高等数学期末考试试题及答案(大一考试)
北华大学高等数学期末考试试卷(含答案)

北华大学高等数学期末考试试卷(含答案)一、高等数学选择题1.点是函数的间断点.A、正确B、不正确【答案】A2.设函数,则().A、B、C、D、【答案】D3. ( ).A、B、C、D、【答案】D4.函数的图形如图示,则函数( ).A、有一个极大值B、有两个极大值C、有四个极大值D、没有极大值【答案】A5.极限().A、B、C、D、【答案】C6.设函数,则().A、B、C、D、【答案】A7.函数的图形如图示,则是函数的( ).A、极小值点也是最小值点B、极小值点但非最小值点C、最大值点D、极大值点【答案】A8.微分方程的通解是().A、B、C、D、【答案】A一、一选择题9.函数的定义域为.A、正确B、不正确【答案】A10. ( ).A、B、C、D、【答案】B11.函数的图形如图示,则是函数的( ).A、最大值点B、极大值点C、极小值点也是最小值点D、极小值点但非最小值点【答案】C12.不定积分 ( ).A、B、C、D、【答案】A13.曲线在点处切线的方程为().A、B、C、D、【答案】D14..A、正确B、不正确【答案】B15.函数的定义域为.A、正确B、不正确【答案】B。
安徽大学高等数学期末考试试卷(含答案)

安徽大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1.设函数,则.
A、正确
B、不正确
【答案】B
2.是微分方程.
A、正确
B、不正确
【答案】A
3.是偶函数.
A、正确
B、不正确
【答案】B
4.不定积分.
A、正确
B、不正确
【答案】B
5.极限.
A、正确
B、不正确
【答案】A
6.函数的单调减少区间是().
A、
B、
C、
D、
【答案】D
7.极限.
A、正确
B、不正确
【答案】A
8.是偶函数.
A、正确
B、不正确
【答案】B
9. ( ).
A、
B、
C、
D、
【答案】B
10.函数的图形如图示,则是函数的
( ).
A、最大值点
B、极大值点
C、极小值点也是最小值点
D、极小值点但非最小值点
【答案】C
11.().
A、
B、
C、
D、
【答案】B
12.曲线在点处切线的方程为().A、
B、
C、
D、
【答案】D
13.函数在点处连续.
A、正确
B、不正确
【答案】A
14.定积分.
A、正确
B、不正确
【答案】B
15.函数的导数.
A、正确
B、不正确
【答案】B。
大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及(Ji)答案详解一、选择题(Ti)(共12分)1. (3分(Fen))若为连续函(Han)数,则的(De)值为( ).(A)1 (B)2 (C)3 (D)-12. (3分(Fen))已知则(Ze)的(De)值为().(A)1 (B)3 (C)-1 (D)3. (3分)定积分的值为().(A)0 (B)-2 (C)1 (D)2f x在该点处( ).4. (3分)若在处不连续,则()(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分)平面上过点,且在任意一点处的切线斜率为的曲线方程为 .2. (3分) .3. (3分)= .4. (3分)的极大值为 .三、计算题(共42分)1.(6分)求2.(6分)设求3.(6分)求(Qiu)不定积分4.(6分(Fen))求其(Qi)中5.(6分)设函(Han)数由方(Fang)程所(Suo)确定,求6.(6分(Fen))设求(Qiu)7.(6分)求极限四、解答题(共28分)1.(7分)设且求2.(7分)求由曲线与轴所围成图形绕着x轴旋转一周所得旋转体的体积.3.(7分)求曲线在拐点处的切线方程.4.(7分)求函数在上的最小值和最大值.五、证明题(6分)设在区间上连续,证明标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 2 3 0; 4 0.三、 1 解原式 5分1分2解 2分4分(Fen)3 解原(Yuan)式 3分(Fen)2分(Fen)1分(Fen)4解(Jie) 令则(Ze) 2分1分(Fen)1分1分1分5两边求导得 2分1分1分2分6解 2分4分7解原式= 4分= 2分四、1 解令则 3分= 2分2分1分2解(Jie) 3分(Fen)2分(Fen)2分(Fen)3解(Jie) 1分(Fen)令(Ling)得(De) 1分当时,当时, 2分为拐点, 1分该点处的切线为 2分4解 2分令得 1分2分最小值为最大值为 2分五、证明1分1分1分1分1分移项即得所证. 1分。
大一下高等数学期末试题精确答案

