床旁肺超声的应用
急诊科床旁超声在急诊诊断中的应用

急诊科床旁超声在急诊诊断中的应用超声技术是一种无创的影像检查方法,已广泛应用于医疗领域。
近年来,急诊科床旁超声在急诊诊断中的应用逐渐受到了重视。
本文将探讨急诊科床旁超声在急诊诊断中的应用和优势。
一、急诊科床旁超声技术简介急诊科床旁超声技术,即在急诊科或急诊室,医生使用便携式超声仪器进行实时超声检查。
与传统的超声检查相比,急诊科床旁超声具有迅速、便捷、无创等优势,能够在短时间内提供重要的诊断信息。
二、急诊科床旁超声在合适场景中的应用1. 心脏超声:心脏超声是急诊科床旁超声的重要应用领域之一。
通过心脏超声,医生可以快速评估心脏的结构和功能,帮助判断心血管疾病、心源性休克等紧急情况。
2. 肺部超声:对于呼吸困难、胸痛等症状的患者,急诊科床旁超声可以帮助医生评估患者的肺部情况。
例如,可以用于判断胸腔积液、肺炎等肺部疾病的存在与程度。
3. 腹部超声:腹部超声是在急诊科床旁超声中常见的应用之一。
通过腹部超声,医生能够快速评估腹部器官的情况,如肝脏、胆囊、脾脏、肾脏等是否存在异常。
此外,还可以用于判断腹腔出血、胆囊炎等紧急情况。
4. 血管超声:在某些急诊情况下,急诊科床旁超声可以用于血管超声检查。
例如,可以通过颈部血管超声评估颈动脉狭窄、颈动脉夹层等情况。
三、急诊科床旁超声的优势与局限1. 优势:a. 迅速:急诊科床旁超声可以快速获得影像结果,给予医生及时的诊断信息,缩短了诊断的时间。
b. 无创:与其他影像技术相比,超声检查无需利用射线或造影剂,对患者无辐射、无损伤。
c. 移动性:便携式超声设备的出现使得急诊科床旁超声可以在各个科室、急诊室中灵活应用。
d. 实时:急诊科床旁超声可以进行实时检查,医生可以通过即时观察来判断病情。
2. 局限:a. 操作者依赖性:急诊科床旁超声需要医生具备一定的超声技能才能进行准确评估和诊断,因此操作者的技术水平对诊断结果有一定影响。
b. 部分结构的限制:由于超声波的传播特性,急诊科床旁超声在某些深部结构的评估上存在一定的限制。
ICU护理中的床旁超声技术应用

ICU护理中的床旁超声技术应用随着医学技术的不断发展和进步,床旁超声技术在重症监护室(ICU)护理中的应用日益广泛。
它提供了一种非侵入性、快速、准确的诊断手段,为医务人员提供了更多的信息和指导,以改善ICU患者的治疗效果。
本文将探讨ICU护理中床旁超声技术的应用与优势。
1. 床旁超声技术概述床旁超声技术,又称移动超声技术,是一种通过对患者进行超声检查来获取图像和相关数据的诊断工具。
它通过手持式超声设备,将高频声波传感器应用于患者的不同部位,从而获得具有临床意义的实时图像。
这项技术的应用不需要移动患者到专用的超声室,而是能够在床旁进行检查和诊断,大大提高了患者的舒适度和便捷性。
2. ICU中的床旁超声技术应用2.1 心脏超声床旁超声技术在ICU中最常见的应用之一是心脏超声。
心脏超声通过实时显示心脏的运动和血流,可以帮助医务人员评估心脏的功能和结构。
在ICU护理中,医生和护士可以通过床旁超声技术及时诊断和监测心脏功能,例如检测心脏射血分数、观察心室收缩与舒张、评估心腔大小和心脏壁运动等。
这些信息对于重症患者的治疗方案制定和调整至关重要。
2.2 肺部超声床旁超声技术在ICU中的另一个常见应用是肺部超声。
使用超声探头在患者胸部上方滑动,可以观察到肺部的图像,并帮助医务人员判断和评估肺部病变,如肺水肿、胸腔积液和肺栓塞等。
此外,床旁超声还可以帮助监测呼吸状态,评估呼吸机的调整和撤机时机,以及指导胸腔穿刺等操作。
2.3 血流动力学监测床旁超声技术在ICU中还可以用于血流动力学监测。
通过床旁超声技术,医务人员可以实时观察血管的径向和速度,帮助评估血液流动情况,包括心脏收缩和舒张时的血流速度以及心室和大血管的直径变化。
这些信息对于评估循环功能、监测液体治疗效果以及指导血管内操作具有重要作用。
3. 床旁超声技术的优势3.1 非侵入性床旁超声技术是一种非侵入性的诊断工具,通过将超声探头放置在患者身体的外部来获取图像和数据信息,不需要进行切口或穿刺等侵入性操作,降低了患者感染和并发症的风险。
床旁肺部超声在新生儿肺炎临床诊断中的应用价值

床旁肺部超声在新生儿肺炎临床诊断中的应用价值新生儿肺炎是指出生28天内发生的肺部感染或炎症,是新生儿常见的严重疾病之一,尤其对早产儿和低体重儿的影响更为明显。
及时准确的诊断对于新生儿肺炎的治疗和预后至关重要。
近年来,床旁肺部超声成为新生儿肺炎临床诊断中的重要工具之一。
本文将探讨床旁肺部超声在新生儿肺炎临床诊断中的应用价值。
床旁肺部超声有助于早期诊断新生儿肺炎。
传统的诊断方法主要依靠临床症状、体征和实验室检查,但这些方法往往需要较长时间才能确定诊断,延误了诊断和治疗时机。
而床旁肺部超声可以直观地观察肺部病变,不需要辐射和对新生儿进行移动,能够实现无损伤的连续监测。
通过超声波的反射图像,医生可以清晰地看到肺部的实变,渗出和积液等病变,帮助医生早期诊断新生儿肺炎,并及时采取治疗措施,提高治疗的有效性和预后。
床旁肺部超声有助于指导新生儿肺炎的治疗。
新生儿肺炎的治疗包括抗感染、支持治疗和营养支持等多方面的内容。
床旁肺部超声可以观察病变的发展和变化,评估治疗的效果,指导治疗方案的调整。
超声可以反映肺部渗出物的分布和大小,指导抗感染药物的使用和剂量的确定;还可以观察肺部积液的情况,指导呼吸机的调节和呼吸功能的支持。
通过床旁肺部超声的及时监测和指导,可以更好地控制疾病的进展,减少严重并发症的发生,提高治疗的成功率和患儿的生存率。
床旁肺部超声还可以减少对新生儿的辐射影响。
传统的肺部影像学检查,如X线和CT 等,需要使用大量的辐射,对新生儿的生长发育和器官功能有一定的影响。
而床旁肺部超声不需要辐射,并且能够在床边进行监测,不需要对新生儿进行转运和移动,避免了因运输和操作而带来的风险和误差。
