电磁感应中的电容器
剖析电磁感应中的电容器问题

难点挑战Җ㊀浙江㊀徐华兵㊀㊀电容器具有隔直流㊁通交流 的特点,可以理解为电容器具有 通变化的电流 的特点.实际教学中我们会发现学生对回路中电流变化的定量问题通常感觉难处理,本文就此类问题的解决办法进行剖析㊁归纳,以飨读者.1㊀电容器放电模型1 1㊀基础模型㊀图1如图1所示,电阻可忽略的光滑金属导轨与电动势为E 的电源相连,质量为m ㊁电阻为R的金属棒放在导轨上,一电容通过单刀双掷开关与导轨相连.先将开关扳向左侧给电容器充电,再将开关扳向右侧让电容器通过导体棒放电.1 2㊀电容器电压和电荷量变化规律当开关与左侧电源接触时,电容器充电,电容器两极板间获得一个恒定的电压,充电时间很短(数量级一般为10-6s ).稳定后电容器两端电压U =E ,电荷量Q 0=C U =C E .当开关与右侧导轨接触时,电容器通过金属棒放电,有电荷通过金属棒,棒在安培力的作用下向右加速运动.电容器两极板电荷量减少,电压减小;金属棒速度增加,感应电动势增加.当棒切割磁感线产生电动势与电容器两极板间电压相等时,棒匀速运动.电容器不再放电,两极板间电压恒定,此时电容器两极板间电压U =B l v m ,电荷量Q =C U =C B l v m .导体棒感应电动势㊁电荷量与时间关系图线如图2㊁3所示.图2㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图31 3㊀导体棒的运动规律根据牛顿第二定律有B I l =m a ,通过棒的电流逐渐减小,棒的加速度逐渐减小,棒做加速度减小的加速运动,最终以某一最大速度v m 匀速运动.对棒应用动量定理有B I l Δt =m v m -0,即有B l (C E -C B l v m )=m v m -0,解得v m =B l C Em +B 2l 2C.1 4㊀电路中的能量转化规律放电过程,电容器储存的电场能减少,棒的动能增加,而系统整个过程中的总能量应守恒.棒获得的动能E k m =12m v 2m =m (B l C E)22(m +B 2l 2C )2.电容器减少的能量ΔE =12C E 2-12C (B L v m )2=C E 2(m 2+2m B 2l 2C )2(m +B 2l 2C )2.从能量表达式中可以看出,电容器减少的能量比棒获得的能量要多,多余的能量转化为整个回路产生的热量和回路向外辐射的电磁波.而回路产生的热量和电磁辐射能E 损=ΔE -E k m =C E 2(m 2+2m B 2l 2C )2(m +B 2l 2C )2-m (B l C E )22(m +B 2l 2C )2=C E 2m2(m +B 2l 2C ).1 5㊀典型例题剖析例1㊀电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器.电磁轨道炮原理图如图4所示,图中直流电源电动势为E ,电容器的电容为C .2根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计.炮弹可视为一质量为m ㊁电阻为R 的金属棒MN ,垂直放在2个导轨间处于静止状态,并与导轨良好接触.首先开关S 接1,使电容器完全充电.然后将S 接至2,导轨间存在垂直于导轨平面㊁磁感应强度大小为B 的匀强磁场(图中未画出),MN 开始向右加速运动.求:(1)磁场的方向;(2)MN 刚开始运动时加速度a 的大小;(3)MN 离开导轨后电容器上剩余的电荷量Q .图4当开关拨向2时,电容器通过金属棒放电,金属棒在磁场中做加速度减小的加速运动,当金属棒MN 两端的电压和电容器两极板间的电压相等时,金属棒达到最大速度.(1)由左手定则可以判断磁场方向应垂直于导轨平面向下.(2)电容器完全充电后,两极板间电压为E ,当开。
物理实验技术中的电磁场测量与调整方法

物理实验技术中的电磁场测量与调整方法电磁场是物理实验中经常需要测量和调整的重要参数之一。
对于电磁场的准确测量和精确调整,不仅对于实验的可靠性和精确性起着至关重要的作用,而且对于理解和探索电磁现象也具有重要意义。
本文将介绍一些常见的电磁场测量和调整方法,以及它们在物理实验技术中的应用。
首先,我们来讨论电磁场测量的一些方法。
常用的电磁场测量仪器包括磁力计、霍尔元件、电磁感应电压计等。
磁力计是一种测量磁场强度的传感器,通过测量磁场对磁性材料产生的力来确定磁场强度。
霍尔元件是一种基于霍尔效应的测量仪器,可以测量磁场的强度和方向。
电磁感应电压计则是利用电磁感应原理来测量磁场强度的仪器。
这些仪器可以测量静态磁场,也可以测量变化的磁场。
在实际测量中,我们需要考虑一些误差源对测量结果的影响。
例如,磁力计在测量时可能受到外界磁场的干扰,导致测量结果偏离真实值。
为了减小这种干扰,可以采用屏蔽技术,例如使用镍铁合金材料来屏蔽外界磁场。
另外,磁力计的灵敏度也是一个重要参数,可以通过校准来确定。
除了测量,调整电磁场也是实验中常见的任务。
