重积分_期末复习题_高等数学(下册)_(上海电机学院)
第二学期高数(下)期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1 一、 填空题(每空 3 分,共 15 分) 1。
设()=⎰22t xFx e dt ,则()F x '=-22x xe。
2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:()(),,-+⎰⎰⎰⎰12330010xdy f x y dx dy f x y dx=(),-⎰⎰2302xx dx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰D LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5。
级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1。
当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0; B 。
等于13;C. 等于14; D 。
不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件; C 。
必要但非充分条件; D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA 。
e ;B 。
()+e dx dy ;C 。
()-+1e dx dy ; D. ()+x e dx dy .4。
若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA 。
绝对收敛; B.条件收敛; C 。
发散; D.收敛性不确定。
5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3x ae ; B 。
多元函数微分法和应用期末复习试题高等数学(下册)(上海电机学院)

多元函数微分法和应⽤期末复习试题⾼等数学(下册)(上海电机学院)第⼋章偏导数与全微分⼀、选择题1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x xuxy =??=则=??=2x y y u [A ] A. 21-B. 21C. -1D. 12.函数62622++-+=y x y x z [ D ]A. 在点(-1, 3)处取极⼤值B. 在点(-1, 3)处取极⼩值C. 在点(3, -1)处取极⼤值D. 在点(3, -1)处取极⼩值3.⼆元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ]A. 充分⽽⾮必要条件B.必要⽽⾮充分条件C.充分必要条件D.既⾮充分也⾮必要条件4. 设u=2x +22y +32z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)⽅向的导数=??lu[ D ] A.635 B.635- C.335 D. 335- 5. 函数xy y x z 333-+= [ B ]A. 在点(0, 0)处取极⼤值B. 在点(1, 1)处取极⼩值C. 在点(0, 0), (1, 1)处都取极⼤值 D . 在点(0, 0), (1, 1)处都取极⼩值 6.⼆元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分⽽⾮必要条件 B.必要⽽⾮充分条件 C.充分必要条件D.既⾮充分也⾮必要条件 7. 已知)10(0sin <<=--εεx y y , 则dxdy= [ B ] A. y cos 1ε+ B.y cos 11ε- C. y cos 1ε- D. ycos 11ε+8. 函数yx xy z 2050++= (x>0,y>0)[ D ] A. 在点(2, 5)处取极⼤值 B. 在点(2, 5)处取极⼩值C.在点(5, 2)处取极⼤值D. 在点(5, 2)处取极⼩值9.⼆元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要⽽⾮充分条件 B. 充分⽽⾮必要条件 C.充分必要条件 D.既⾮充分也⾮必要条件10. 曲线x=t, y=2t -, z=3t 所有切线中与平⾯x+2y+z=4平⾏的切线有 [ B ] A. 1 条 B.2条 C. 3条 D.不存在 11.设22(,)xy f x y y x =-,则(,)x yf y x= B A. 42xyy x - B. 2244x y y x - C. 2244x y y x +- D. 2244y x y x --12.为使⼆元函数(,)x yf x y x y+=-沿某⼀特殊路径趋向(0,0)的极限为2,这条路线应选择为 B A.4x y = B. 3x y = C. 2x y = D. 23x y = 13.