递归最小二乘法辨识参数
机械臂动力学参数辨识

机械臂动力学参数辨识动力学参数辨识在机械臂的研究和应用中具有重要意义。
准确的动力学参数对于机械臂运动学分析、轨迹规划以及控制算法设计等都有着重要的影响。
一、基于静态重力补偿静态重力补偿是机械臂动力学参数辨识的一种简单有效的方法。
通过控制机械臂处于静止状态,并在不同的关节角度下测量末端执行器的重力矩,可以推导出机械臂的惯性矩阵。
这种方法不需要进行复杂的实验和数据处理,适用于一些简单的机械臂系统。
二、基于递归最小二乘法递归最小二乘法是一种递归在线辨识算法,在机械臂动力学参数辨识中具有广泛应用。
该方法采用递归的方式不断更新参数,并通过最小化测量数据与模型之间的误差来求解参数。
该方法适用于在线实时辨识,可以随着机械臂的运动获取更准确的参数。
三、基于质心力矩法质心力矩法是一种基于动力学模型的参数辨识方法。
该方法通过测量机械臂质心位置和末端执行器的力矩,结合动力学模型,可以推导出机械臂的质量、惯性矩阵等参数。
这种方法可以同时辨识多个参数,适用于较复杂的机械臂系统。
四、基于人工神经网络人工神经网络是一种基于模式识别的辨识方法。
该方法通过训练神经网络模型,将输入的机械臂关节角度和末端执行器的力矩作为输入,将模型输出与实际测量值进行比较,通过反向传播算法调整网络权值,从而获得机械臂的动力学参数。
该方法可以适用于不确定或难以建模的机械臂系统。
在进行机械臂动力学参数辨识时,需要注意以下几点。
一、实验数据的收集要准确可靠。
需要使用高精度传感器对机械臂的运动和力矩进行测量,保证数据的可信度。
二、辨识方法的选择要根据具体情况进行。
不同的机械臂系统可能适用不同的辨识方法,要根据实际需要选择最合适的方法。
三、辨识结果的评估和验证是非常重要的。
辨识得到的参数需要经过合理的评估和验证,与实际测量值进行对比,以保证辨识结果的准确性。
综上所述,机械臂动力学参数辨识是机械臂研究和应用中的重要环节。
通过合适的辨识方法和准确的数据收集,可以获取到机械臂系统的动力学参数,为后续的控制算法设计和系统建模提供基础。
遗忘因子递推最小二乘法辨识rc电路

遗忘因子递推最小二乘法辨识rc电路遗忘因子递推最小二乘法(Recursive Least Squares,简称RLS)是一种用于参数辨识的方法,主要针对线性时变系统的辨识问题。
在本文中,我们将探讨如何使用RLS方法辨识RC电路。
首先,我们需要了解什么是RC电路。
RC电路由一个电阻和一个电容组成,其工作原理是通过电阻阻碍电流的流动,而电容则储存电荷。
RC电路可以用于滤波器、积分器等应用中。
在辨识RC电路时,我们可以将其视为一个一阶系统,其传递函数可以表示为:H(s) = 1 / (RCs + 1)其中,s是频率,RC是电阻和电容的乘积。
我们的目标是辨识出RC的值。
接下来,我们将介绍如何使用RLS方法辨识RC电路的参数。
首先,我们需要采集一些输入-输出数据对。
我们可以通过施加不同的输入信号,并记录输出信号来获取这些数据对。
这些输入信号可以是脉冲信号、阶跃信号或正弦信号等。
设输入信号为u(t),输出信号为y(t),则我们可以得到如下的离散模型:y(k) = wT(k) · x(k)其中,y(k)是第k个采样点的输出,w(k)是待辨识的参数向量,x(k)是输入-输出数据对构成的特征向量。
在训练过程中,我们需要定义一个递归的更新规则来更新参数向量w(k)。
这里,我们引入遗忘因子λ,用于控制历史数据对参数的影响程度。
遗忘因子的取值范围为0到1之间,较大的值表示较快的遗忘,较小的值表示较慢的遗忘。
参数向量的更新公式如下:w(k) = w(k-1) + P(k-1) · x(k) · e(k)其中,P(k-1)是协方差矩阵,它与遗忘因子有关,可以通过递推方式得到:P(k) = 1/λ · (P(k-1) - P(k-1) · x(k) · x(k)T · P(k-1) / (λ + x(k)T · P(k-1) · x(k)))e(k)是输出误差,可以通过以下方式计算:e(k) = y(k) - wT(k-1) · x(k)以上就是使用遗忘因子递推最小二乘法辨识RC电路的基本原理和公式。
三线性系统递归最小二乘辨识与仿真分析