床旁肺部超声的无创伤和无辐射特点,使其成为了新生儿肺炎诊断和治疗过程中的理想选择,能够最大限度地保护新生儿的生理和心理健康。
床旁肺部超声还可以提高医护人员对新生儿肺炎的认识和诊断水平。
传统的肺部检查需要医生倚靠丰富的临床经验和专业知识,并且需要严格的技术要求和标准化操作。
ICU患者床边超声应用

ICU患者床边超声应用近年来,随着医疗技术的飞速发展,超声技术在临床应用中扮演着越来越重要的角色。
尤其是在重症监护病房(ICU)中,床边超声成为了医生们不可或缺的工具。
本文将探讨ICU患者床边超声的应用,以及其在临床实践中的意义和效果。
一、床边超声的定义和背景床边超声,又称为点-of-care超声,是指在患者床边进行即时超声检查的一种方法。
与传统的超声检查不同,床边超声无需将患者转移至超声检查室,能够在低廉的成本下提供及时和准确的诊断结果。
这一技术的发展使得医生们能够在紧急情况下快速做出判断,从而及时采取必要的治疗措施。
在ICU中,患者的病情通常比较复杂,需要密切监护和快速干预。
床边超声作为一种快捷、可重复、无创的检查方法,为医生们提供了实时的解剖图像和功能信息,有助于快速评估患者的病情和监测治疗效果。
二、床边超声的应用领域床边超声在ICU中的应用非常广泛,主要涵盖以下几个方面:1. 心脏超声心脏超声是床边超声的重要应用之一。
通过对心脏的超声检查,医生可以了解心脏的收缩和舒张功能,评估心脏重要腔室和射血分数,判断心脏有无异常结构和功能,描绘心脏瓣膜的形态和功能等。
这些信息对于评估患者的循环功能、判断血流动力学状态、指导治疗和决策制定等都具有重要意义。
2. 肺部超声肺部超声可以帮助医生评估患者的呼吸功能以及肺部病变。
通过超声波在肺组织中的传播,医生可以观察到肺部的气胸、肺水肿、肺不张等情况,并及时进行处理。
肺部超声还能帮助指导气管插管、胸腔穿刺等操作,提高操作的准确性和安全性。
3. 腹部超声腹部超声可以评估患者的腹部器官结构和功能。
通过超声检查,医生可以发现肝脏、胆囊、肾脏、脾脏等腹部器官的异常,判断有无脓肿、积液、肿块等病变,并及时制定相应的治疗方案。
4. 血管超声血管超声广泛应用于ICU中的血流动力学评估和导管置入操作中。
通过血管超声,医生可以实时观察到血管形态和血流速度,评估循环状态、检测血管病变、指导血管插管等操作。
床旁超声技术在麻醉学、重症 医学和急诊医学中的应用

床旁超声技术在麻醉学、重症医学和急诊医学中的应用床旁超声技术已经成为麻醉学、重症医学和急诊医学中不可或缺的一部分。
通过床旁超声技术,医生可以在病人床边进行实时的超声检查,快速准确地诊断和治疗病人。
在麻醉学方面,床旁超声技术可以用于确定气管插管的位置,避免误吸和气胸的发生。
在手术中,医生可以通过超声技术实时监测心脏、肺部和血管的情况,提高手术安全性。
在重症医学中,床旁超声技术可以用于诊断和监测心肺功能、血流动力学和输液效果等。
对于危重病人,床旁超声技术可以更加快速准确地诊断和治疗,提高生存率。
在急诊医学中,床旁超声技术可以用于快速诊断和治疗急性胸痛、心肺骤停、创伤和其他急诊情况。
通过床旁超声技术,医生可以更加快速准确地作出诊断,提高治疗效果和病人生存率。
综上所述,床旁超声技术在麻醉学、重症医学和急诊医学中的应用已经得到广泛的认可和应用。
未来,随着技术的不断发展和改进,床旁超声技术将在医学领域发挥越来越重要的作用。
- 1 -。
床旁肺部超声在诊断成人重症患者肺部炎性疾病中的应用

床旁肺部超声在诊断成人重症患者肺部炎性疾病中的应用发布时间:2023-03-04T12:02:19.032Z 来源:《医师在线》2022年10月20期作者:祝铭鸿潘宁通讯作者[导读]床旁肺部超声在诊断成人重症患者肺部炎性疾病中的应用祝铭鸿潘宁通讯作者(佳木斯大学附属第一医院;黑龙江佳木斯154000)【摘要】目的:评估床旁肺部超声(lung ultrasound, LUS)在诊断成人重症患者肺部炎性疾病的准确性和可靠性。
方法:选取2021年11月-2022年4月期间在佳木斯大学附属第一医院的住院的疑似有肺部炎性疾病的危重患者30例,对30例患者进行肺部超声检查,CT检查,观察超声征象及CT征象,评价肺超声的应用价值。
结果:肺超声对肺炎的诊断的灵敏度为92.3%,特异度为75%,假阴性率为7.6%,假阳性率为25%,正确指数为0.673,阳性似然比为3.692,阴性似然比为0.101。
结论:床旁LUS在灵敏度、特异度、诊断符合率方面均比较理想,值得推广与应用。
关键词:床旁肺部超声;诊断;成人;重症;肺炎;Application of bedside pulmonary ultrasound in the diagnosis of pulmonary inflammatory diseases in severe adult patients[Abstract]Objective To evaluate the accuracy and reliability of bedside lung ultrasound (LUS) in the diagnosis of pulmonary inflammatory diseases in severe adult patients. Methods A total of 30 patients with suspected pulmonary inflammatory diseases in First Affiliated Hospital of Jiamusi University from November 2021 to April 2022 were selected. 