公开课-3.1.3空间向量的数量积运算-课件
合集下载
3.1.3空间向量的数量积运算课件人教新课标5

又|1 |= 2,| |= 2,
1 ·
所以 cos<1 , >=
|1 |||
=
1
2× 2
1
2
= .
因为<1 , >∈[0°,180°],
所以<1 , >=60°,所以向量1 与 的夹角为 60°.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
且|cos<a,b>|≤1,所以 D 正确.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
2.如图,在长方体 ABCD-A1B1C1D1 中,AB=AA1=2,AD=4,E 为侧面
AB1 的中心,F 为 A1D1 的中点.
2.有关数量积的运算应注意的问题:
(1)与数乘运算区分开,数乘运算的结果仍是向量,数量积的结果为
数量;
(2)书写规范:不能写成 a×b,也不能写成 ab.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
=|c|2-|a|2=0.
3.1.3
问题导学
空间向量的数量积运算
当堂检测
(3) ·1 =
1
1
(-) +
2
2
1
+
2
1
2
1
1
=- |a|2+ |b|2=2.
2
1 ·
所以 cos<1 , >=
|1 |||
=
1
2× 2
1
2
= .
因为<1 , >∈[0°,180°],
所以<1 , >=60°,所以向量1 与 的夹角为 60°.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
且|cos<a,b>|≤1,所以 D 正确.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
2.如图,在长方体 ABCD-A1B1C1D1 中,AB=AA1=2,AD=4,E 为侧面
AB1 的中心,F 为 A1D1 的中点.
2.有关数量积的运算应注意的问题:
(1)与数乘运算区分开,数乘运算的结果仍是向量,数量积的结果为
数量;
(2)书写规范:不能写成 a×b,也不能写成 ab.
3.1.3
问题导学
空间向量的数量积运算
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
=|c|2-|a|2=0.
3.1.3
问题导学
空间向量的数量积运算
当堂检测
(3) ·1 =
1
1
(-) +
2
2
1
+
2
1
2
1
1
=- |a|2+ |b|2=2.
2
3.1.3空间向量的数量积运算 课件

=12+1×1×cos 60° -2×1×1×cos 60° +1×1×cos 60° +12-2×1×1×cos 60° =1. → → → (3)|OA+OB+OC|= → → → OA+OB+OC2
= 12+12+12+2×1×1×cos 60° ×3= 6.
研一研· 问题探究、课堂更高效
研一研· 问题探究、课堂更高效
3.1.3 例 1 已知长方体 ABCD—A1B1C1D1 中,AB=AA1= 2,AD
= 4, E 为侧面 AB1 的中心, F 为 A1D1 的中点.试计算: → → → → → → (1)BC· ED1;(2)BF· AB1; (3)EF· FC1. → → → 解 如图,设AB=a,AD=b,AA1=c,
跟踪训练 2
如图所示,已知平行六面体
ABCD— A1B1C1D1 的底面 ABCD 是菱形, 且∠ C1CB=∠ C1CD=∠ BCD= 60° .求证: CC1⊥ BD. → → → 证明 设CB=a,CD=b,CC1=c,则|a|=|b|.
→ → → → → ∵BD=CD-CB=b-a, ∴BD· CC1=(b-a)· c=b· c-a· c =|b||c|cos 60° -|a||c|cos 60° =0, → → ∴C1C⊥BD,即 C1C⊥BD.
研一研· 问题探究、课堂更高效
小结
3.1.3 求向量的模,可以转化为求向量的数量积,求两点
间的距离或某条线段的长度,可以转化为求对应向量的模, 其中的关键是将线段长度用向量的模表示出来.
跟踪训练 3 如图所示,已知线段 AB 在平面 α 内,线段 AC⊥α,线段 BD⊥AB,线段 DD′⊥α 于 D′, 如果∠ DBD′=30° ,AB = a, AC= BD=b,求 CD 的长. → → 解 易知 AC⊥AB.,<CA,BD>=60° , → → → → → → ∵|CD|2=CD· CD=(CA+AB+BD)2 →2 →2 → 2 → → → → → → =|CA| +|AB| +|BD| +2(CA· AB+CA· BD+AB· BD)=
3.1.3空间向量的数量积运算课件人教新课标3