在实验室中,经常需要通过调整磁场来实现特定的实验条件或者控制实验结果。
调整电磁场的方法有很多种,下面我们将介绍其中的一些。
第一种方法是使用磁铁或者线圈来调整磁场。
磁铁可以产生静态磁场,而线圈则可以产生可调节强度和方向的磁场。
通过调整磁铁的位置或者线圈的电流,可以精确控制磁场的强度和方向。
这种方法广泛应用于实验室中的磁场调整。
第二种方法是使用电容器或者电感器来调整磁场。
电容器是一种储存电荷的装置,它可以调整电场的强度和方向。
通过在电容器的两个极板之间加上不同的电压,可以控制电场的强度。
而电感器则是一种储存磁场能量的装置,通过改变电感器的电流,可以调整磁场的强度和方向。
这种方法广泛应用于实验室中的电磁场调整。
第三种方法是使用电子设备来调整磁场。
例如,利用反馈控制技术,可以通过控制电流源的输出来实现磁场的调整。
例析妙用动量定理解决电磁学中问题

例析妙用动量定理解决电磁学中问题摘要:自从2017年高考改革增加选修3-5模块为必考内容,众所周知动量是3-5的主要内容,而动量观点、能量观点与力学观点是解决动力学问题的三种途径。
如今动量变成必考模块,使学生的知识架构更加完善,在解题思维方面视野将更加开阔,总体来说对于学生解决物理问题还是有帮助的。
但通过平时教学发现大部分学生在运用动量定理解决有关电磁学问题是较薄弱的。
本文通过典例分析加深学生对动量定理在电磁学中运用的认识。
关键词:动量定理电磁感应冲量安培力洛伦兹力电容器1.动量定理解决叠加场中恒力(电场力、重力)与洛伦兹力作用下的运动问题在解决这类问题之前,先分析下运动电荷所受洛伦兹力的冲量,假设在xoy平面存在一垂直该平面的匀强磁场,磁感应强度为B,有一带电量为q的带电粒子,以速度v在磁场中做匀速圆周运动。
某时刻速度方向如图1所示。
分别将v、f正交分解,可知:在时间t内f沿x轴方向的冲量为:同理,f在y轴方向的冲量为:【例1】如图所示,某空间同时存在场强为E、方向竖直向下的匀强电场以及磁感应强度为B、方向垂直纸面向里的匀强磁场。
从该叠加场中某点P由静止释放一个带电粒子,质量为m,电量为+q(粒子受到的重力忽略不计),其运动轨迹如图中虚线所示。
求带电粒子在电、磁场中下落的最大高度H?解答:设小球运动到最低位置时速度最大为v,方向水平任意时刻v沿x轴正向、y轴负向的分速度分别为vx ,vy.。
与vy.对应的洛仑兹力水平分力方向沿x轴正向,小球由静止释放到最低点的过程中,在水平方向上,应用动量定理得:······①小球由静止释放到最低点的过程中,由动能定理得:······②联立①②可得:如果上例1中,重力不可忽略不计(已知重力加速度为g),实际上水平方向上动量定理①式不变,全程由动能定理得:·····③联立①③同样可得:1.动量定理解决电磁感应中电荷量相关问题根据电流的定义式,式中q是时间t内通过导体截面的电量;又欧姆定律,R是回路中的总电阻;结合电磁感应中可以得到安培力的冲量公式,此公式的特殊性决定了它在解题过程中的特殊应用。
含容电磁感应

含容电磁感应是指电磁感应现象中涉及电容器的部分。
在含容电路中,电容器可以储存电荷,收集能量,并在放电时充当电源对外供电,产生电流。
在电磁感应现象中,当电容器和导体棒一起在磁场中运动时,导体棒会切割磁感线产生电动势,而电容器则会在磁场中充电或放电。
此时,电容器两端的电压和导体棒的电动势相等,而导体棒中的电流就是电容器的充电或放电电流。
处理含容电磁感应问题需要抓住电容器两端电压和导体棒电动势相等这个核心要点,以及电容器充电和放电电流与电容器的电荷量之间的关系。
同时,还需要注意电容器的充电和放电过程是瞬间完成的,以及在充电和放电过程中磁场能量的转化。
以上信息仅供参考,如果还有疑问,建议查阅物理书籍或咨询专业人士。
电磁式电压互感器与电容式电压互感器

电磁感应式电压互感器与电容分压式电压互感器对比电磁感应式电压互感器其工作原理与变压器相同,基本结构也是铁心和原、副绕组。
特点是容量很小且比较恒定,正常运行时接近于空载状态。
电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。
为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。
测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。
实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。
供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。
三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。
正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。