30 patients underwent pulmonary ultrasound examination, CT examination, ultrasonic signs and CT signs, and the value of pulmonary ultrasound was evaluated. Results The sensitivity of lung ultrasound to the diagnosis of pneumonia was 92.3%, specificity 75%, false negative rate 7.6%, false positive rate 25%, correct index 0.673, positive likelihood ratio 3.692, negative likelihood ratio 0.101. Conclusion Bedside LUS is ideal in sensitivity, specificity and diagnostic coincidence rate, which is worthy of popularization and application.[Key words] Bedside pulmonary ultrasound;diagnosis;Critically ill;Pneumonia肺炎是指肺实质或肺间质的炎症,通常由致病性微生物、物理或化学因素、免疫低下、服用药物或过敏反应导致。
床旁彩超的应用原理图
床旁彩超的应用原理图1. 什么是床旁彩超床旁彩超是一种非侵入式的超声技术,可以在床边或患者床旁进行超声检查。
它使用便携式超声设备,通过皮肤传感器将超声波传输到患者体内,以获取内部器官的图像。
这种技术广泛应用于急诊科、重症监护科和手术室等医疗环境,可以迅速诊断病情,指导治疗,并提高患者的安全性和舒适度。
2. 床旁彩超的应用原理床旁彩超的原理与传统彩超类似,都是利用超声波在组织中的传播和反射来生成影像。
床旁彩超主要分为以下几个步骤:•步骤1:超声波发射器产生超声波信号。
•步骤2:超声波信号通过传感器传到患者皮肤表面。
•步骤3:超声波信号在组织中传播并与组织内部的结构相互作用。
•步骤4:超声波信号反射回传感器,并转化为电信号。
•步骤5:电信号被转化为图像,并显示在设备的屏幕上。
3. 床旁彩超的优势床旁彩超相比传统彩超具有以下几个优势:•便携性:床旁彩超设备小巧轻便,可以轻松携带到患者床边,无需将患者转移至超声室或其他检查室。
•实时性:床旁彩超可以实时获取和显示图像,医生可以立即观察到患者的内部器官和组织,并进行快速诊断和治疗决策。
•安全性:床旁彩超使用无损伤的超声波技术,相对于其他医疗影像检查(如X射线和CT扫描)具有更低的辐射风险。
•舒适度:床旁彩超不需要患者转移或脱衣,可以在患者卧床的状态下进行检查,减少了患者的不适感和疼痛。
4. 床旁彩超的应用领域床旁彩超在医疗领域有广泛的应用,其中一些主要的应用领域包括:•急诊科:床旁彩超可以在急诊科迅速检查腹部、胸部、心脏等器官,帮助医生诊断病情并及时采取治疗措施。
•重症监护科:床旁彩超可以用于监测重症患者的心脏、肺部和血管等情况,及时发现和处理可能的并发症。
•手术室:床旁彩超可以在手术过程中对器官病理改变进行实时观察,指导医生进行准确的手术操作。
•产科:床旁彩超在产科领域可以用于监测胎儿的生长和发育情况,并识别可能存在的异常。
5. 床旁彩超的未来发展随着技术的不断进步,床旁彩超有望在未来得到更多的应用和发展。
床旁超声在急危重症诊治中的应用
室壁运动消失:内膜运动幅度平直
矛盾运动及正常节段室壁运动幅度增强:见于缺
血性心肌病、心肌梗塞、心肌炎
左室收缩功能异常 左室内径变化率及室壁增厚率
均>50%
床旁超声在心脏、血管急危重症中的应用
3、左室收缩功能异常 :
左室内径变化率及室壁增厚率过高或过低
(正常 25%-30%)
二尖瓣尖至室间隔距离EPSS>8 mm
心尖部局部膨隆圆钝,向外膨出,室壁 呈矛盾运动,余房室腔形态大小正常, 房室间隔厚度正常,中下段及左室前壁 运动幅度低平,余室壁厚度及运动幅度 正常,各瓣膜形态启闭正常。心包腔未 见异常回声。
刘金英超声心动图报告
彩色多普勒表现:
CDFI:舒张期主、肺动脉瓣口见反流血流,收缩期二
、三尖瓣口见反流血流,室间隔中下段可见2 股
超声测值: AO 30mm(<40mm) LA 30mm(<40mm) LVIDd58mm(<55mm) LVIDs 48mm(<36mm) IVS 9mm(8-11mm) LVPW 9mm(8-11mm) RV 19mm(<20mm) RA横径 28mm(<40mm)
PA 23mm(<25mm) EDV 165ml ESV 108ml SV 58ml EF 35%(50-70%) FS 17%(>25%) HR 117次/分(60-100次/分)CO 7.2 L/分( 3.5-8L/ 分)
FAST检查的拓展
针对颅脑损伤患者筛查颅内结构是 否有异常,有无继发性出血,利用经颅 多普勒(TCD)可评估脑组织血流灌注 情况,针对多发伤患者,筛查全身长骨 是否有骨折等等。
床旁超声在心脏、血管急危重症中的应用
一、心脏:常用探查部位有胸骨旁、心尖、剑突下、
如何应用床旁肺脏超声快速鉴别诊断呼吸困难:“彗尾征”快速识别心源性气促
既往的临床经验告诉我们 :肺脏疾病 ,不论是 限制性 、阻 塞性 、或 者是心衰导致的肺水肿 ,其诊断均是集束 式的 ,包 括 病史 、体 格检查和辅助检查(胸片 、心 电图和实验室检查 )等 。 当我们对其进行分析 时 ,就会发现体格 检查 和病史 的特异 性 较低 。胸片征象 ,如蝴蝶征 、心脏增大 、肺 血管模糊等这些 特 点与放射科 医生经验水平相关 ,此外完成 这些检查还需要 一 定的时间 ,往往不能在患者发作呼吸困难 时进行 。B型脑钠肽 (BNP)在鉴别心源性呼吸 困难 中有 一定优势 ,然而 ,往 往需 要 1 h以上 才 能 检 测 出 结 果 ,所 以 ,BNP常 作 为 一 种 验 证 诊 断 正 确 性 的 工 具 。
中华危重病急救 医学 2013年 8月第 25卷第 8期 Chin Cf it Care Med
Q ! !