略解:⑴ MN MO ON
1 OA 1 (OB OC )= 1 (a b c)
22
2
MP OP OM = 1 (c a) 2
⑵易知 a b b c
ca
1,
a
2
2
b
2
c
1 ,∴ MN
MP
1
2
418
练习 2.在长方体 ABCD─A1B1C1D1 中, AB 2 , BC 2 ,
2
2
b
① a | a |2 即 | a | a (求线段的长度);
② a b a b 0 (垂直的判断);
a
b
a,b
③ cos a, b a b (求角度). ab
以上结论说明,可以从向量角度有效地分析有关 垂直、长度、角度等问题.
20
AA1 6 ,且记 AB a , AD b , AA1 c ,
D1
C1
⑴用 a 、b 、c 表示 BD1, B1C ;
A1
B1
⑵求异面直线 BD1 和 B1C 所成角的余弦值.
解:⑴ BD1 BA AD DD1 = a b c
D
C
B1C B1B BC c b
A
B
⑵∵ a b b c c a 0 , a 2 4, b 2 4, c 2 36 ,
⑷如果 a, b ,则称 a 与 b 垂直,记为 a b
2 异面直线及所成的角?
(0, ]
2
3
2)两个向量的数量积 已 知 空 间 两 个 非 零 向 量 a 、b , 则
a b cosa, b 叫做 a 、b 的数量积,记作 a b . 即 a b a b cosa, b .
注:①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零. 类比平面向量,你能说 出 a b 的几何意义吗?
高中数学A版3.1.3空间向量的数量积运算优秀课件

(1)证明两直线垂直; (2)求两点之间的距离或线段长度; (3)证明线面垂直; (4)求两直线所成角的余弦值等等.
高考链接
1.(2006年四川卷)如图,已知正六边
形P1P2P3P4P5P6 ,下列向量的数量积中最
大的是___A___. A. P1P2 ·P1P3
B. P1P2·P1P4
C. P1P2·P1P5 D. P1P2·P1P6
方法三:数形结合法,发现形的特殊性.
(2)已知 a 2 2 , b 2 , a b 2
2
则a,b所成的夹角为__1_3_5___.
分析:根据两向量夹角公式
a·b = a b cosa ,b (0 a,b π)
可得到所求结果.
2.选择
设a,b,c是任意的非零空间向量,且
a b = a b cosθ
向量的夹角: 0 θO a
A
B
2.平面向量的数量积的主要性质
设a,b是两个非零向量
(1)a⊥b a×b=0数量积为零是判
定两非零向量垂直的充要条件;
(2)当a与b同向时, a·b=|a|·|b|;当a与b 反向时, a·b=-|a|·|b|;特别地,a a = a 2 或 a = a a 用于计算向量的模;
2
2
AB' = AB + AA' = 2FG
FG / /AB'
由①知 EG∥AC
∴平面EFG//平面AB’C.
习题答案
1. B
2. 解:因为 AC = AB + AD + AA,
所以 | AC |2= ( AB + AD + AA )2
=| AB |2 + | AD |2 + | AA |2 + 2( AB·AD + AB·AA+ AD·AA )
高考链接
1.(2006年四川卷)如图,已知正六边
形P1P2P3P4P5P6 ,下列向量的数量积中最
大的是___A___. A. P1P2 ·P1P3
B. P1P2·P1P4
C. P1P2·P1P5 D. P1P2·P1P6
方法三:数形结合法,发现形的特殊性.
(2)已知 a 2 2 , b 2 , a b 2
2
则a,b所成的夹角为__1_3_5___.
分析:根据两向量夹角公式
a·b = a b cosa ,b (0 a,b π)
可得到所求结果.
2.选择
设a,b,c是任意的非零空间向量,且
a b = a b cosθ
向量的夹角: 0 θO a
A
B
2.平面向量的数量积的主要性质
设a,b是两个非零向量
(1)a⊥b a×b=0数量积为零是判
定两非零向量垂直的充要条件;
(2)当a与b同向时, a·b=|a|·|b|;当a与b 反向时, a·b=-|a|·|b|;特别地,a a = a 2 或 a = a a 用于计算向量的模;
2
2
AB' = AB + AA' = 2FG
FG / /AB'
由①知 EG∥AC
∴平面EFG//平面AB’C.
习题答案
1. B
2. 解:因为 AC = AB + AD + AA,
所以 | AC |2= ( AB + AD + AA )2
=| AB |2 + | AD |2 + | AA |2 + 2( AB·AD + AB·AA+ AD·AA )
3.1.3 空间向量的数量积运算(共68张ppt)资料