一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。
线圈出现零序电压则相应的铁心中就会出现零序磁通。
为此,这种三相电压互感器采用旁轭式铁心(10kV及以下时)或采用三台单相电压互感器。
对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过励磁特性(即当原边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。
电磁感应式电压互感器的等值电路与变压器的等值电路相同。
电容分压式电压互感器在电容分压器的基础上制成。
其原理接线见图2。
电容C1和C2串联,U1为原边电压,为C2上的电压。
空载时,电容C2上的电压为由于C1和C2均为常数,因此正比于原边电压。
但实际上,当负载并联于电容C2两端时,将大大减小,以致误差增大而无法作电压互感器使用。
为了克服这个缺点,在电容C2两端并联一带电抗的电磁式电压互感器YH,组成电容分压式电压互感器(图3)。
电抗可补偿电容器的内阻抗。
YH有两个副绕组,第一副绕组可接补偿电容Ck供测量仪表使用;第二副绕组可接阻尼电阻Rd,用以防止谐振引起的过电压。
2024届高考一轮复习物理教案(新教材粤教版):电磁感应中的电路及图像问题

专题强化二十三电磁感应中的电路及图像问题目标要求 1.掌握电磁感应中电路问题的求解方法.2.会计算电磁感应电路问题中电压、电流、电荷量、热量等物理量.3.能够通过电磁感应图像,读取相关信息,应用物理规律求解问题.题型一电磁感应中的电路问题1.电磁感应中的电源(1)做切割磁感线运动的导体或磁通量发生变化的回路相当于电源.电动势:E=BL v或E=n ΔΦΔt,这部分电路的阻值为电源内阻.(2)用右手定则或楞次定律与安培定则结合判断,感应电流流出的一端为电源正极.2.分析电磁感应电路问题的基本思路3.电磁感应中电路知识的关系图考向1感生电动势的电路问题例1如图所示,单匝正方形线圈A边长为0.2m,线圈平面与匀强磁场垂直,且一半处在磁场中,磁感应强度随时间变化的规律为B=(0.8-0.2t)T.开始时开关S未闭合,R1=4Ω,R2=6Ω,C=20μF,线圈及导线电阻不计.闭合开关S,待电路中的电流稳定后.求:(1)回路中感应电动势的大小;(2)电容器所带的电荷量.答案(1)4×10-3V(2)4.8×10-8C解析(1)由法拉第电磁感应定律有E =ΔB Δt S ,S =12L 2,代入数据得E =4×10-3V (2)由闭合电路的欧姆定律得I =ER 1+R 2,由部分电路的欧姆定律得U =IR 2,电容器所带电荷量为Q =CU =4.8×10-8C.考向2动生电动势的电路问题例2(多选)如图所示,光滑的金属框CDEF 水平放置,宽为L ,在E 、F 间连接一阻值为R的定值电阻,在C 、D 间连接一滑动变阻器R 1(0≤R 1≤2R ).框内存在着竖直向下的匀强磁场.一长为L 、电阻为R 的导体棒AB 在外力作用下以速度v 匀速向右运动.金属框电阻不计,导体棒与金属框接触良好且始终垂直,下列说法正确的是()A .ABFE 回路的电流方向为逆时针,ABCD 回路的电流方向为顺时针B .左右两个闭合区域的磁通量都在变化且变化率相同,故电路中的感应电动势大小为2BL vC .当滑动变阻器接入电路中的阻值R 1=R 时,导体棒两端的电压为23BL vD .当滑动变阻器接入电路中的阻值R 1=R2时,滑动变阻器的电功率为B 2L 2v 28R 答案AD解析根据楞次定律可知,ABFE 回路电流方向为逆时针,ABCD 回路电流方向为顺时针,故A 正确;根据法拉第电磁感应定律可知,感应电动势E =BL v ,故B 错误;当R 1=R 时,外电路总电阻R 外=R 2,因此导体棒两端的电压即路端电压应等于13BL v ,故C 错误;该电路电动势E =BL v ,电源内阻为R ,当滑动变阻器接入电路中的阻值R 1=R2时,干路电流为I =3BL v 4R ,滑动变阻器所在支路电流为23I ,容易求得滑动变阻器电功率为B 2L 2v 28R,故D 正确.例3(多选)如图所示,ab 为固定在水平面上的半径为l 、圆心为O 的金属半圆弧导轨,Oa间用导线连接一电阻M .金属棒一端固定在O 点,另一端P 绕过O 点的轴,在水平面内以角速度ω逆时针匀速转动,该过程棒与圆弧接触良好.半圆弧内磁场垂直纸面向外,半圆弧外磁场垂直纸面向里,磁感应强度大小均为B ,已知金属棒由同种材料制成且粗细均匀,棒长为2l 、总电阻为2r ,M 阻值为r ,其余电阻忽略不计.当棒转到图中所示的位置时,棒与圆弧的接触处记为Q 点,则()A .通过M 的电流方向为O →aB .