设函数(,)z f x y =满⾜222zy=,且(,1)2f x x =+,(,1)1y f x x '=+,则(,)f x y =BA.2(1)2y x y +++ B. 2(1)2y x y +-+ C. 2(1)2y x y +-- D. 2(1)2y x y ++- 14.设(,)32f x y x y =+,则(,(,))f xy f x y = CA.344xy x y ++B. 2xy x y ++C. 364xy x y ++D. 346xy x y ++15.为使⼆元函数222(,)xy f x y x y=+在全平⾯连续,则它在(0,0)处应被补充定义为 B A.-1 B.0 C.1 D. 16.已知函数2 2(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y+= C A.22x y - B. 22x y + C. x y + D. x y -17.若()yf x=(0)x >,则()f x =BC.x18.若xz y =,则在点 D 处有z z y x= A.(0,1) B.(,1)e C.(1,)e D. (,)e e19.设2y z x =,则下列结论正确的是 AA.220z z x y y x ??-= B. 220z zx y y x ??-> C.220z zx y y x-0(,)11sin sin ,0xy f x y x y xy y x =??=?+≠??,则极限00lim (,)x y f x y →→( C ). (A) 等于1 (B) 等于2 (C) 等于0 (D) 不存在 21.函数z xy =在点(0,0) ( D ).(A) 有极⼤值 (B) 有极⼩值 (C) 不是驻点 (D) ⽆极值 22.⼆元函数z =在原点(0,0)处( A ).(A) 连续,但偏导不存在 (B) 可微(C) 偏导存在,但不连续 (D) 偏导存在,但不可微23.设()u f r =,⽽r =,()f r 具有⼆阶连续导数,则222222u u ux y z++=( B ).(A) 1''()'()f r f r r +(B) 2''()'()f r f r r+ (C) 211''()'()f r f r r r + (D) 212''()'()f r f r r r+24.函数(,)z f x y =在点00(,)x y 处连续是它在该点偏导存在的( D ). (A) 必要⽽⾮充分条件 (B) 充分⽽⾮必要条件(C) 充分必要条件 (D) 既⾮充分⼜⾮必要条件 25.函数221z x y =--的极⼤值点是( D ).(A) (1,1) (B) (1,0) (C) (0,1) (D) (0,0)26.设(,)f x y =(2,1)x f '=(B ).(A) 14 (B) 14- (C) 12 (D) 12-27.极限24200lim x y x y x y →→+( B ).(A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0及1228.(,)z f x y =若在点000(,)P x y 处的两个⼀阶偏导数存在,则(B ). (A) (,)f x y 在点0P 连续 (B) 0(,)z f x y =在点0x 连续 (C) 00||P P z zdz dx dy x y ??=+ (D) A,B,C 都不对 29. 设函数y x z =,则z d =( A ). (A).y x x x yxy y d ln d 1+- (B).y x x yx y y d d 1+-(C).y x x x x yy d ln d + (D).y y x x yxy y d ln d 1+-30. 已知=??===y zxy v y x u v u z 则 ,,,ln 2( C )(A )y x xy y x 3232ln 2+ (B )y xxy y x 3232ln 2-(C )y x xy y x 3232ln 2+- (D )y x xy y x 22ln 2+31.函数z=22y x 1--的定义域是( D )(A.) D={(x,y)|x 2+y 2=1}(B.)D={(x,y)|x 2+y 2≥1}(C.) D={(x,y)|x 2+y 2<1}(D.)D={(x,y)|x 2+y 2≤1}32.设22),(yx xyy x f +=,则下列式中正确的是( C );)A ( ),(,y x f x y x f =??; )B (),(),(y x f y x y x f =-+;)C ( ),(),(y x f x y f =; )D ( ),(),(y x f y x f =-33.设e cos xz y =,则=yx z2( D );)A ( e sin x y ; )B ( e e sin x x y +;)C ( e cos xy -; )D ( e sin xy -34.已知22),(y x y x y x f -=-+,则x f ??=??+yf ( C ); )A ( y x 22+; )B ( y x -; )C ( y x 22- )D ( y x +.35. 设y xy x z 2232-+=,则=y x z( B )(A )6 (B )3 (C )-2 (D )2.36.