
例1 将下列集合用区间表示出来:
(1){x | 2x −1 0}; (2){x | x −4,或 −1 x 2}
思考4:一次函数y=kx+b(k≠0),二次函数
y=ax2+bx+c(a≠0),反比例函数 y = k (k 0) x
的定义域、值域分别是什么?怎样用区间表示?
知识探究(二)
思考1:变量x相对于常数a有哪几种大小关系?用 不等式怎样表示?
思考2:满足不等式 x a, x a, x a, x a
a x b, a x b, a x b, a x b
思考2:满足上述每个不等式的实数x的集合可看 成一个区间,为了区分,它们分别叫什么名称?
思考3:如果把满足不等式的实数x的集合用符号 [a,b)表示,那么满足其它三个不等式的实数x 的集合可分别用什么符号表示?
上述知识内容总结成下表:
定义
名称
符号
{x|a≤x≤b} 闭区间 [ a, b ]
函数的概念知识点

函数的概念1.函数:设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种对应关系叫做集合A上的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.确定一个函数的两个要素:定义域,对应法则.2.区间:区间指一个集,包含在某两个特定实数之间的所有实数,亦可能同时包含该两个实数。
区间表示法是表示一个变量在某个区间内的方式。
通用的区间表示法中,圆括号表示“排除”,方括号表示“包括”。
例如,区间(10,20)表示所有在10和20之间的实数,但不包括10或20。
另一方面,[10,20]表示所有在10和20之间的实数,以及10和20。
设a,b是两个实数而且a<b,实数a与b都叫做相应区间的端点。
规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示﹙a,b﹚;(3)满足不等式a≤x<b,或a<x≤b的实数x的集合叫做半开半闭区间,表示[a,b﹚,﹙a,b]。
区间表示:{x︱a<x<b}=(a,b); {x|a≤x≤b}=[a,b];{x|a<x≤b}=(a,b]; {x|a≤x<b}=[a,b); {x|x≤a}=(-∞,a];{x|x≥a }=[a,+∞); {x|x>a }=(a,+∞);实数集表示为(-∞,+∞)3.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.。
《区间的概念》课件

02
区间的性质
闭区间和开区间的性质
总结词
闭区间和开区间的性质是区间理论中的 重要概念,它们具有不同的性质和特征 。
VS
详细描述
闭区间是包含其端点的区间,其性质包括 区间内任意两点可以确定一个闭区间,且 闭区间上任意两点之间的距离等于区间长 度。开区间是不包含其端点的区间,其性 质包括开区间内任意两点可以确定一个开 区间,但开区间上任意两点之间的距离不 一定等于区间长度。
闭(包含)的区间,例如$(a, b]$或$[a, b)$。
半开半闭区间具有一些特殊的性 质,例如在实数轴上表现为一段
直线,但不包括端点。
半开半闭区间在数学分析中常用 于研究函数的连续性和可导性等 概念,特别是在处理分段函数时
。
05
区间的实际应用举例
在物理学中的应用:波的传播范围
总结词
波的传播范围是区间概念在物理学中的一个典型应用,它描述了波在某一特定介质中能 够传播的最大和最小范围。
区间与数轴的关系
总结词
区间与数轴之间存在密切的联系,数轴是表示区间的工具, 而区间则是数轴上的一个子集。
详细描述
数轴是实数有序化的直观表现,它为研究区间提供了可视化 的平台。通过数轴,我们可以直观地表示区间的起点和终点 ,以及区间内的任意一点。同时,数轴上任意两个不同的区 间都可以用不同的颜色或标记加以区分。
详细描述
在物理学中,波的传播范围通常由波长和频率决定。例如,无线电波、红外线、可见光 、紫外线、X射线和伽马射线等都有各自的传播范围,这些范围可以用来描述不同类型
波的特性。
在经济学中的应用:价格变动区间
总结词
价格变动区间是区间概念在经济学中 的一个应用,它反映了商品或资产在 一定时间内的最高和最低价格变动范 围。
函数的概念 课件