· 499 ·
如何 应用床旁肺脏超声快速鉴别诊断呼吸困难 : “彗 尾 征 ”快 速 识 别 心源 性 气促
马欢 郭 力恒 黄 道政 周 宁智 王 小亭 张敏 州
· CCCM 论 坛 ·
影像之 间的关 系 ,提 出了肺脏超声在诊 断肺 泡间质综合征方 面 的价值 ,这种声像学改变在不 同的病 理学改变下呈现不 同 的特 征 ,比如后 来发 现气胸 、急性 呼吸窘 迫综合征 (ARDS)、 肺炎 等 。然而 ,当时人们认为 ,超声 不能透 过充满气 体的肺 脏 ,所谓 的肺脏超声无从谈起 ,因此没有给予足够 的重视 。但 后来发现 ,正是 由于病 理状 态下的肺脏会 出现特定 的征象 , 最终导致肺脏超声 的出现。 目前 ,重症 医学科 、急诊科 、超声 科 医生对肺脏超声越来 越感 兴趣 ,这将 是肺 脏超声蓬勃发展 的一个好兆头 。基于肺脏超声可以很好地识别肺泡间质综合 征 ,具有 鉴别呼 吸困难原 因 的潜 能— —心源性 呼吸 困难 (肺 水 肿 )或 者 COPD恶 化 所 致 。 2 国内外研 究进 展
床旁肺部超声在新生儿肺炎临床诊断中的应用价值
床旁肺部超声在新生儿肺炎临床诊断中的应用价值床旁肺部超声(point-of-care lung ultrasonography)是一种快速、安全、无创的检查方法,广泛应用于临床诊断中。
它可以在短时间内提供肺部结构和功能信息,是新生儿肺炎临床诊断中一种常用的辅助检查手段。
在新生儿肺炎的临床诊断中,床旁肺部超声的应用具有重要的价值。
床旁肺部超声能够快速的评估肺部的形态与结构。
在新生儿肺炎中,肺部常常发生不同程度的透明度改变,如支气管内激发、肺泡实变、积液等。
通过肺部超声可以直接观察到这些改变,并根据其所在的位置和范围来确定肺炎的部位和严重程度。
床旁肺部超声还可以评估肺部的通气和血流情况。
在肺炎中,由于肺部炎症的存在,通气和血流通常会受到影响。
通过超声仪器上设置的多个超声图像窗口,可以实时观察到肺泡的扩张和收缩情况,以及肺血流的速度和流动方向。
这些信息有助于判断肺炎的严重程度,指导治疗的选择和调整。
床旁肺部超声还可以评估肺部的容积和排气情况。
在新生儿肺炎中,有些患儿可能会出现肺部过度膨胀或气体积聚等情况。
通过超声图像可以快速评估肺部的容积和排气情况,辅助判断是否存在肺气肿等病变。
床旁肺部超声在新生儿肺炎的临床诊断中具有重要的应用价值。
它能够快速评估肺部的形态、结构、通气和血流情况,帮助医生快速确定肺炎的位置、严重程度和病因,指导治疗方案的选择和调整。
床旁肺部超声是一种无创、安全的检查方法,对新生儿肺炎患儿具有较好的耐受性。
床旁肺部超声在新生儿肺炎临床诊断中的应用,不仅可以缩短诊断时间,提高准确性,还能减少患儿和家属的痛苦,对于临床工作具有重要的推广价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page 1of 9(page number not for citation purposes)AbstractLung ultrasound can be routinely performed at the bedside by intensive care unit physicians and may provide accurate infor-mation on lung status with diagnostic and therapeutic relevance.This article reviews the performance of bedside lung ultrasound for diagnosing pleural effusion, pneumothorax, alveolar-interstitial syn-drome, lung consolidation, pulmonary abscess and lung recruitment/derecruitment in critically ill patients with acute lung injury.IntroductionManagement of critically ill patients requires imaging techniques, which are essential for optimizing diagnostic and therapeutic procedures. The diagnosis and drainage of localized pneumothorax and empyema, the assessment of lung recruitment following positive end-expiratory pressure and/or recruitment maneuver, the assessment of lung over-inflation, and the evaluation of aeration loss and its distribution all require direct visualization of the lungs. To date, chest imaging has relied on bedside chest radiography and lung computed tomography (CT).General and cardiac ultrasound can be easily performed at the bedside by physicians working in the intensive care unit (I CU) and may provide accurate information with diagnostic and therapeutic relevance. It has become an attractive diagnostic tool in a growing number of situations, including evaluation of cardiovascular status, acute abdominal disease such as peritoneal collections, hepatobiliary tract obstruction,acalculous acute cholecystitis, diagnosis of deep venous thrombosis and ventilator-associated sinusitis [1]. Further-more, ultrasound is relatively inexpensive and does not utilize ionizing radiation.Recently, chest ultrasound has become an attractive new tool for assessing lung status in ventilated critically ill patients, as suggested by the increasing number of articles written about it by physicians practicing in chest, intensive care oremergency medicine. As a matter of fact, chest ultrasound can be used easily at the bedside to assess initial lung morphology in severely hypoxemic patients [2] and can be easily repeated, allowing the effects of therapy to be monitored.Conventional lung imaging in critically ill patientsBedside chest radiographyIn the ICU, bedside chest radiography is routinely performed on a daily basis and is considered as a reference for assessing lung status in critically ill patients with acute lung injury.Limited diagnostic performance and efficacy of bedsideportable chest radiography have been reported in several previous studies [3-5]. Several reasons account for the limited reliability of bedside chest radiography. First, during the acquisition procedure, the patient and the thorax often move,decreasing the spatial resolution of the radiological image.Second, the film cassette is placed posterior to the thorax.Third, the X-ray beam originates anterior, at a shorter distance than recommended and quite often not tangentially to the diaphragmatic cupola, thereby hampering the correct interpretation of the silhouette sign. These technical difficulties lead to incorrect assessment of pleural effusion, lung consolidation and alveolar-interstitial syndrome.Lung computed tomographyLung CT is now considered as the gold standard not only for the diagnosis of pneumothorax, pleural effusion, lung consolidation, atelectasis and alveolar-interstitial syndrome but also for guiding therapeutic procedures in critically ill patients, such as trans-thoracic drainage of localized pneumo-thorax, empyema or lung abscess. Lung image formation during CT relies on a physical principle similar to that used for image formation during chest radiography: the X-rays hitting the film or the CT detector depend on tissue absorption,which is linearly correlated to physical tissue density. I n theReviewClinical review: Bedside lung ultrasound in critical care practiceBélaïd Bouhemad 1, Mao Zhang 2, Qin Lu 1and Jean-Jacques Rouby 11Surgical Intensive Care Unit, Pierre Viars, Department of Anesthesiology and Critical Care, Assistance Publique Hôpitaux de