设()==?x zy x y x f z 00, ,,则( B )(A )()()x y x f y y x x f x ?-?+?+→?00000,,lim(B )()()x y x f y x x f x ?-?+→?0000,,lim(C )()()x y x f y x x f x ?-?+→?00000,,lim (D )()x y x x f x ??+→?000,lim37. 设由⽅程0=-xyz e z确定的隐函数()==x zy x f z 则,,( B )(A )z z+1 (B )()1-z x z (C )()z x y +1 (D )()z x y -138. ⼆次函数 11)4ln(2222-++--=y x y x z 的定义域是( D )A. 1 < 22y x + ≤ 4;B. –1 ≤ 22y x + < 4; C. –1 ≤ 22y x + ≤ 4; D. 1 < 22y x + < 4。
高等数学同济版下册期末考四套试题及答案

高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程x yx y dx dy tan +=的通解为 。
7、方程04)4(=-y y的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰212sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
重积分_期末复习题_高等数学下册_(上海电机学院)

第九章 重积分一、选择题1.I=222222(),:1x y z dv x y z Ω++Ω++=⎰⎰⎰球面内部, 则I= [ C ]A. ⎰⎰⎰ΩΩ=dv 的体积 B.⎰⎰⎰142020sin dr r d d θϕθππ C. ⎰⎰⎰104020sin dr r d d ϕϕθππ D. ⎰⎰⎰14020sin dr r d d θϕθππ 2. Ω是x=0, y=0, z=0, x+2y+z=1所围闭区域, 则⎰⎰⎰Ω=xdxdydz [ B ]A. ⎰⎰⎰---y x x dz x dy dx 21021010B. ⎰⎰⎰---yx x dz x dy dx 21021010 C. ⎰⎰⎰-1210210dz x dx dy y D. ⎰⎰⎰---y x y dz x dx dy 21021010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ](A )()()1cos d d 2d d DD xy x xy x y xy x y +=⎰⎰⎰⎰(B )()()()1cos d d 2cos d d DD xy x xy x y x xy x y +=⎰⎰⎰⎰(C )()()1cos d d 2(cos())d d DD xy x xy x y xy x xy x y +=+⎰⎰⎰⎰(D )()()cos d d 0Dxy x xy x y +=⎰⎰4. Ω:1222≤++z y x , 则⎰⎰⎰Ω=++++++dxdydz z y x z y x z 1)1ln(222222 [ C ]A. 1B. πC. 0D. 34π 5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则Dxy d σ=⎰⎰DA.220sin cos a d r dr πθθθ⎰⎰ B. 300sin cos ad r dr πθθθ⎰⎰C. 3(sin cos )ad r dr πθθθ-⎰⎰ D. 3200sin cos a d r dr πθθθ⎰⎰-302sin cos ad r dr ππθθθ⎰⎰6.设,010,()()0,a x a f x g x ≤≤⎧>==⎨⎩其余,D 为全平面,则()()D f x g y x dxdy -=⎰⎰ CA.aB. 212a C. 2a D.+∞7.积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可写为 DA. 100(,)dy f x y dx ⎰B. 100(,)dy f x y dx ⎰ B. 11(,)dx f x y dy ⎰⎰D. 10(,)dx f x y dy ⎰8.交换二次积分22(,)x dx f x y dy ⎰⎰的积分顺序为( A ).(A) 420(,)dy f x y dx ⎰(B) 400(,)dy f x y dx ⎰(C) 242(,)xdy f x y dx ⎰⎰(D) 42(,)dy f x y dx ⎰9.设平面区域D 由140,0,,1x y x y x y ==+=+=围成,若31[ln()],DI x y dxdy =+⎰⎰32(),DI x y dxdy =+⎰⎰ 33[sin()],DI x y dxdy =+⎰⎰ 则123,,I I I 的大小顺序为( C ).(A) 123I I I << (B) 321I I I << (C) 132I I I << (D) 312I I I << 10.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 11.