三线性系统递归最小二乘辨识与仿真分析在工程领域中,系统的辨识和仿真分析是非常重要的任务。
在本文中,我们将重点讨论三线性系统递归最小二乘辨识与仿真分析的相关内容。
首先,我们来了解一下什么是三线性系统。
三线性系统是指具有线性状态方程,但状态转移函数中存在三次非线性项的系统。
这种系统具有比一般线性系统更广泛的应用领域,在一些非线性控制问题中具有重要的作用。
接下来,我们将介绍递归最小二乘辨识方法在三线性系统中的应用。
递归最小二乘辨识是一种基于最小二乘准则的参数辨识方法,通过不断迭代的方式来逼近系统的参数。
对于三线性系统而言,递归最小二乘辨识方法可以用于估计系统的非线性项参数,从而实现系统的准确辨识。
在进行递归最小二乘辨识时,我们需要首先确定一个递归模型,即由参数表示的系统模型。
然后,我们可以通过观测数据和测量数据来进行参数的估计。
递归最小二乘辨识方法的核心思想是通过不断更新参数的估计值来逼近真实的系统参数,以实现对系统的准确辨识。
为了验证递归最小二乘辨识方法的有效性,我们需要进行仿真分析。
仿真分析是一种基于模型的方法,通过在计算机上模拟系统的运行来获得系统的性能指标和动态响应。
在三线性系统的仿真分析中,我们可以通过建立递归最小二乘辨识得到的参数模型,并将其应用于仿真平台上,来模拟系统的运行情况。
在仿真分析中,我们可以通过调整模型参数来观察系统的不同响应。
通过比较仿真结果和实际观测结果,我们可以评估递归最小二乘辨识方法的准确性和适用性。
仿真分析还可以帮助我们进一步优化系统参数,以获得更好的控制性能和响应特性。
总结而言,三线性系统递归最小二乘辨识与仿真分析是一项重要的任务,在工程领域中具有广泛的应用。
递归最小二乘辨识方法可以实现对三线性系统参数的准确估计,而仿真分析可以验证辨识方法的有效性和系统的性能。
通过这些研究工作,我们可以更好地理解和应用三线性系统的特性,为控制和优化提供有效的解决方案。
通过以上论述,我们对三线性系统递归最小二乘辨识与仿真分析有了更加清晰的认识。
递推最小二乘估计及模型阶次辨识

实验二 递推最小二乘估计(RLS)及模型阶次辨识(F-Test )1 实验方案设计1.1 生成输入数据和噪声用M 序列作为辨识的输入信号,噪声采用标准正态分布的白噪声。
生成白噪声时,首先利用乘同余法生成U[0,1]均匀分布的随机数,再利用U[0,1]均匀分布的随机数生成标准正态分布的白噪声。
1.2 过程仿真辨识模型的形式取)()()()()(11k e k u z B k z z A +=--,为方便起见,取n n n b a == 即nn n n zb a b z b z B z a a a z a z A ------++++=++++=...1)(...1)(22112211用M 序列作为辨识的输入信号。
1.3 递推遗忘因子法数据长度L 取534,初值⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==1000010000100001)0(001.0)0(P θ 1.4 计算损失函数、噪声标准差损失函数⎥⎦⎤⎢⎣⎡+---+-=μθμττ)()1()()]1(ˆ)()([)1()(2k h k P k h k k h k z k J k J噪声标准差θλdim )(ˆ-=L L J1.6 F-Test 定阶法计算模型阶次统计量t)22,2(~222)1()1()()1,(----++-=+n L F n L n J n J n J n n t其中,)(∙J 为相应阶次下的损失函数值,L 为所用的数据长度,n 为模型的估计阶次。
若a t n n t >+)1,(,拒绝00:n n H >,若a t n n t <+)1,(,接受00:n n H >,其中αt 为风险水平α下的阀值。
这时模型的阶次估计值可取1+n 。
1.6 计算噪信比和性能指标噪信比22ye σση= 参数估计平方相对偏差i i i ni i i θθθθθδˆ~,~1221-=⎪⎪⎭⎫ ⎝⎛=∑= 参数估计平方根偏差ii i n i ini iθθθθθδˆ~,)()~(2122122-==∑∑== 2 编程说明M 序列中,M 序列循环周期取15124=-=p N ,时钟节拍t ∆=1Sec ,幅度1=a ,特征多项式为1)(56⊕⊕=s s s F 。
最小二乘类辨识算法