通过M 的电流大小为Bl 2ω6r C .QO 两点间电压为Bl 2ω4D .PQ 两点间电压为3Bl 2ω2答案CD解析根据右手定则可知金属棒O 端为负极,Q 端为正极,则通过M 的电流方向从a →O ,A 错误;金属棒转动产生的电动势为E =Bl ·ωl2,则有I =E R 总=Bl 2ω4r ,B 错误;由于其余电阻忽略不计,则QO 两点间电压,即电阻M 上的电压,根据欧姆定律有U =Ir =Bl 2ω4,C 正确;金属棒PQ 转动产生的电动势为E ′=Bl 2lω+lω2=3Bl 2ω2,由于PQ 没有连接闭合回路,则PQ 两点间电压,即金属棒PQ 转动产生的电动势,为3Bl 2ω2,D 正确.题型二电磁感应中电荷量的计算计算电荷量的导出公式:q =nΔФR 总在电磁感应现象中,只要穿过闭合回路的磁通量发生变化,闭合回路中就会产生感应电流,设在时间Δt 内通过导体横截面的电荷量为q ,则根据电流定义式I =qΔt 及法拉第电磁感应定律E =n ΔΦΔt ,得q =I Δt =E R 总Δt =n ΔΦR 总Δt Δt =n ΔΦR 总,即q =n ΔΦR 总.例4在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1m 2,线圈电阻为1Ω.规定线圈中感应电流I 的正方向从上往下看是顺时针方向,如图甲所示.磁场的磁感应强度B 随时间t 的变化规律如图乙所示.以下说法正确的是()A .在0~2s 时间内,I 的最大值为0.02AB .在3~5s 时间内,I 的大小越来越小C .前2s 内,通过线圈某横截面的总电荷量为0.01CD .第3s 内,线圈的发热功率最大答案C解析0~2s 时间内,t =0时刻磁感应强度变化率最大,感应电流最大,I =E R =ΔB ·SΔtR=0.01A ,A 错误;3~5s 时间内电流大小不变,B 错误;前2s 内通过线圈的电荷量q =ΔΦR =ΔB ·S R=0.01C ,C 正确;第3s 内,B 没有变化,线圈中没有感应电流产生,则线圈的发热功率最小,D 错误.例5(2018·全国卷Ⅰ·17)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于()A.54B.32C.74D .2答案B解析在过程Ⅰ中,根据法拉第电磁感应定律,有E 1=ΔΦ1Δt 1=B (12πr 2-14πr 2)Δt 1,根据闭合电路的欧姆定律,有I 1=E 1R ,且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2R,q 2=I 2Δt 2又q1=q2,即B(12πr2-14πr2)R=(B′-B)12r2R所以B′B=32,故选B.题型三电磁感应中的图像问题1.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.2.解题步骤(1)明确图像的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;对切割磁感线产生感应电动势和感应电流的情况,还常涉及E-x图像和i-x图像;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、闭合电路的欧姆定律、牛顿运动定律等知识写出相应的函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图像或判断图像.3.常用方法(1)排除法:定性地分析电磁感应过程中物理量的正负,增大还是减小,以及变化快慢,来排除错误选项.(2)函数法:写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断.考向1感生问题的图像例6(多选)(2023·广东湛江市模拟)如图甲所示,正方形导线框abcd放在范围足够大的匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t =0时刻,磁感应强度B的方向垂直纸面向外,感应电流以逆时针为正方向,cd边所受安培力的方向以垂直cd边向下为正方向.下列关于感应电流i和cd边所受安培力F随时间t变化的图像正确的是()答案BD解析设正方形导线框边长为L ,电阻为R ,在0~2s ,垂直纸面向外的磁场减弱,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =ΔBS Δt ·R =2B 0S2R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由2F 0=2B 0iL 减小到零.2~3s 内,垂直纸面向里的磁场增强,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,由零变化到-F 0=-B 0iL .3~4s 内垂直纸面向里的磁场减弱,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由F 0=B 0iL 减小到零.4~6s 内垂直纸面向外的磁场增强,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由零变化到-2F 0=-2B 0iL ,由以上分析计算可得A 、C 错误,B 、D 正确.