设积分区域D 由||,||(0)x a y a a ==>围成,则Dxydxdy =⎰⎰( C ).(A)1 (B) 14 (C) 0 (D) A, B, C 都不对12.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 13.把二次积分2210x y dx dy +⎰化为极坐标形式的二次积分(B ).(A) 221r d re dr πθ⎰⎰ (B) 2221r d re dr ππθ-⎰⎰(C) 22210r d e dr ππθ-⎰⎰ (D) 22100r d e dr πθ⎰⎰14. 设积分区域D 是由直线y=x,y=0,x=1围成,则有⎰⎰=Ddxdy ( A )(A )⎰⎰x dydx 01(B )⎰⎰ydxdy 01(C )⎰⎰01xdydx (D )⎰⎰yxdxdy 115. 设D 由1,2,===y x y x y 围成,则⎰⎰=D dxdy ( B )(A )21 (B )41 (C )1 (D )2316.根据二重积分的几何意义,下列不等式中正确的是( B );(A) D x D,0d )1(⎰⎰>-σ:x ≤1,y ≤1;(B) D x D,0d )1(⎰⎰>+σ:x ≤1,y ≤1;(C) D y x D,0d )(22⎰⎰>--σ:22y x +≤1;(D) D y x D,0d )ln(22⎰⎰>-σ:x +y ≤117.=+⎰⎰y x y x Dd d 22( C ),其中D :1≤22y x +≤4;(A) 2π421d d r r θ⎰⎰; (B) 2π41d d r r θ⎰⎰;(C) 2π221d d r r θ⎰⎰; (D) 2π201d d r r θ⎰⎰18. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )2 19. dxdy y x y x ⎰⎰≤++132222的值等于( A )A. π43;B. π76;C. π56;D. π2320. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )221. 设D 是区域(){}()π8 ,|,22222=⎰⎰+≤+dxdy y x a y xy x D 又有,则a=( B )(A )1 (B )2 (C )4 (D )822. 若D 是平面区域(){}e y x y x ≤≤≤≤1 ,10|,,则二重积分=⎰⎰dxdy y xD ( B )(A )2e (B )21(C )e (D )123. 设D 由1,2,===y x y x y 围成,则⎰⎰=Ddxdy ( B )(A )21 (B )41 (C )1 (D )23二、填空题 1.变换积分次序(,)f x y dx =1(,)(,)f x y dy f x y dy +2.比较大小:其中D 是以(0,0),(1,1),(1,1)-为顶点的三角形 22()Dx y dxdy -⎰⎰< D3.变换积分次序 2142(,)ydy f x y dx -=⎰⎰1411(,)(,)dx f x y dy dx f x y dy +⎰⎰⎰4.交换二次积分的积分次序()2211,x dx f x y dy ⎰⎰=()421,dy f x y dx ⎰5. 交换 dx e dy yx ⎰⎰1012的积分次序后的积分式为210xx dx dy e ⎰⎰,其积分值为()112e - 6、交换二次积分的积分次序后,)(1010y x ,f dx x⎰⎰-dy=⎰⎰-1010),(ydx y x f dy7、交换二次积分的次序⎰⎰-=ax ax xdy y x f dx 022),(0(,)a ya dy f x y dx ⎰⎰三、计算与证明1. 计算⎰⎰Ddxdy xy 2, 其中D 是抛物线2y =2x 与直线x=21所围闭区域 解:⎰⎰Ddxdy xy 2=⎰⎰--11212122y dx xy dy=⎰--1162)8181(dy y y=2112. 计算I=⎰⎰+Ddxdy y x 22sin , D={(x, y)22224ππ≤+≤y x }解:令x=rcos θ, y=rsin θ则I=⎰⎰πππθ220sin rdr r d=26π-3. 设G(x)在10≤≤x 上有连续的)(''x G , 求I=dxdy y x xyG D⎰⎰+)(22'', 其中D 为122≤+y x 的第一象限部分解:在极坐标下计算积分,D={(r,θ)20,10πθ≤≤≤≤r }I=θθθ⎰⎰Drdrd r G r )(cos sin 2''2=⎰⎰202''13)(cos sin πθθθdr r G r d=dr r G r )(212''103⎰ =du u G u )(41''1⎰ =)]1(0)1([41'G G G -+)( 4.xy dxdy Ω⎰⎰,其中Ω是以a 为半径,坐标原点为圆心的圆。
高数重积分总习题