一 、 单选 题 ( 共1 5 分 , 每 小 题3分)1.设函数 f ( x, y) 在 P(x 0 , y 0 ) 的两个偏导 f x (x 0 , y 0 ) , f y ( x 0 , y 0 ) 都存在,则( )A . f ( x, y) 在 P 连续 B. f (x, y) 在 P 可微 C . lim f ( x, y 0 ) 及lim f (x 0 , y) 都存在D.limf ( x, y) 存在x x 0y y 0( x , y) ( x 0 , y 0 )2.若 zy ln x ,则 dz 等于().A. y ln xln yy ln x ln yB.y ln x ln yxyxC . yln xln ydxyln xln y dyD . y ln xln y dxy ln x ln x dyxxy3.设是圆柱面 x 2y 22x 及平面 z0, z 1所围成的地区,则f ( x, y, z)dxdydz ( ).A.2d2cosdr 1f ( r cos , r sin, z)dzB.2d2cosrdr1f (r cos , r sin , z)dz0 0C .2d2 cosrdr 1 , r sin , z)dz D .d2 cos xrdr1f ( r cos , r sin , z)dz 0f (r cos24.4.若a n ( x 1)n在 x 1 处收敛,则此级数在 x 2 处().n 1A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不可以确立5.曲线x y z 2) .z x 2y 2 在点( 1,1, 2)处的一个切线方向向量为(A.(-1,3,4) B.(3,-1,4) C. (-1, 0,3) D.(3, 0, -1 )二、填空题(共 15 分,每题3 分)1.设 x 2 y 2xyz 0 ,则 z x ' (1,1).2.交 换Ie dx ln xI10 f ( x, y)dy 的积分序次后, _____________________ .3.设 u2xy z 2 ,则 u 在点 M (2, 1,1) 处的梯度为.4.xx n,则 xex.已知 en!n 05. 函数 z x 3y 3 3x 2 3y 2 的极小值点是.三、解答题(共 54 分,每题 6--7分)1. (本小题满分 6 分)设 zy arctan y, 求 z, z .xxy2. (本小题满分 6 分)求椭球面 2x 23 y 2z 2 9 的平行于平面 2x 3 y 2 z 1 0 的切平面方程,并求切点处的法线方程 .3. (本小题满分7 分)求函数 z x22在点 r 1r3ry(1,2) 处沿向量 lij 方向的方导游数。
大一高等数学期末考试试卷及答案详解.

大一高等数学期末考试试卷一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-12. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h→--的值为( ). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ). (A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ).(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1. (6分)求20ln(15)lim .sin 3x x x x →+ 2. (6分)设2,1y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求30(1),f x dx -⎰其中,1,()1cos 1, 1.x x x f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0y xt e dt tdt +=⎰⎰所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bb a ab a f x dx f a f b x a x b f x dx -''=++--⎰⎰ 标准答案一、 1 B; 2 C; 3 D; 4 A.二、 1 31;y x =+ 2 2;33 0;4 0. 三、 1 解 原式205lim 3x x x x →⋅= 5分 53= 1分 2 解 22l n l n l n (1),12x y x x ==-++ 2分2212[]121x y x x '∴=-++ 4分3 解 原式221ln(1)(1)2x d x =++⎰ 3分 222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰ 2分2221[(1)ln(1)]2x x x C =++-+ 1分 4 解 令1,x t -=则 2分3201()()f x dx f t dt -=⎰⎰ 1分1211(1)1cos t t dt e dt t-=+++⎰⎰ 1分 210[]t e t =++ 1分 21e e =-+ 1分5 两边求导得cos 0,y e y x '⋅+= 2分 cos y x y e '=-1分 c o s s i n 1x x =- 1分 cos sin 1x dy dx x ∴=- 2分 6 解 1(23)(23)(22)2f x d x f x d x +=++⎰⎰ 2分21sin(23)2x C =++ 4分 7 解 原式=23323lim 12n n n ⋅→∞⎛⎫+ ⎪⎝⎭4分 =32e 2分四、1 解 令ln ,x t =则,()1,t t x e f t e '==+ 3分()(1)t f t