Paris, University Pierre etMarie Curie, Paris 6, France2Department of Emergency Medicine, Second Affiliated Hospital of Hangzhou, Zhejiang University, ChinaCorresponding author: Belaïd Bouhemad, belaid.bouhemad@psl.ap-hop-paris.frPublished: 16 February 2007Critical Care 2007, 11:205 (doi:10.1186/cc5668)This article is online at /content/11/1/205© 2007 BioMed Central Ltdfirst generation of CT scanners, the tube emitting X-rays and the X-ray detector were positioned on the opposite sides of a ring that rotated around the patient. Typically, a 1cm-thick CT section was taken during each rotation, lasting 1second, and the table supporting the patient had to be moved to acquire the next slice, the ring remaining in a fixed position. These conventional scanners were slow and had a poor ability to reconstruct images in different planes.In the nineties, spiral CT scanners equipped with a slip ring were introduced, giving the possibility of scanning a volume of tissue rather than an individual slice. Acquisition time was markedly reduced and high quality reconstruction in coronal, sagittal and oblique planes became possible using a work station. Current multi-slice CT scanners, the third generation of CT scanners, are equipped with multiple X-ray detectors and the tube rotates in less than one second around the thorax while the table supporting the patient moves continuously. The multiple detectors and the decrease in rotation time allow faster coverage of a given volume of lung tissue, contributing to increased spatial resolution (voxel smaller than 1mm3). Using specifically designed computer software offering sophisticated reconstruction and post-processing capabilities, several hundred consecutive axial sections of the whole lung can be reconstructed from the volumetric data and visualized on the screen of a personal computer. I f the computer is connected to an appropriate workstation, it is then possible to ‘move into the lung’ and to measure CT attenuations in any part of the pulmonary parenchyma, providing direct access to regional lung aeration. In addition, images can be reconstructed in coronal, sagittal and oblique planes, offering the possibility of a three-dimensional view of the organ. For hospitals having a computer server to store and retrieve pictures from, films are no longer necessary and physicians can derive much more accurate information on patients’ lung status.With the old generation of conventional CT scanners, obtaining contiguous 1.5mm-thick CT sections from the apex to the diaphragm would have exposed patients to unsafe radiation levels. With the new generation of multi-slice CT scanners, the ionizing radiation is slightly greater than from a single slice spiral scanner. However, because more slices and images can be easily obtained with multi-slice CT scanners, there is a potential for increased radiation exposure [6] that has to be balanced against the total radiation dose resulting from chest radiography performed daily at the bedside.To perform a lung CT scan, however, requires transportation to the department of radiology, a risky procedure necessitating the presence of trained physicians and sophisticated cardio-respiratory monitoring [7]. n addition, helical multi-detector row CT exposes the patient to a substantial radiation dose, which limits the repeatability of the procedure [6]. For these different reasons, lung CT remains a radiological test, access to which is limited in many ICUs, and bedside lung ultrasound appears as an attractive alternative method for deriving information on lung status.Bedside lung ultrasound in critically ill patientsTechnical equipmentUltrasound machines should be lightweight, compact, easy to transport and robust, allowing multiple bedside examinations. They should be equipped with a high-performance screen and a paper recorder allowing transmission of medical information and subsequent comparisons. Generally, basic models presented by manufacturers combine all these features, and have the additional advantage of being reasonably priced. Such ultrasound machines are available in many emergency wards, ICUs, units of medical transportation and even in space [8-11].Another technical characteristic should be required for the use of lung ultrasound in the I CU: the probes and the ultrasound machine should comply with repeated decontamination procedures since they serve multiple patients, and can be the vector for resistant pathogens that could be disseminated in the ICU [12-24]. The efficiency of the decontamination procedure is facilitated by a compact ultrasound machine equipped with a waterproof keyboard. This latter characteristic is present on a few ultrasound machines only, restricting choice.Ultrasound machines are classified as non-critical items that contact only intact skin and require low level disinfection with chlorine-based products, phenolic, quaternary ammonium compounds or 70% to 90% alcohol disinfectant [25]. n critically ill patients, the skin and the digestive tract are considered as reservoirs from which nosocomial infections can issue. By transmitting nosocomial cutaneous flora from patient to patient, the probe may contribute to the dissemination of multi-resistant strains in theICU and increase the incidence of nosocomial infections.If lung ultrasound is to be