L
1 n
,则模型
计值为
zL H L nL 的参数估
ˆMV
(H
T L
1 n
H
L
)1
H
T L
Z 1
nL
相应的参数估计偏差的协方差为
cov{~MV
}
E{(H
T L
1 n
H
L
)1}
40
推论 2
若模型 zL H L nL 中的 nL 是零均值的白噪
声向量,且加权矩阵取 L I ,则参数估计偏
开始
产生输入信号 M 序列
一
产生输出信号 z(k)
般
最
小
给出样本矩阵 H m 和 Z m
二
乘
估计参数
参
数
辨
分离估计参数 a1 、 a2 、 b1 和 b2
识
流
画图:输入/输出信号和估计参数
程
图
结束
4.5 最小二乘参数估计值的统计性质
最小二乘参数估计值具有随机性,因此需要研究 它们的统计性质
1. 无偏性 2. 参数估计偏差的协方差性质 3.一致性 4. 有效性 5. 渐近正态性
第4 章 最小二乘类参数辨识方法
1
主要内容
引言 最小二乘辨识算法 自适应辨识算法 偏差补偿最小二乘法 增广最小二乘算法 广义最小二乘法 辅助变量法 系统的结构辨识
2
4.1 引言
如果
仅仅关心所要辨识的过程输入输出特性 可以将所过程视为“黑箱” 而不考虑过程的内部机理
3
过程的“黑箱”结构
u(k) 和 z(k) 分别是过程的输入和输出 G(z 1 ) - 描述输入输出关系的模型,称为过程模型
最小二乘参数辨识方法及原理

2.2 一般最小二乘法原理及算法
z (k ) a i y (k i) bi u (k i) v (k )
i 1 i 1 n n
如果定义
h ( k ) [ y ( k 1), y ( k 2 ), , y ( k n ), u ( k 1), u ( k 2 ), , u ( k n )]
1 1 1
1 1 1
1
1
1
z1 1 1 ( z 1 z 2 ) 2 z2
r 1 0 0 1 1 4 r 1 1 1 1
2、最小二乘辨识方法的基本概念
通过试验确定热敏电阻阻值和温度间的关系
t (C ) R ( )
t1 R1
t2 R2
tN
1
tN RN
RN
1
R a bt
• 当测量没有任何误差时,仅需2个测量值。 • 每次测量总是存在随机误差。
y i R i v i 或 y i a bt v i
v i y i R i 或 v i= y i a bt i
常见做法:
太复杂 使
max | y i R i |
1 i N
N
最小 /* minimax problem */ 不可导,求解困难
使 |y
i 1
i
Ri |
最小
最小
使 |y
i 1
m
i
Ri |
H
2
1 1
r R 0
0 4r
第五章 最小二乘参数辨识方法 第十二讲

《系统辨识基础》第12讲要点第5章 最小二乘参数辨识方法5.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类:① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:min )()ˆ(ˆ==∑=θθLk k J 12ε其中)(k ε代表模型输出与系统输出的偏差。
典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。
② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。
③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度)|(θz p 最大限度地逼近条件0θ下的概率密度)|(0θz p ,即)|()ˆ|(0m a xθθz p z p −−→−。
典型的方法是极大似然法。
5.2 最小二乘法的基本概念● 两种算法形式① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。
② 递推算法:在上次模型参数估计值)(ˆ1-k θ的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值)(ˆk θ,广泛采用的递推算法形式为() ()()()~()θθk k k k d z k =-+-1K h其中)(ˆk θ表示k 时刻的模型参数估计值,K (k )为算法的增益,h (k -d ) 是由观测数据组成的输入数据向量,d 为整数,)(~k z 表示新息。
● 最小二乘原理定义:设一个随机序列)},,,(),({L k k z 21∈的均值是参数θ 的线性函数θτ)()}({k k z h =E其中h (k )是可测的数据向量,那么利用随机序列的一个实现,使准则函数21])()([)(θθτ∑=-=Lk k k z J h达到极小的参数估计值θˆ称作θ的最小二乘估计。
● 最小二乘原理表明,未知参数估计问题,就是求参数估计值θˆ,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。
第四章最小二乘参数辨识方法及原理