e dt =+⎰=.t t e C ++ 2分 (0)1,0,f C =∴= 2分().x f x x e ∴=+ 1分2 解 222c o s x V xd x πππ-=⎰ 3分 2202cos xdx ππ=⎰ 2分 2.2π=2分 3 解 23624,66,y x x yx '''=-+=- 1分 令0,y ''=得 1.x = 1分当1x -∞<<时,0;y ''< 当1x <<+∞时,0,y ''> 2分 (1,3)∴为拐点, 1分该点处的切线为321(1).y x =+- 2分 4 解1y '=-= 2分 令0,y '=得3.4x = 1分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭ 2分最小值为(5)5y -=-+最大值为35.44y ⎛⎫= ⎪⎝⎭ 2分 五、证明 ()()()()()()b ba a x a xb f x x a x b df x '''--=--⎰⎰ 1分 [()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰ 1分[2()()b a x a b df x =--+⎰ 1分{}[2()]()2()b b a a x a b f x f x dx =--++⎰ 1分()[()()]2(),b a b a f a f b f x dx =--++⎰ 1分移项即得所证. 1分。
大一期末数学试题及答案

大一期末数学试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = sin(x)答案:B2. 已知函数f(x) = 2x - 1,求f(-1)的值。
A. 1B. -3C. 3D. -1答案:B3. 计算极限lim(x→0) (sin(x)/x)的值。
A. 0B. 1C. 2D. ∞答案:B4. 以下哪个选项不是二项式定理的展开式?A. (a + b)^nB. (a - b)^nC. (a + b)^2D. (a - b)^2答案:C二、填空题(每题5分,共20分)1. 设函数f(x) = x^2 - 6x + 8,求f(3)的值。
答案:-12. 计算定积分∫(0 to 1) x^2 dx。
答案:1/33. 已知向量a = (2, -3),向量b = (-4, 6),求向量a与向量b的点积。
答案:-204. 设函数g(x) = ln(x),求g'(x)。
答案:1/x三、解答题(每题10分,共60分)1. 求函数y = 3x^2 - 2x + 1的导数。
答案:y' = 6x - 22. 计算定积分∫(1 to 2) (x^3 - 2x^2 + 3) dx。
答案:(1/4 * x^4 - 2/3 * x^3 + 3x) | (1 to 2) = 4/3 3. 求函数f(x) = e^x - x^2在x = 0处的切线方程。
答案:y = 14. 已知函数f(x) = sin(x) + cos(x),求f'(x)。
答案:f'(x) = cos(x) - sin(x)5. 计算级数∑(n=1 to ∞) (1/n^2)的和。
答案:π^2/66. 求函数y = ln(x)的反函数。
答案:y = e^x。
(完整版)大一下学期高等数学期末考试试题及答案

高等数学A(下册)期末考试试题【A 卷】院(系)别班级 学号姓名成绩大题一二三四五六七小题12345得分一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,,,则.a b0a b += 2a = 2b = a b ⋅= 2、设,则.ln()z x xy =32zx y ∂=∂∂3、曲面在点处的切平面方程为.229x y z ++=(1,2,4)4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数()f x 2π[,)ππ-()f x x =()f x 在处收敛于,在处收敛于.3x =x π=5、设为连接与两点的直线段,则.L (1,0)(0,1)()Lx y ds +=⎰※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线在点处的切线及法平面方程.2222222393x y z z x y⎧++=⎪⎨=+⎪⎩0M (1,1,2)-2、求由曲面及所围成的立体体积.2222z x y =+226z x y =--3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?11(1)lnn n n n∞=+-∑4、设,其中具有二阶连续偏导数,求.(,sin x z f xy y y =+f 2,z zx x y∂∂∂∂∂5、计算曲面积分其中是球面被平面截出的顶部.,dSz ∑⎰⎰∑2222x y z a ++=(0)z h h a =<<三、(本题满分9分)抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小22z x y =+1x y z ++=值.