重积分总复习题一 判 断1.若(,)f x y 在D 上的二重积分存在,则必定有(,)(,)DDf x y d f x y d σσ≤⎰⎰⎰⎰( )2.111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰. ( )二 填空题1.改换二次积分的积分次序⎰⎰yy dx y x f dy 2202),(= .2.化2220)adx x y dy +⎰为极坐标形式下的二次积分为 .3.将极坐标系下的二重积分化为直角坐标系下的二重积分21(cos ,sin )d f r r rdr πθθθ⋅=⎰⎰ ___________________4.二次积分2xdx f dy ⎰的极坐标形式的二次积分为 .5.交换二次积分201111(,)(,)xxdx f x y dy dx f x y dy --+⎰⎰⎰⎰的积分次序为 .三 选择题1.设区域D :221x y +≤,f 是域D 上的连续函数,则22()Df xy dxdy +=⎰⎰( )A.12()rf r dr π⎰B .104()rf r dr π⎰ C.122()rf r dr π⎰ D.04()rrf r dr π⎰2.设4(,)xI dx f x y dy =⎰⎰,交换积分次序,得( )A.24104(,)y y dy f x y dx ⎰⎰ B.21440(,)y ydy f x y dx -⎰⎰C.44104(,)dy f x y dx ⎰⎰ D.20144(,)y y dy f x y dx ⎰⎰3.设积分区域D 由x 轴,y 轴及直线1x y +=围成,则二重积分(,)Df x y d σ⎰⎰化为累次积分后为( ).A.10dx ⎰1(,)0x f x y dy -⎰. B.10x dy -⎰1(,)0f x y dx ⎰. C.10dx ⎰1(,)0f x y dy ⎰.D.10dy ⎰1(,)0f x y dx ⎰.4.),(z y x f =在有界闭区域D 上连续是二重积分σd ),(D⎰⎰y x f 存在的( )条件。
上海电机学院高等数学考试及答案

上海电机学院高等数学考试及答案一、选择题(10分)1在yoz 坐标面上,求与三个点A(3,1,2),B(4,-2,-2),C(0,5,-1)等距离的点的坐标( )(若C 为(0,5,1)就选B ) A(0,1,-1) B(0,1,-2) C(1,0,-2) D(1,-2,0)2.直线341222--=+=-z y x 与平面x+y+z=4的关系是( A )A 直线在平面上B 平行C 垂直D 三者都不是 3.考虑二元函数f (x,y )的下面四条性质 (1)f(x,y)在点(x 0,y 0)连续(2)f x (x,y )、f y (x,y)在点(x 0,y 0)连续. (3)f(x,y)在点(x 0,y 0)可微分(4)f x (x 0,y 0)、f y (x 0,y 0)存在若用“P →Q ”表示可由性质P 推出性质Q ,则下列四个选项中正确的是( A )A (2)→(3)→(1)B (3)→(2)→(1)C (3)→(4)→(1)D (3)→(1)→(4) 4.设f (x,y )在点(x 0,y 0)处存在偏导,则limℎ→0f (x 0+2ℎ,y 0)−f(x 0−ℎ,y 0)ℎ=( D )A.0B.f x (x 0,y 0)C.2f x (x 0,y 0)D.3f x (x 0,y 0)二、填空题(40分)1.两平行平面2x-3y+4z+9=0与2x-3y+4z-15=0的距离是_√29__。
2.求过点P(2,1,3)且与直线l:X+13=y−12=z−1垂直相交的直线方程__x−22=y−1−1=z−34__________。
3.xoz平面上曲线z=e x(x>0)绕x轴旋转所得旋转曲面方程为___+−√y2+z2=e x_________。
4球面z=√4−x2−y2与锥面z=√3(x2+y2)的交线在xoy面上的投影曲面方程为__{x2+y2=1z=0_________。
5.设u=f(x,xy,xyz),f可微,则∂u∂x=__f'1+yf'2+yzf'3_____6.求z=√xy 的全微分dz=__12√xydx−√xy2y2dy________。
(完整版)曲线积分与曲面积分期末复习题高等数学下册(上海电机学院)

第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
高等数学(同济)下册期末考试题及答案(5套)之欧阳育创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为。
7、方程04)4(=-y y 的通解为。
8、级数∑∞=+1)1(1n n n 的和为。