ab 1.利用向量法求两条异面直线所成角的依据是 cos〈a, b〉 . ab
2.题2中若求EC1与FD1所成的角,需要求出 EC FD 及 | EC | 1 1 1 与 | FD1 | 的值.
【解析】1.选C.如图,设AB=AC=AA1=1,
A1B AB AA1, AC1 AC CC1 AC AA1, A1B AC1 (AB AA1 ) (AC AA1 ) AB AC AB AA1 AA1 AC AA1 0 0 0 1 1,
3 3
2.设 AB a, AD b, AA c, 1 则|a|=4,|b|=3,|c|=2,
1 EC1 EB BC CC1 AB AD AA1 4 1 a b c, 4 FD1 FC CC1 C1D1 2 2 AD AA1 AB a b c, 3 3
直线AB与CD所成的角就是〈a,b〉;若〈a,b〉大于90°,则直
线 AB与CD所成的角是π-〈a,b〉.特别地,若〈a,b〉=0或
〈a,b〉=π,则AB∥CD;若 〈 a, b 〉 , 则AB⊥CD.
2
2.空间向量数量积的性质及几何意义 (1)空间向量的数量积a·b可以为正,可以为负,也可以为零. (2)若向量a,b是非零向量,则 a b 0 a b. (3)特例与变形:①若a是单位向量,则a·b=|b|· cos〈a,b〉; ② cos〈a, b〉 ③a·a=|a|2. (4)几何意义:a与b的数量积a·b等于a的长度|a|与b在a的方 向上的投影|b|·cos〈a,b〉的乘积.
(2)结论:把__________________ |a||b|cos〈a,b〉 叫做a,b的数量积.
2.题2中若求EC1与FD1所成的角,需要求出 EC FD 及 | EC | 1 1 1 与 | FD1 | 的值.
【解析】1.选C.如图,设AB=AC=AA1=1,
A1B AB AA1, AC1 AC CC1 AC AA1, A1B AC1 (AB AA1 ) (AC AA1 ) AB AC AB AA1 AA1 AC AA1 0 0 0 1 1,
3 3
2.设 AB a, AD b, AA c, 1 则|a|=4,|b|=3,|c|=2,
1 EC1 EB BC CC1 AB AD AA1 4 1 a b c, 4 FD1 FC CC1 C1D1 2 2 AD AA1 AB a b c, 3 3
直线AB与CD所成的角就是〈a,b〉;若〈a,b〉大于90°,则直
线 AB与CD所成的角是π-〈a,b〉.特别地,若〈a,b〉=0或
〈a,b〉=π,则AB∥CD;若 〈 a, b 〉 , 则AB⊥CD.
2
2.空间向量数量积的性质及几何意义 (1)空间向量的数量积a·b可以为正,可以为负,也可以为零. (2)若向量a,b是非零向量,则 a b 0 a b. (3)特例与变形:①若a是单位向量,则a·b=|b|· cos〈a,b〉; ② cos〈a, b〉 ③a·a=|a|2. (4)几何意义:a与b的数量积a·b等于a的长度|a|与b在a的方 向上的投影|b|·cos〈a,b〉的乘积.
(2)结论:把__________________ |a||b|cos〈a,b〉 叫做a,b的数量积.
高中数学3.1空间向量及其运算3.1.3空间向量的数量积运算课件新人教A版选修2_1