四、(本题满分10分)计算曲线积分,(sin )(cos )x x Le y m dx e y mx dy -+-⎰其中为常数,为由点至原点的上半圆周.m L (,0)A a (0,0)O 22(0)x y ax a +=>五、(本题满分10分)求幂级数的收敛域及和函数.13nn n x n∞=⋅∑六、(本题满分10分)计算曲面积分,332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰其中为曲面的上侧.∑221(0)z x y z =--≥七、(本题满分6分)设为连续函数,,,其中是由曲面()f x (0)f a =222()[()]tF t z f xy z dv Ω=+++⎰⎰⎰t Ω与所围成的闭区域,求 .z =z =30()lim t F t t+→-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;→→不得带走试卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)注意事项:1、 满分100分。
要求卷面整洁、字迹工整、无错别字。
2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3、 考生必须在签到单上签到,若出现遗漏,后果自负。
4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。
试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分) 1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e x x )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x ⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x 。
4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导; (C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。
5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分) 1. 极限=-+→xx x 11lim20_____.2. 曲线⎩⎨⎧=+=321t y t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。
6.曲线2332x y =上相应于x 从3到8的一段弧长为 .三、设0→x 时,)(22c bx ax e x ++-是比2x 高阶的无穷小,求常数c b a ,,的值(6分))23cos(x ex x-+-,求dy .(6分)e e xy y=+确定,求22=x dx yd .(8分))x 满足关系式33)3()(30-+=⎰x dt tf x f x,求)(x f .(8七、 求下列各不定积分(每题6分,共12分) (1) ⎰-θθd )sin 1(3.(2) ⎰xdx x arctan .八、设⎪⎩⎪⎨⎧>≤+=1,211,1)(2x x x x x f 求定积分 ⎰20)(dx x f .(6分)九、讨论函数313)(x x x f -=的单调区间、极值、凹凸区间和拐点坐标.(10分)十、求方程4yx ydx dy +=的通解(6分)十一、求证:).2,0(,2sin ππ∈>x x x .(5分)第一学期高等数学(上)(A )卷参考答案及评分标准一、选择题(每题3分,共15分)1.C二、填空(每题3分,共18分) 1.0 , 2.73-=x y , 3.2,1223221()2(21c c e x x e c e c y xx x+-+=为任意常数),4. 2 , 5.k 18.0 6.328。
三、解:[]10)(202lim =∴=++-→c c bx ax ex x……….2分0)2(lim ......0)(lim 220220=--∴=++-→→x b a e xc bx ax e x x x x ……..4分 01..==∴b a ………………………………………..6分 四、解:)23sin(2)23cos(112x e x e x y x x -+---='--………4分dx x e x e x dy x x ⎥⎦⎤⎢⎣⎡-+---=∴--)23sin(2)23cos(112……….6分五、解:0=++dx dy e dx dy xy y yex ydx dy +-=∴………………3分 edxdyy x x 11,00-=∴=== 222)()1()(y y y e x y dx dy e dx dy e x dxyd ++-+-=∴…………….6分 222,0-==∴e dxyd x 时…………………….8分六、两边求导 3)(3)(+='x f x f …………..3分c ce x f x (1)(3-=∴为任意常数)…………6分3)0(,0-==f x 12)(3--=∴x e x f ………..8分七、解:(1)⎰-θθd )sin 1(3.