二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 重积分一、选择题1.I=222222(),:1x y z dv x y z Ω++Ω++=⎰⎰⎰球面部, 则I= [ C ]A. ⎰⎰⎰ΩΩ=dv 的体积 B.⎰⎰⎰142020sin dr r d d θϕθππ C. ⎰⎰⎰104020sin dr r d d ϕϕθππ D. ⎰⎰⎰14020sin dr r d d θϕθππ 2. Ω是x=0, y=0, z=0, x+2y+z=1所围闭区域, 则⎰⎰⎰Ω=xdxdydz [ B ]A. ⎰⎰⎰---y x x dz x dy dx 21021010B. ⎰⎰⎰---yx x dz x dy dx 21021010 C. ⎰⎰⎰-1210210dz x dx dy y D. ⎰⎰⎰---y x y dz x dx dy 21021010 3. 设区域D 由直线,y x y x ==-和1x =所围闭区域,1D 是D 位于第一象限的部分,则[B ](A )()()1cos d d 2d d DD xy x xy x y xy x y +=⎰⎰⎰⎰(B )()()()1cos d d 2cos d d DD xy x xy x y x xy x y +=⎰⎰⎰⎰(C )()()1cos d d 2(cos())d d DD xy x xy x y xy x xy x y +=+⎰⎰⎰⎰(D )()()cos d d 0Dxy x xy x y +=⎰⎰4. Ω:1222≤++z y x , 则⎰⎰⎰Ω=++++++dxdydz z y x z y x z 1)1ln(222222 [ C ]A. 1B. πC. 0D. 34π 5.222{(,),0}D x y x y a y =+≤≥,其中0a >,则Dxy d σ=⎰⎰DA.220sin cos a d r dr πθθθ⎰⎰ B. 300sin cos ad r dr πθθθ⎰⎰C. 3(sin cos )ad r dr πθθθ-⎰⎰ D. 3200sin cos a d r dr πθθθ⎰⎰-302sin cos ad r dr ππθθθ⎰⎰6.设,010,()()0,a x a f x g x ≤≤⎧>==⎨⎩其余,D 为全平面,则()()D f x g y x dxdy -=⎰⎰ CA.aB. 212a C. 2a D.+∞7.积分cos 20(cos ,sin )d f r r rdr πθθθθ⎰⎰可写为 DA. 100(,)dy f x y dx ⎰B. 100(,)dy f x y dx ⎰ B. 11(,)dx f x y dy ⎰⎰D. 10(,)dx f x y dy ⎰8.交换二次积分22(,)x dx f x y dy ⎰⎰的积分顺序为( A ).(A) 420(,)dy f x y dx ⎰(B) 400(,)dy f x y dx ⎰(C) 242(,)xdy f x y dx ⎰⎰(D) 42(,)dy f x y dx ⎰9.设平面区域D 由140,0,,1x y x y x y ==+=+=围成,若31[ln()],DI x y dxdy =+⎰⎰32(),DI x y dxdy =+⎰⎰ 33[sin()],DI x y dxdy =+⎰⎰ 则123,,I I I 的大小顺序为( C ).(A) 123I I I << (B) 321I I I << (C) 132I I I << (D) 312I I I << 10.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 11.设积分区域D 由||,||(0)x a y a a ==>围成,则Dxydxdy =⎰⎰( C ).(A)1 (B) 14 (C) 0 (D) A, B, C 都不对12.221x y ≤+≤⎰⎰的值 ( B ).(A) 大于零 (B) 小于零 (C) 0 (D) 不能确定 13.把二次积分2210x y dx dy +⎰化为极坐标形式的二次积分(B ).(A) 221r d re dr πθ⎰⎰ (B) 2221r d re dr ππθ-⎰⎰(C) 22210r d e dr ππθ-⎰⎰ (D) 22100r d e dr πθ⎰⎰14. 设积分区域D 是由直线y=x,y=0,x=1围成,则有⎰⎰=Ddxdy ( A )(A )⎰⎰x dydx 01(B )⎰⎰ydxdy 01(C )⎰⎰01xdydx (D )⎰⎰yxdxdy 115. 设D 由1,2,===y x y x y 围成,则⎰⎰=D dxdy ( B )(A )21 (B )41 (C )1 (D )2316.根据二重积分的几何意义,下列不等式中正确的是( B );(A) D x D,0d )1(⎰⎰>-σ:x ≤1,y ≤1;(B) D x D,0d )1(⎰⎰>+σ:x ≤1,y ≤1;(C) D y x D,0d )(22⎰⎰>--σ:22y x +≤1;(D) D y x D,0d )ln(22⎰⎰>-σ:x +y ≤117.=+⎰⎰y x y x Dd d 22( C ),其中D :1≤22y x +≤4;(A) 2π421d d r r θ⎰⎰; (B) 2π41d d r r θ⎰⎰;(C) 2π221d d r r θ⎰⎰; (D) 2π201d d r r θ⎰⎰18. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )219. dxdy y x y x ⎰⎰≤++132222的值等于( A )A. π43;B. π76;C. π56;D. π2320. 二重积分⎰⎰=≤≤≤≤1010y x xydxdy ( C )(A )1 (B )21 (C )41(D )221. 