考向2动生问题的图像例7如图所示,将一均匀导线围成一圆心角为90°的扇形导线框OMN ,圆弧MN 的圆心为O 点,将O 点置于直角坐标系的原点,其中第二和第四象限存在垂直纸面向里的匀强磁场,其磁感应强度大小为B ,第三象限存在垂直纸面向外的匀强磁场,磁感应强度大小为2B .t =0时刻,让导线框从图示位置开始以O 点为圆心沿逆时针方向做匀速圆周运动,规定电流方向ONM 为正,在下面四幅图中能够正确表示电流i 与时间t 关系的是()答案C解析在0~t 0时间内,线框沿逆时针方向从题图所示位置开始(t =0)转过90°的过程中,产生的感应电动势为E 1=12BωR 2,由闭合电路的欧姆定律得,回路中的电流为I 1=E 1r =BR 2ω2r ,根据楞次定律判断可知,线框中感应电流方向为逆时针方向(沿ONM 方向).在t 0~2t 0时间内,线框进入第三象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 2=12Bω·R 2+12·2BωR 2=32BωR 2=3E 1,感应电流为I 2=3I 1.在2t 0~3t 0时间内,线框进入第四象限的过程中,回路中的电流方向为逆时针方向(沿ONM 方向),回路中产生的感应电动势为E 3=12Bω·R 2+12·2Bω·R 2=32BωR 2=3E 1,感应电流为I 3=3I 1,在3t 0~4t 0时间内,线框出第四象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 4=12BωR 2,回路电流为I 4=I 1,故C 正确,A 、B 、D 错误.例8(2023·广东珠海市模拟)图中两条平行虚线之间存在匀强磁场,虚线间的距离为L ,磁场方向垂直纸面向里.abcd 是位于纸面内的直角梯形线圈,ab 与dc 间的距离也为L .t =0时刻,ab 边与磁场区域边界重合(如图).现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域.取沿a →d →c →b →a 的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是()答案A解析线圈移动0~L ,即在0~Lv时间内,线圈进磁场,垂直纸面向里通过线圈的磁通量增大,线圈中产生逆时针方向的感应电流(正),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR 均匀增大;线圈移动L ~2L ,即在L v ~2L v 时间内,线圈出磁场,垂直纸面向里通过线圈的磁通量减少,线圈中产生顺时针方向的感应电流(负),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR均匀增大,因此A 正确,B 、C 、D 错误.课时精练1.如图所示是两个相互连接的金属圆环,小金属环的电阻是大金属环电阻的二分之一,匀强磁场垂直穿过大金属环所在区域,当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E ,则a 、b 两点间的电势差为()A.12EB.13EC.23E D .E答案B解析a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故a 、b 间电势差为U=13E ,选项B 正确.2.如图甲所示,在线圈l 1中通入电流i 1后,在l 2上产生的感应电流随时间变化的规律如图乙所示,l 1、l 2中电流的正方向如图甲中的箭头所示.则通入线圈l 1中的电流i 1随时间t 变化的图像是图中的()答案D解析因为l 2中感应电流大小不变,根据法拉第电磁感定律可知,l 1中磁场的变化是均匀的,即l 1中电流的变化也是均匀的,A 、C 错误;根据题图乙可知,0~T4时间内l 2中的感应电流产生的磁场方向向左,所以线圈l 1中感应电流产生的磁场方向向左并且减小,或方向向右并且增大,B 错误,D 正确.3.(多选)(2023·广东省华南师大附中模拟)如图所示,在磁感应强度大小为B 、方向竖直向下的匀强磁场中,有两根光滑的平行导轨,间距为L ,导轨两端分别接有电阻R 1和R 2,导体棒以某一初速度从ab 位置向右运动距离x 到达cd 位置时,速度为v ,产生的电动势为E ,此过程中通过电阻R 1、R 2的电荷量分别为q 1、q 2.导体棒有电阻,导轨电阻不计.