yi Ri vi 或 yi a bt vi
vi yi Ri或vi=yi a bti
第十四页,编辑于星期五:十九点 二十六分。
3利用最小二乘法求模型参数
根据最小二乘的准则有
N
N
J min vi2 [Ri (a bti )]2
i 1
i 1
根据求极值的方法,对上式求导
m
使 w(k) | z(k) y(k) |2 最小 k 1
第十三页,编辑于星期五:十九点 二十六分。
3、最小二乘辨识方法的基本概念
通过试验确定热敏电阻阻值和温度间的关系
t (C)
t1
R ()
R1
t2
t N 1
tN
R2
RN 1
RN
R a bt
• 当测量没有任何误差时,仅需2个测量值。
• 每次测量总是存在随机误差。
k v k aiv k i
i0
(4-5)
n
n
y k ai y k i biu k i (k )
i1
i0
(4-6)
如果u k 也有测量误差,则在 k 中应包含这一测量误差。
第二十三页,编辑于星期五:十九点 二十六分。
现在分别测出个 n N 输出值和输入值:y 1,y 2, ,y n N 及 u 1,u 2, ,u n N 。则可写出N个方程:
4.7 增广矩阵法(ELS/RELS)(增广最小二乘法)
4.8 多阶段最小二乘法(MSLS) 4.9 几种最小二乘类辨识算法的比较
第二页,编辑于星期五:十九点 二十六分。
本章的学习目的
1、掌握最小二乘参数辨识方法的基本原理 2、掌握常用的最小二乘辨识方法 3、熟练应用最小二乘参数辨识方法进行模型参数辨识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
递归最小二乘法辨识参数
递归最小二乘法(Recursive Least Squares, RLS)是一种参数
辨识方法,它使用递归算法来求解最小二乘法中的参数。
在许多领域中,例如系统辨识、自适应控制、信号处理等,递归最小二乘法都是
一个广泛使用的方法。
递归最小二乘法的基本思想是:通过递归迭代来更新参数估计值,使其逼近最优解。
在递归过程中,每一次迭代时,都会通过当前的测
量值来更新参数的估计值,同时保留历史测量值的影响,从而获得更
精确的估计值。
具体地说,在递归过程中,首先需要定义一个初始参数向量,然
后通过观测数据序列来递归更新参数向量。
假设有一个如下所示的线
性关系:
y(k) = Φ(k) * θ + v(k)
其中,y(k)是被观测到的输出值,Φ(k)是与该输出值相关的输入
向量,θ是待辨识的参数向量,v(k)是误差项。
递归最小二乘法的目
标就是通过观测数据来估计θ的值。
在递归最小二乘法中,首先需要定义一个初始的参数向量θ0,然后通过数据序列递归地更新θ的值。
每一次迭代时,都会用最新的观测数据来更新参数向量,使得估计值更接近真实值。
具体来说,每次观测到新的数据之后,都会根据当前参数估计值和新的观测值来计算估计误差,并更新参数向量。
具体的迭代步骤如下:
1.从数据序列中读取观测值y(k)和输入向量Φ(k);
2.计算估计值y(k)hat和估计误差e(k):
y(k)hat = Φ(k) * θ(k-1)
e(k) = y(k) - y(k)hat
3.计算卡尔曼增益K(k)和参数估计值θ(k):
K(k) = P(k-1) * Φ(k) / (λ + Φ(k)' * P(k-1) * Φ(k))
θ(k) = θ(k-1) + K(k) * e(k)
其中,P(k-1)是先前迭代步骤中的误差协方差矩阵,λ是一个小的正数,用于确保逆矩阵的存在性。
需要注意的是,递归最小二乘法的计算量相对较大,因此通常需要对算法进行优化,以提高计算效率和精度。
例如,可以使用矩阵分解等技术来简化计算过程,同时也可以使用增量式计算来避免重复计算。