(3)������������ ·������������1 .
分析:解答本题可先把各向量用同一顶点上的三条棱对应的向量 表示出来,再代入向量的数量积进行运算.
解:如图,设������������ =a, ������������ =b, ������������1 =c, 则|a|=|c|=2,|b|=4,a· b=b· c=c· a=0.
3.1.3 空间向量的数量积运算
1.掌握空间向量的夹角与长度的概念. 2.掌握空间向量的数量积的定义、性质、运算律及计算方法. 3.能用向量的数量积判断向量共线与垂直.
1.向量的夹角
(1)如图,已知两个非零向量 a,b,在空间任取一点 O,作 ������������ =a, ������������ =b,则∠AOB 叫做向量 a,b 的夹角,记作<a,b>. π (2)向量 a,b 的夹角<a,b>的范围是[0,π],如果<a,b>= ,
1 5
C. −5
D. −
1 5
)
解析:∵b=-5a, ∴a· b=-5a2=-5|a|2=-5. 答案:C
【做一做 2-2】在空间中,已知正三角形 ABC 的边长为 2,则������������ · ������������ = _________________. 解析:∵|������������ | = |������������ | = 2, 且 < ������������ , ������������ >= 60° ,
.
2.向量的数量积 (1)已知两个非零向量a,b,则|a||b|cos<a,b>叫做a,b的数量积,记作 a· b , 即a · b=|a||b|cos<a,b>. 零向量与任何向量的数量积为0. 特别地,a· a=|a||a|cos<a,a>=|a|2. (2)数量积满足的运算律: ①(λa)· b=λ(a· b); ②交换律:a· b=b· a; ③分配律:a· (b+c)=a· b+a· c.
空间向量数量积及坐标运算PPT课件

4.异面直线夹角的范围是(0, ].2
第3页/共27页
1.空间两个向量的数量积
已知空间两个向量a,b,把平面向量的数量积 a·b= |a||b|cos〈a,b〉叫做两个空间向量a,b的数量积(或内积).
2.两个空间向量的数量积的性质
(1)a·e= |a|cos〈a,e.〉 (2)a⊥b⇔ a·b=0. (3)|a|2= a·a. (4)|a·b|≤ |a||b.|
= |
1300,
即
BA1
与
B1C
夹角的余弦值为
30 10 .
第17页/共27页
练习:.在棱长为 1 的正方体 ABCD-A1B1C1D1 中,E,F 分别是 D1D,BD 的中点,G 在棱 CD 上,且 CG=14CD, H 是 C1G 的中点. (1)求 EF 与 B1C 的夹角; (2)求 EF 与C1G 的夹角的余弦值; (3)求 F,H 两点间的距离.
∴异面直线 OE 与 BF 所成角的余弦值为23.
第24页/共27页
3.已知a,b是异面直线,A∈a,B∈a,C∈b,D∈b,
AC⊥b,BD⊥b,且AB=2,CD=1,则a与b所成的
角是
()
A.30°
B.45°
C.60°
D.90°
第25页/共27页
解析:设〈 AB,CD〉=θ,
∵ AB·CD=( AC +CD+ DB)·CD=|CD|2=1,
∴ BA1 ·AC =- BA2 =-1.
又| AC |= 2,| BA1 |= 1+2= 3.
∴cos〈 BA1
,
AC
〉= |
BA1 ·AC BA1 || AC
=-1=- |6
6 6.
高中数学《空间向量的数量积运算》公开课优秀课件

二.教学片断展示
谢谢聆听!
数学 运算
选择 运算 方法
掌握 运算 法则 探究 运算 方向
一.教学设计简述
教学内容解析
教学目标设置
教学策略分析
师生课堂互动模型“学习金字塔”模型两个“模型”引领,以学定教
教学主线 教学过程
• 问题引入,提出概念 • 合作探究,辨析概念
• 应用概念,感悟“运算”
• 归纳总结,作业巩固
做 抓 悟 会 “类比” “本质” “方法” “应用”
人教社A版 数学《选修2-1》
3.1.3 空间向量的数量积运算
数学 抽象 数据 分析 逻辑 推理
高中 数学
数学 运算 直观 想象 数学 建模
逻辑推理素养
• 类比 合情 • 特殊到一般 • 归纳 推理
逻辑 推理
演绎 • 一般到特殊 推理
数学运算素养
理解 运算 对象
求得 运算 结果 设计 运算 程序