下列关系式中正确的是()A .E =BL vB .E =2BL vC .q 1=BLx R 1D.q 1q 2=R 2R 1答案AD解析导体棒做切割磁感线的运动,速度为v 时产生的感应电动势E =BL v ,故A 正确,B错误;设导体棒的电阻为r ,根据法拉第电磁感应定律得E =ΔΦΔt =BLxΔt ,根据闭合电路欧姆定律得I =Er +R 1R 2R 1+R 2,通过导体棒的电荷量为q =I Δt ,导体棒相当于电源,电阻R 1和R 2并联,则通过电阻R 1和R 2的电流之比I 1I 2=R 2R 1,通过电阻R 1、R 2的电荷量之比q 1q 2=I 1Δt I 2Δt =R2R 1,结合q =q 1+q 2,解得q 1=BLxR 2(R 1+R 2)r +R 1R 2,故C 错误,D 正确.4.(多选)如图甲所示,单匝正方形线框abcd 的电阻R =0.5Ω,边长L =20cm ,匀强磁场垂直于线框平面向里,磁感应强度的大小随时间变化规律如图乙所示,则下列说法中正确的是()A .线框中的感应电流沿逆时针方向,大小为2.4×10-2AB .0~2s 内通过ab 边横截面的电荷量为4.8×10-2CC .3s 时ab 边所受安培力的大小为1.44×10-2ND .0~4s 内线框中产生的焦耳热为1.152×10-3J 答案BD解析由楞次定律判断感应电流为顺时针方向,由法拉第电磁感应定律得电动势E =SΔB Δt=1.2×10-2V ,感应电流I =E R=2.4×10-2A ,故选项A 错误;电荷量q =I Δt ,解得q =4.8×10-2C ,故选项B 正确;安培力F =BIL ,由题图乙得,3s 时B =0.3T ,代入数值得:F =1.44×10-3N ,故选项C 错误;由焦耳定律得Q =I 2Rt ,代入数值得Q =1.152×10-3J ,故D 选项正确.5.在水平光滑绝缘桌面上有一边长为L 的正方形线框abcd ,被限制在沿ab 方向的水平直轨道上自由滑动.bc 边右侧有一正直角三角形匀强磁场区域efg ,直角边ge 和ef 的长也等于L ,磁场方向竖直向下,其俯视图如图所示,线框在水平拉力作用下向右以速度v 匀速穿过磁场区,若图示位置为t =0时刻,设逆时针方向为电流的正方向.则感应电流i -t 图像正确的是(时间单位为L v)()答案D 解析bc 边的位置坐标x 从0~L 的过程中,根据楞次定律判断可知线框中感应电流方向沿a →b →c →d →a ,为正值.线框bc 边有效切线长度为l =L -v t ,感应电动势为E =Bl v =B (L-v t )·v ,随着t 均匀增加,E 均匀减小,感应电流i =E R,即知感应电流均匀减小.同理,x 从L ~2L 的过程中,根据楞次定律判断出感应电流方向沿a →d →c →b →a ,为负值,感应电流仍均匀减小,故A 、B 、C 错误,D 正确.6.如图所示,线圈匝数为n ,横截面积为S ,线圈电阻为R ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k ,磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值均为2R .下列说法正确的是()A .电容器上极板带负电B .通过线圈的电流大小为nkS 2RC .电容器所带的电荷量为CnkS 2D .电容器所带的电荷量为2CnkS 3答案D解析由楞次定律和右手螺旋定则知,电容器上极板带正电,A 错误;因E =nkS ,I =E 3R =nkS 3R,B 错误;又U =I ×2R =2nkS 3,Q =CU =2CnkS 3,C 错误,D 正确.7.如图甲所示,一长为L 的导体棒,绕水平圆轨道的圆心O 匀速顺时针转动,角速度为ω,电阻为r ,在圆轨道空间存在有界匀强磁场,磁感应强度大小为B .半径小于L 2的区域内磁场竖直向上,半径大于L 2的区域内磁场竖直向下,俯视图如图乙所示,导线一端Q 与圆心O 相连,另一端P 与圆轨道连接给电阻R 供电,其余电阻不计,则()A .电阻R 两端的电压为BL 2ω4B .电阻R 中的电流方向向上C .电阻R 中的电流大小为BL 2ω4(R +r )D .导体棒的安培力做功的功率为0答案C 解析半径小于L 2的区域内,E 1=B L 2·ωL 22=BL 2ω8,半径大于L 2的区域,E 2=B L 2·ωL 2+ωL 2=3BL 2ω8,根据题意可知,两部分电动势相反,故总电动势E =E 2-E 1=BL 2ω4,根据右手定则可知圆心为负极,圆环为正极,电阻R 中的电流方向向下,电阻R 上的电压U =R R +r E =RBL 2ω4(R +r ),故A 、B 错误;电阻R 中的电流大小为I =E R +r =BL 2ω4(R +r ),故C 正确;回路有电流,则安培力不为零,故导体棒的安培力做功的功率不为零,故D 错误.8.(多选)如图,PAQ 为一段固定于水平面上的光滑圆弧导轨,圆弧的圆心为O ,半径为L .空间存在垂直导轨平面、磁感应强度大小为B 的匀强磁场.电阻为R 的金属杆OA 与导轨接触良好,图中电阻R 1=R 2=R ,其余电阻不计.现使OA 杆在外力作用下以恒定角速度ω绕圆心O 顺时针转动,在其转过π3的过程中,下列说法正确的是()A .流过电阻R 1的电流方向为P →R 1→OB .A 、O 两点间电势差为BL 2ω2C .