设D 是区域(){}()π8 ,|,22222=⎰⎰+≤+dxdy y x a y xy x D 又有,则a=( B )(A )1 (B )2 (C )4 (D )822. 若D 是平面区域(){}e y x y x ≤≤≤≤1 ,10|,,则二重积分=⎰⎰dxdy y xD ( B )(A )2e (B )21(C )e (D )1 23. 设D 由1,2,===y x y x y 围成,则⎰⎰=Ddxdy ( B )(A )21 (B )41 (C )1 (D )23二、填空题 1.变换积分次序(,)f x y dx =1(,)(,)f x y dy f x y dy +2.比较大小:其中D 是以(0,0),(1,1),(1,1)-为顶点的三角形 22()Dx y dxdy -⎰⎰< D3.变换积分次序 2142(,)ydy f x y dx -=⎰⎰1411(,)(,)dx f x y dy dx f x y dy +⎰⎰⎰4.交换二次积分的积分次序()2211,x dx f x y dy ⎰⎰=()421,dy f x y dx ⎰5. 交换 dx e dy yx ⎰⎰1012的积分次序后的积分式为210xx dx dy e ⎰⎰,其积分值为()112e - 6、交换二次积分的积分次序后,)(1010y x ,f dx x⎰⎰-dy=⎰⎰-1010),(ydx y x f dy7、交换二次积分的次序⎰⎰-=ax ax xdy y x f dx 022),(0(,)a ya dy f x y dx ⎰⎰三、计算与证明1. 计算⎰⎰Ddxdy xy 2, 其中D 是抛物线2y =2x 与直线x=21所围闭区域 解:⎰⎰Ddxdy xy 2=⎰⎰--11212122y dx xy dy=⎰--1162)8181(dy y y=2112. 计算I=⎰⎰+Ddxdy y x 22sin , D={(x, y)22224ππ≤+≤y x }解:令x=rcos θ, y=rsin θ则I=⎰⎰πππθ220sin rdr r d=26π-3. 设G(x)在10≤≤x 上有连续的)(''x G , 求I=dxdy y x xyG D⎰⎰+)(22'', 其中D 为122≤+y x 的第一象限部分解:在极坐标下计算积分,D={(r,θ)20,10πθ≤≤≤≤r }I=θθθ⎰⎰Drdrd r G r )(cos sin 2''2=⎰⎰202''13)(cos sin πθθθdr r G r d=dr r G r )(212''103⎰ =du u G u )(41''1⎰ =)]1(0)1([41'G G G -+)( 4.xy dxdy Ω⎰⎰,其中Ω是以a 为半径,坐标原点为圆心的圆。
解:xy dxdy Ω⎰⎰=aadx dy -⎰=22()aaa x x dx --⎰=2202()aa x xdx -⎰(1分)=42a5.22224x y ππ≤+≤⎰⎰解:22224x y ππ≤+≤⎰⎰=220sin d r rdr πππϕ⎰⎰=22sin r rdr πππ⎰=26π- 6.222()xy z ze dxdydz -++Ω⎰⎰⎰,其中Ω为球体2221x y z ++≤在0z ≥上的部分。
解:利用球面坐标变换sin cos sin sin cos x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩,Ω对应于1{(,,)02,01,0}2r r πϕθθπϕΩ=≤≤≤≤≤≤故222()xy z ze dxdydz -++Ω⎰⎰⎰=213sin cos r r e drd d ϕϕϕθ-Ω⎰⎰⎰=22132000sin cos r d r e dr d ππθϕϕϕ-⎰⎰⎰=11()2eπ-7.计算重积分211y xI dx e dy -=⎰⎰的值。
解:210(2)yy I dy edx -=⎰⎰分222100110()|(2)1|211(1)(1)2y yy y xe dy ye dy e e---===-=-⎰⎰分分8.计算三重积分222()x y z dv Ω++⎰⎰⎰,其中222:2x y z z Ω++≤。
解:Ω的边界曲面方程2222x y z z ++≤用球面坐标表示:22cos r r ϕ=,即2cos r ϕ=。
Ω为:02,0,02cos 2r πθπϕϕ≤≤≤≤≤≤,于是22222cos 2222200022cos 2200050()sin (2)sin 322sin cos 532(3).15x y z dv d d r r dr d d r r drd ππππϕπϕθϕϕθϕϕπϕϕϕπΩ++===⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰分分9.证明:000()().a yaa xa x dy ef x dx xe f a x dx --=-⎰⎰⎰证明:左边0()(2)a aa x xdx e f x dy -=⎰⎰分()()()(3)()(3)aa x a x uu aax e f x a x dxe f a u udu xe f a x dx --==---=-⎰=⎰⎰令分分=右边所以原式得证。