⎰⎰-+=θθθcos )cos 1(2d d ……..3分c +-+=θθθ3cos 31cos …………………….6分 (2)⎰xdx x arctan dx x x x x ⎰+-=222121arctan 21……3分 c x x x x ++-=arctan 2121arctan 212……………….6分 八、解:⎰20)(dx x f dx x dx x 2102121)1(⎰⎰++=…….2分=38……………6分九、解,10)(32)(1)(3532±=='=''-='--x x f x x f xx f 得由 0)(='x x f 不存在(3分)2)1(2)1(0)0(==-=f f f ……………….7分(][)[].1,1,,11,)(上单减在上单增与在-∞+-∞-∴x f 1-=x 时有极大值2,,1=x 有极小值2-。
在(]0,∞-上是凸的,在[)+∞,0上是凹的,拐点为(0,0) (10)分十、解;()、的通解为对应齐次方程cy x x ydy dx y x ydy dx ==∴+=11..... (1)3…………………..3分设方程(1)的解为y y u x •=)(代入(1)得1331)(c y y u +=………5分 y c y x 1431+=∴…………………….6分 十一、证明: 令⎥⎦⎤⎢⎣⎡∈-=2,0,2sin )(ππx x x x f ………………1 分 x x f x x f sin )(,2cos )(-=''-='π又0)(),2,0(<''∈x f x π…..3分)(x f ∴ 的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。
0)2()0(==πf f ,所以0)(),2,0(>∈x f x π………….5分。
(2010至2011学年第一学期)一、 单项选择题(15分,每小题3分)1、当∞→x 时,下列函数为无穷小量的是( )(A )x Cosx x - (B )x Sinx (C )121-x (D )xx )11(+2.函数)(x f 在点0x 处连续是函数在该点可导的( ) (A )必要条件 (B )充分条件(C )充要条件 (D )既非充分也非必要条件 3.设)(x f 在),(b a 内单增,则)(x f 在),(b a 内( ) (A )无驻点 (B )无拐点 (C )无极值点 (D )0)(>'x f4.设)(x f 在][b a ,内连续,且0)()(<⋅b f a f ,则至少存在一点),(b a ∈ξ使( )成立。
(A )0=)(ξf (B )0=')(ξf(C )0='')(ξf (D ))()()()(a b f a f b f -⋅'=-ξ 5.广义积分)0(>⎰∞+a dxax p当( )时收敛。
(A )1>p (B)1<p (C)1≥p (D)1≤p二、填空题(15分,每小题3分)1、 若当0→x 时,22~11x ax --,则=a ;2、设由方程22a xy =所确定的隐函数)(x y y =,则=dy ;3、函数)0(82>+=x xx y 在区间 单减;在区间 单增;4、若x xe x f λ-=)(在2=x 处取得极值,则=λ ;5、若dx x f dx x xf a ⎰⎰=10102)()(,则=a ;三、计算下列极限。
(12分,每小题6分)1、xx xx )1(lim +∞→ 2、 200)1(lim xdte xt x ⎰-→四、求下列函数的导数(12分,每小题6分)1、241x y -=,求y ' 2、⎪⎩⎪⎨⎧-=+=tt y t x arctan )1ln(2 ,求22dx y d五、计算下列积分(18分,每小题6分)1、dx x xx ⎰+++21arctan 1 2、dx x x ⎰--223cos cos ππ3、设dt ttx f x ⎰=21sin )(,计算dx x xf ⎰10)(六、讨论函数⎪⎪⎩⎪⎪⎨⎧≤>-=2,22,cos 2)(ππππx x x x x x f 的连续性,若有间断点,指出其类型。
(7分)七、证明不等式:当0>x 时,2)1ln(2x x x ->+ (7分)八、求由曲线)1(2,4,22≥===x x y x y xy 所围图形的面积。
(7分)九、设)(x f 在]1,0[上连续,在)1,0(内可导且0)0()1(==f f .证明:至少存在一点)1,0(∈ξ使参考答案及评分标准(2010至2011学年第一学期)课程名称:高等数学一、单项选择题(15分,每小题3分)二、填空题(15分,每小题3分) 1. a=2 2.dx xy2dy -= 3. (0, 2)单减,(,+∞)单增。
4.21=λ 5. a=2 三、计算下列极限。
(12分,每小题6分1.解。
原式=()1111lim 1lim --⋅∞→-∞→=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+e x x x x x xx (6分)1.解。
原式=212lim 21lim00==-→→x x x e x x x (6分) 四、求下列函数的导数(12分,每小题6分)1 解。
()()()()分分64424214y 32232212xx x x x -=-⋅--='⎥⎦⎤⎢⎣⎡-='--2.解。