流过OA 的电荷量为πBL 26RD .外力做的功为πωB 2L 418R答案AD 解析由右手定则判断出OA 中电流方向由O →A ,可知流过电阻R 1的电流方向为P →R 1→O ,故A 正确;OA 产生的感应电动势为E =BL 2ω2,将OA 当成电源,外部电路R 1与R 2并联,则A 、O 两点间的电势差为U =ER +R 2·R 2=BL 2ω6,故B 错误;流过OA 的电流大小为I =E R +R 2=BL 2ω3R ,转过π3弧度所用时间为t =π3ω=π3ω,流过OA 的电荷量为q =It =πBL 29R ,故C 错误;转过π3弧度过程中,外力做的功为W =EIt =πωB 2L 418R,故D 正确.9.(多选)(2019·全国卷Ⅱ·21)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是()答案AD 解析根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,PQ 通过磁场区域后MN 进入磁场区域,MN 同样匀速直线运动通过磁场区域,故流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,感应电动势和感应电流为零,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于刚开始仅PQ 切割磁感线时的感应电流I 1,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D.10.如图甲所示,虚线MN 左、右两侧的空间均存在与纸面垂直的匀强磁场,右侧匀强磁场的方向垂直纸面向外,磁感应强度大小恒为B 0;左侧匀强磁场的磁感应强度B 随时间t 变化的规律如图乙所示,规定垂直纸面向外为磁场的正方向.一硬质细导线的电阻率为ρ、横截面积为S 0,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.求:(1)t =t 02时,圆环受到的安培力;(2)在0~320内,通过圆环的电荷量.答案(1)3B 02r 2S 04ρt 0,垂直于MN 向左(2)3B 0rS 08ρ解析(1)根据法拉第电磁感应定律,圆环中产生的感应电动势E =ΔB Δt S 上式中S =πr 22由题图乙可知ΔB Δt =B 0t 0根据闭合电路的欧姆定律有I =ER 根据电阻定律有R =ρ2πrS 0t =12t 0时,圆环受到的安培力大小F =B 0I ·(2r )+B 02I ·(2r )联立解得F =3B 02r 2S 04ρt 0由左手定则知,方向垂直于MN 向左.(2)通过圆环的电荷量q =I ·Δt根据闭合电路的欧姆定律和法拉第电磁感应定律有I =E R ,E =ΔΦΔt在0~32t 0内,穿过圆环的磁通量的变化量为ΔΦ=B 0·12πr 2+B 02·12πr 2联立解得q =3B 0rS 08ρ.11.(2023·广东广州市模拟)在同一水平面中的光滑平行导轨P 、Q 相距L =1m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 间距离d =10mm ,定值电阻R 1=R 2=12Ω,R 3=2Ω,金属棒ab 电阻r =2Ω,其他电阻不计.磁感应强度B =1T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间、质量m =1×10-14kg 、带电荷量q =-1×10-14C 的微粒(图中未画出)恰好静止不动.取g =10m/s 2,在整个运动过程中金属棒与导轨接触良好.且运动速度保持恒定.求:(1)匀强磁场的方向;(2)ab 两端的电压;(3)金属棒ab 运动的速度大小.答案(1)竖直向下(2)0.4V (3)0.5m/s 解析(1)带负电的微粒受到重力和电场力处于静止状态,因重力竖直向下,则电场力竖直向上,故M 板带正电.ab 棒向右切割磁感线产生感应电动势,ab 棒相当于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下;(2)由平衡条件,得mg =EqE =U MNd所以MN 间的电压U MN =mgd q =1×10-14×10×10×10-31×10-14V =0.1VR 3两端电压与电容器两端电压相等,由欧姆定律得通过R 3的电流I =U MN R 3=0.12A =0.05A ab 棒两端的电压为U ab=U MN+R1R2·I=0.1V+0.05V×6V=0.4VR1+R2(3)由闭合电路欧姆定律得ab棒产生的感应电动势为E感=U ab+Ir=0.4+0.05×2V=0.5V由法拉第电磁感应定律得感应电动势E=BL v感联立解得v=0.5m/s.。
动量观点在电磁感应中的应用ppt(含电容器)

一、单杆+电容+初速度
1.电路特点 导体棒相当于电源;电容器被充电.