即先求g2.
(3)f(x)=x+1 1的定义域为{x|x≠-1}, ∴值域是(-∞,0)∪(0,+∞).9 分 g(x)=x2+2 的定义域为 R,最小值为 2.
∴值域是[2,+∞).12 分
(5)A={a,b,c},B={d,e,f},对应关系如图所
示.
【解】 (1)A中的实数0在B中没有对应实数, 故不是函数; (2)对于集合A中的任意一个整数x,按照对应关 系f:x→x2,在集合B中都有唯一确定的整数x2 和它对应,故(2)是集合A到集合B的函数; (3)A中负数没有平方根,故在B中没有整数和它 们对应,故此对应不是集合A到集合B的函数;
(1)y=xx++11
2
-
1-x;
(2)y=
5-x |x|-3 .
【解】 (1)要使函数有意义,自变量 x 的取值必须
满足
x+1≠0 1-x≥0
,
解得 x≤1 且 x≠-1,
即函数定义域为{x|x≤1 且 x≠-1}.
(2)要使函数有意义,自变量 x 的取值必须满足
5-x≥0 |x|-3≠0
,
解得 x≤5,且 x≠±3,
(4)对于集合A中任意一个实数x,按照对应关 系f:x→y=0,在集合B中都有唯一确定的数 0和它对应,故(4)是集合A到集合B的函数; (5)对于集合A中的元素b对应着集合B中的两 个元素,c在集合B中无对应元素,所以(5)中 的对应不是集合A到集合B的函数.
题型二 求函数的定义域
例2 求下列函数的定义域:
{x|a<x≤b} 半开半闭区间 (a,b]
(2)无穷概念及无穷区间表示
定 义
R
{x|x≥a} {x|x>a} {x|x≤a} {x|x<a}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在初中我们学习了哪几种基本函数? 其函数解析式分别是什么? 2.初中对函数是怎样定义的? 在一个变化过程中,如果有两个变量 x与y,并且对于x的每一个确定的值,y 都有唯一确定的值与其对应,那么我们 就说x是自变量,y是x的函数.
函数定义:设A,B是非空的数集,如 果按照某种确定的对应关系f,使对于集 合A中的任意一个数x,在集合B中都有唯 一确定的数f(x)和它对应,那么就称 f:A→B为从集合A到集合B的一个函数, 记作 y=f(x),x∈A. 函数y=f(x),自变量x的取值范围A 叫函数的定义域,与x值相对应的y值叫 做函数值.函数值的集合 f ( x) x A叫函 数的值域。 思考:值域与集合B是何关系?
x
y y 0, y R
二次函数y=ax2+bx+c(a≠0)的定义域、 值域分别是什么? 2 2 4ac b 4 ac b R y y y y 4a 4a 2 4ac b , 怎样用区间表示? 4a
3.函数 f ( x) 1 | x | 的定义域、值域 是什么?分别怎样表示?
4. 上述集合还有更简单的表示方法吗?
知识探究(一)
思考1:设a,b是两个实数,且a<b,介 于这两个数之间的实数x用不等式表示有哪 几种可能情况?
a x b, a x b, a x b, a x b
满足上述每个不等式的实数x的集合可 看成一个区间.
思考2:如果满足不等式 a x b 的实 数x的集合用符号 [a,b]表示,那么满足其 它三个不等式的实数x的集合可分别用什么符 号表示?
上述知识内容总结成下表:
定义 名称 符号 [ a, b ]
( a, b ) a a a
数轴表示
a b
b
例3
求下列函数的值域:
2
(1) y x 4 x 6, (2) y 5 4x x ,
(2) y 5 4 x x 2 , x 1 x 1 (1) y x 2 4 x 6,
x [1, 5)
x [1,5)
2
(3) y 2 x 2 4 x , (4) f ( x)
{x|a≤x≤b} 闭区间
{x|a<x<b} 开区间
b
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
b
这里的实数a与b都叫做相应区间的端点.
知识探究(二)
思考1:变量x相对于常数a有哪几种大小关 系?用不等式怎样表示?
思考2:满足不等式 x a, x a, x a, x a 的实数x的集合也可以看成区间,那么这些集 合如何用区间符号表示?
作业:
课本P44.
6 、7
思考3:将实数集R看成一个大区间,怎样用 区间表示实数集R?
[a,+∞),(a,+∞), (-∞,a],(-∞,a).
(-∞,+∞)
思考4:一次函数y=kx+b(k≠0), R R k , 反比例函数 y (k 0)
,0 0,
x x 0, x R
例题:
练习
将下列集合用区间表示出来:
(1){x | 2 x 1 0}; (2){x | x 4, 或 1 x 2}
例1 求下列函数的定义域:
..
(1) y 2 (2) f ( x)
x 4x ,
2
Байду номын сангаасx 1 . x 1
例2 已知 f ( x 1) x 2 x ,求函数 f ( x) 的解 析式.