used routinely, our recommendation is to set up a rigid procedure of disinfection that must be strictly followed. As an example, the written decontamination procedure used in the Surgical I CU of La Pitié-Salpêtrière hospital in Paris is summarized in Table1.I deally, an emission frequency of 5 to 7MHz is desirable for optimizing ultrasound visualisation of the lung. The probe should be small with a convex tip so it can be easily placed on intercostal spaces, which offer an acoustic window on the lung parenchyma. Generally, a convex array probe (3 to 5MHz), as available on multi-purpose ultrasound machines, combines these advantages and allows a good visualization of lung.Lung ultrasound examinationThe patient can be satisfactorily examined in the supine position. The lateral decubitus position offers, however, a better view on dorsal regions of lower lobes. A completePage 2of 9(page number not for citation purposes)Page 3of 9 (page number not for citation purposes)IPage 4of 9(page number not for citation purposes)Page 5of 9 (page number not for citation purposes)recognition of lung sliding abolition. The diagnosis is even more difficult in the presence of partial pneumothorax. The patient should lie strictly supine to allow location of pleural gas effusion in non-dependant lung regions. To confirm the diagnosis of partial pneumothorax, examination should be extended lo lateral regions of the chest wall to localize the the time motion mode can facilitate detection of the lung point (Figure 7).The ultrasound pattern characterizing pneumothorax was described in the early 1990s [55-57]. Several studies have demonstrated that bedside lung ultrasound is more efficient than bedside chest radiography for diagnosing pneumothorax Page 6of 9(page number not for citation purposes)Cephalocaudal view of consolidated left lower lobe with a peripheral abscess. The abscess (A) appears as rounded hypoechoic lesions inside a lung consolidation (C). Ao, descending aorta; D, diaphragm;Pl, pleural effusion.Consolidated lung ‘floating’ in a massive pleural effusion. The pleural effusion (Pl) is abundant enough to be compressive and the lung (C) is seen consolidated and floating in the pleural effusion.II Page 7of 9(page number not for citation purposes)Time-motion mode lung ultrasound. (a)Normal lung and (b)pneumothorax patterns using time-motion mode lung ultrasound. In time motion mode, one must first locate the pleural line (white arrow)and, above it, the motionless parietal structures. Below the pleural line,lung sliding appears as a homogenous granular pattern (a). In the case of pneumothorax and absent lung sliding, horizontal lines only are visualised (b). In a patient examined in the supine position with partial pneumothorax, normal lung sliding and absence of lung sliding may coexist in lateral regions of the chest wall. In this boundary region,called the ‘lung point’ (P), lung sliding appears (granular pattern) and disappears (strictly horizontal lines) with inspiration when using thepromising techniques for respiratory monitoring and should rapidly expand in the near future.Additional filesAdditional file 1An avi movie showing ultrasound pattern of normal lung: pleural line is a roughly horizontal hyperechoic line 0.5cm below the upper and lower ribs identified by acoustic shadow. motionless and regularly spaced horizontal lines are seen below. They are meaningless and correspond to “artifacts of repetition”.Additional file 2An avi movie showing B lines 7mm apart or spaced comet-tail artefacts. These spaced comet-tail artefacts arise from the pleural line and spread up to the edge of screen. These artefacts correspond to thickened interlobular septa at chest computed tomography scan.Additional file 3An avi movie showing B lines 3mm or less apart: contiguous comet-tails arising from the pleural line and spreading up to the edge of screen are present. These artefacts correspond to ground-glass areas on chest computed tomography scan. Additional file 4An avi movie showing a cephalocaudal view of consolidated left lower lobe in and pleural effusion. Lung consolidation with air bronchograms, diaphragm and descending aorta are seen. Additional file 5An avi movie showing a cephalocaudal view of consolidated left lower lobe with a peripheral abscess. The abscess appears as rounded hypoechoic lesions inside a lung consolidation.Additional file 6An avi movie showing a massive pleural effusion enough to be compressive. the lung is seen consolidated and floating in this pleural effusion.Additional file 7An avi movie showing a consolitated lung and adjacent pleural effusion with pleural adherences: the pleural effusion is abundant and the lung is seen consolidated and floating in the pleural effusion with pleural adherences.Additional file 8An avi movie showing pneumothorax and “lung point”. I n a patient examined in the supine position with partial pneumothorax, normal lung sliding (left part of the screen) and pneumothoax (absence of lung sliding at right part of the screen) coexist. This boundary region is called the “lung point”. It should be noted that lung sliding appears (coming from the left part of the screen) and disappears (absent lung sliding, horizontal lines only are visualised) with peting interestsThe authors declare that they have no competing interests. References1.Lichtenstein D, Biderman P, Meziere G, Gepner A: The “sinuso-gram”, a real-time ultrasound sign of maxillary sinusitis.Inten-sive Care Med1998, 24:1057-1061.2.Lichtenstein D, Goldstein , Mourgeon E, Cluzel P, Grenier P,Rouby JJ: Comparative diagnostic performances of ausculta-tion, chest radiography, and lung ultrasonography in acute respiratory distress syndrome.Anesthesiology2004, 100:9-15.3.Greenbaum DM, Marschall KE: The value of routine daily chestx-rays in intubated patients in the medical intensive care unit.Crit Care Med1982, 10:29-30.4.Bekemeyer WB, Crapo RO, Calhoon S, Cannon CY, Clayton PD:Efficacy of chest radiography in a respiratory intensive care unit. A prospective study.Chest1985, 88:691-696.5.Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P:Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group.Intensive Care Med2000, 26:1046-1056.6.Mayo JR, Aldrich J, Muller NL: Radiation exposure at chest CT: astatement of the Fleischner Society.Radiology2003, 228:15-21.7.Beckmann U, Gillies DM, Berenholtz SM, Wu AW, Pronovost P:Incidents relating to the intra-hospital transfer of critically ill patients. An analysis of the reports submitted to the Aus-tralian Incident Monitoring Study in Intensive Care.Intensive Care Med2004, 30:1579-1585.8.Kirkpatrick AW, Breeck K, Wong J, Hamilton DR, McBeth PB,Sawadsky B, Betzner MJ: The potential of handheld trauma sonography in the air medical transport of the trauma victim.Air Med J2005, 24:34-39.9.Lichtenstein D, Courret JP: Feasibility of ultrasound in the heli-copter.Intensive Care Med1998, 24:1119.10.Sargsyan AE, Hamilton DR, Jones JA, Melton S, Whitson PA, Kirk-patrick AW, Martin D, Dulchavsky SA: FAST at MACH 20: clinical ultrasound aboard the International Space Station.J Traum a 2005, 58:35-39.11.Kirkpatrick AW, Nicolaou S, Campbell MR, Sargsyan AE,Dulchavsky SA, Melton S, Beck G, Dawson DL, Billica RD, John-ston SL, Hamilton DR: Percutaneous aspiration of fluid for management of peritonitis in space.Aviat Space Environ Med 2002, 73:925-930.12.Muradali D, Gold WL, Phillips A, Wilson R: Can ultrasoundprobes and coupling gel be a source of nosocomial infection in patients undergoing sonography? An in vivo and in vitro study.Am J Roentgenol1995, 164:1521-1524.13.Patterson SL, Monga M, Silva JB, Bishop KD, Blanco JD: Microbi-ologic assessment of the transabdominal ultrasound trans-ducer head.South Med J1996, 89:503-504.14.Tesch C, Froschle G: Sonography machines as a source ofinfection.Am J Roentgenol1997, 168:567-568.15.Abdullah BJ, Mohd Yusof MY, Khoo BH: Physical methods ofreducing the transmission of nosocomial infections via ultra-sound and probe.Clin Radiol1998, 53:212-214.16.Gaillot O, Maruejouls C, Abachin E, Lecuru F, Arlet G, Simonet M,Berche P: Nosocomial outbreak of Klebsiella pneumoniae pro-ducing SHV-5 extended-spectrum beta-lactamase, originating from a contaminated ultrasonography coupling gel.J Clin Microbiol1998, 36:1357-1360.17.Ohara T, I toh Y, I toh K: Ultrasound instruments as possiblevectors of staphylococcal infection.J Hosp Infect1998, 40:73-77.18.Fowler C, McCracken D: US probes: risk of cross infection andways to reduce it - comparison of cleaning methods.Radiol-ogy1999, 213:299-300.19.Ohara T, I toh Y, I toh K: Contaminated ultrasound probes: apossible source of nosocomial infections.J Hosp Infect1999, 43:73.20.Karadenz YM, Kilic D, Kara Altan S, Altinok D, Guney S: Evalua-tion of the role of ultrasound machines as a source of noso-comial and cross-infection.Invest Radiol2001, 36:554-558. 21.Kibria SM, Kerr KG, Dave J, Gough MJ, Homer-Vanniasinkam S,Mavor AI: Bacterial colonisation of Doppler probes on vascular surgical wards.Eur J Vasc Endovasc Surg2002, 23:241-243.Page 8of 9(page number not for citation purposes)22.Bello TO, Taiwo SS, Oparinde DP, Hassan WO, Amure JO: Riskof nosocomial bacteria transmission: evaluation of cleaning methods of probes used for routine ultrasonography.West Afr J Med2005, 24:167-170.23.Schabrun S, Chipchase L, Rickard H: Are therapeutic ultra-sound units a potential vector for nosocomial infection?Phys-iother Res Int2006, 11:61-71.24.Schabrun S, Chipchase L: Healthcare equipment as a sourceof nosocomial infection: a systematic review.J Hosp Infect 2006, 63:239-245.25.Rutala WA, Weber DJ: Disinfection and sterilization in healthcare facilities: what clinicians need to know.Clin Infect Dis 2004, 39:702-709.26.Barbry T, Bouhemad B, Leleu K, de Castro V, Remerand F, RoubyJJ: Transthoracic ultrasound approach of thoracic aorta in crit-ically ill patients with lung consolidation.J Crit Care2006, 21: 203-208.27.Doelken P, Strange C: Chest ultrasound for “Dummies”.Chest2003, 123:332-333.28.Lichtenstein DA, Meziere G, Lascols N, Biderman P, Courret JP,Gepner A, Goldstein I, Tenoudji-Cohen M: Ultrasound diagnosis of occult pneumothorax.Crit Care Med2005, 33:1231-1238.29.Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby J-J,and the CT Scan ARDS Study Group:Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Con-sequences on lung morphology.Intensive Care Med2000, 26: 857-869.30.Lichtenstein D, Meziere G: A lung ultrasound sign allowingbedside distinction between pulmonary edema and CO PD: the comet-tail artifact.Intensive Care Med1998, 24:1331-1334.31.Lichtenstein D, Meziere G, Biderman P, Gepner A, Barre O:The comet-tail artifact. An ultrasound sign of alveolar-inter-stitial syndrome.Am J Respir Crit Care Med1997, 156:1640-1646.32.Yang PC, Chang DB, Yu CJ, Lee YC, Kuo SH, Luh KT: Ultra-sound guided percutaneous cutting biopsy for the diagnosis of pulmonary consolidations of unknown aetiology.Thorax 1992, 47:457-460.33.Weinberg B, Diakoumakis EE, Kass EG, Seife B, Zvi ZB: The airbronchogram: sonographic demonstration.Am J Roentgenol 1986, 147:593-595.34.Yang PC, Luh KT, Chang DB, Yu CJ, Kuo SH, Wu HD: Ultra-sonographic evaluation of pulmonary consolidation.Am Rev Respir Dis1992, 146:757-762.35.Yang PC, Luh KT, Lee YC, Chang DB, Yu CJ, Wu HD, Lee LN,Kuo SH: Lung abscesses: US examination and US-guided transthoracic aspiration.Radiology1991, 180:171-175.36.Yu CJ, Yang PC, Chang DB, Luh KT: Diagnostic and therapeu-tic use of chest sonography: value in critically ill patients.Am J Roentgenol1992, 159:695-701.37.Lichtenstein DA, Lascols N, Meziere G, Gepner A: Ultrasounddiagnosis of alveolar consolidation in the critically ill.Intensive Care Med2004, 30:276-281.38.Klein JS, Schultz S, Heffner JE: Interventional radiology of thechest: image-guided percutaneous drainage of pleural effu-sions, lung abscess, and pneumothorax [see comments].Am J Roentgenol1995, 164:581-588.39.Gehmacher O, Mathis G, Kopf A, Scheier M: Ultrasoundimaging of pneumonia.Ultrasound Med Biol1995, 21:1119-1122.40.Bouhemad B, Liu Z, Zhang M, Lu Q, Rouby JJ: Lung ultrasounddetection of lung re-aeration in patients treated for ventilator-associated pneumonia [abstract].Intensive Care Med2006, 32:S221.41.Doust BD, Baum JK, Maklad NF, Doust VL: Ultrasonic evaluationof pleural opacities.Radiology1975, 114:135-140.42.Lichtenstein D, Hulot JS, Rabiller A, Tostivint I, Meziere G: Feasi-bility and safety of ultrasound-aided thoracentesis in mechan-ically ventilated patients.Intensive Care Med1999, 25:955-958.43.Joyner CR Jr, Herman RJ, Reid JM: Reflected ultrasound in thedetection and localization of pleural effusion.JAMA1967, 200:399-402.44.Gryminski J, Krakowka P, Lypacewicz G: The diagnosis ofpleural effusion by ultrasonic and radiologic techniques.Chest1976, 70:33-37.45.Eibenberger KL, Dock WI, Ammann ME, Dorffner R, Hormann MF,Grabenwoger F: Quantification of pleural effusions:sonogra-phy versus radiography.Radiology1994, 191:681-684.46.Roch A, Bojan M, Michelet P, Romain F, Bregeon F, Papazian L,Auffray JP: Usefulness of ultrasonography in predicting pleural effusions > 500 mL in patients receiving mechanical ventila-tion.Chest2005, 127:224-232.47.Vignon P, Chastagner C, Berkane V, Chardac E, Francois B,Normand S, Bonnivard M, Clavel M, Pichon N, Preux PM, et al.: Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography.Crit Care Med2005, 33:1757-1763.48.Balik M, Plasil P, Waldauf P, Pazout J, Fric M, Otahal M, Pachl J:Ultrasound estimation of volume of pleural fluid in mechani-cally ventilated patients.Intensive Care Med2006, 32:318-321.49.Remerand F, Dellamonica J, Mao Z, Rouby JJ: Direct bedsidequantification of pleural effusion in ICU: a new sonographic method [abstract].Intensive Care Med2006, 32:S220.50.Yang PC, Luh KT, Chang DB, Wu HD, Yu CJ, Kuo SH: Value ofsonography in determining the nature of pleural effusion: analysis of 320 cases.Am J Roentgenol1992, 159:29-33. 51.Mayo PH, Goltz HR, Tafreshi M, Doelken P: Safety of ultra-sound-guided thoracentesis in patients receiving mechanical ventilation.Chest2004, 125:1059-1062.52.Remerand F, Dellamonica J, Mao Z, Rouby JJ: Percutaneouschest tube insertions: is the” safe triangle” safe for the lung?Intensive Care Med2006, 32:S43.53.Lichtenstein D, Meziere G, Biderman P, Gepner A: The comet-tail artifact: an ultrasound sign ruling out pneumothorax.Intensive Care Med1999, 25:383-388.54.Lichtenstein D, Meziere G, Biderman P, Gepner A: The “lungpoint”: an ultrasound sign specific to pneumothorax.Intensive Care Med2000, 26:1434-1440.55.Wernecke K, Galanski M, Peters PE, Hansen J: Pneumothorax:evaluation by ultrasound - preliminary results.J Thorac Imaging1987, 2:76-78.56.Targhetta R, Bourgeois JM, Chavagneux R, Balmes P: Diagnosisof pneumothorax by ultrasound immediately after ultrasoni-cally guided aspiration biopsy.Chest1992, 101:855-856. 57.Targhetta R, Bourgeois JM, Chavagneux R, Coste E, Amy D,Balmes P, Pourcelot L: Ultrasonic signs of pneumothorax: pre-liminary work.J Clin Ultrasound1993, 21:245-250.58.Dulchavsky SA, Schwarz KL, Kirkpatrick AW, Billica RD, WilliamsDR, Diebel LN, Campbell MR, Sargysan AE, Hamilton DR: Prospective evaluation of thoracic ultrasound in the detection of pneumothorax.J Trauma2001, 50:201-205.59.Liu DM, Forkheim K, Rowan K, Mawson JB, Kirkpatrick A, Nico-laou S: Utilization of ultrasound for the detection of pneu-mothorax in the neonatal special-care nursery.Pediatr Radiol 2003, 33:880-883.60.Kirkpatrick AW, Sirois M, Laupland KB, Liu D, Rowan K, Ball CG,Hameed SM, Brown R, Simons R, Dulchavsky SA, et al.: Hand-held thoracic sonography for detecting post-traumatic pneu-mothoraces: the Extended Focused Assessment with Sonography for Trauma (EFAST).J Trauma2004, 57:288-295.61.Zhang M, Liu ZH, Yang JX, Gan JX, Xu SW, You XD, Jiang GY:Rapid detection of pneumothorax by ultrasonography in patients with multiple trauma.Crit Care2006, 10:R112.Page 9of 9(page number not for citation purposes)。