v0
2.电流的特点
导体棒相当于电源; F安为阻力,棒减速, E减小
有I感
I Blv UC R
I感渐小
电容器被充电。 UC渐大,阻碍电流
3.当a运渐B动小lv特=的U点减C时速,运I=动0,,最F安终=做0,匀棒匀v0 速v运动。
I
CBlF m CB2l2
(3)导体棒受安培力恒定:
FB
CB2l 2F m CB2l 2
v v0
(4)导体棒克服安培力做的功等于 电容器储存的电能:
证明
W克B
1 C(Blv)2 2
O
F
t
4.几种变化: (1)导轨不光滑
(2)恒力的提供方式不同
FB
h
mmgg
B
B
Fቤተ መጻሕፍቲ ባይዱ
F
(3)电路的变化
F
练习:
F
导体棒为发电棒;电容器被充电。
2.三个基本关系
导体棒受到的安培力为: FB BIl
导体棒加速度可表示为: 回路中的电流可表示为:
a F FB m
I Q CE CBlv CBla t t t
3.四个重要结论:
(1)导体棒做初速度为零 匀加速运动:
a
m
F CB2l
2
(2)回路中的电流恒定:
速运动。
4.最终特征 匀速运动
v
但此时电容器带电量不为零 O
t
5.最终速度
v0
电容器充电量: q CU
最终导体棒的感应电动
势等于电容两端电压: U Blv
2025高考物理总复习电磁感应中的含电容器问题模型

此时电容器的电荷量q=CU=1×10-2 C。
(2)导体棒在 F1 作用下运动,根据牛顿第二定律可得 F1-mgsin α-BId=ma1
又有
Δ
I=
Δ
=
Δ
Δ
,a=
Δ
Δ
联立解得
1 - sin
a1=
=20
+ 2 2 2
由功能关系 W=E-E0 及 W=qU,结合 Q-U 关系图线,可知电容器所储存的电能
与其极板间的电压及电容间的关系式为
1
1
1
E= QU= CU·
U= CU2。
2
2
2
(2)当导体棒获得向右的初速度v0时,切割磁感线产生动生电动势给电容器
充电,设充电电流为I,则导体棒所受安培力大小为
FA=BIL,方向水平向左
恒力F1=0.54 N作用于导体棒,使导体棒从静止开始运动,经t时间后到达B
处,速度v=5 m/s。此时,突然将拉力方向变为沿导轨向下,大小变为F2,又经
2t时间后导体棒返回到初始位置A处,整个过程电容器未被击穿。求:
(1)导体棒运动到B处时,电容器C上的电荷量;
(2)t的大小;
(3)F的大小。
答案 (1)1×10-2 C (2)0.25 s (3)0.45 N
以恒定的加速度匀加速运动。
,所以杆
安=ma,a=
+ 2 2
典题1 如图所示,间距为L的平行光滑金属导轨水平固定,导轨平面处在竖
直向下、磁感应强度大小为B的匀强磁场中。导轨左端连接有电容为C的
平行板电容器,质量为m、电阻不可忽略的导体棒垂直导轨放置在导轨上,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图所示的甲、乙、丙图中,MN、PQ是固定在同一水平面内足够长的平行金属导轨。
导体棒ab垂直放在导轨上,导轨都处于垂直水平面向下的匀强磁场中。
导体棒和导轨间接触良好且摩擦不计,导体棒、导轨和直流电源的电阻均可忽略,甲图中的电容器C原来不带电。
今给导体棒ab 一个向右的初速度,在甲、乙、丙图中导体棒ab在磁场中的最终运动状态是()。
A: 甲、丙中,棒ab最终将以相同速度做匀速运动;乙中ab棒最终静止
B: 甲、丙中,棒ab最终将以不同速度做匀速运动;乙中ab棒最终静止
C: 甲、乙、丙中,棒ab最终均做匀速运动
D: 甲、乙、丙中,棒ab最终都静止
答案详解B
2、如图所示,光滑平行金属导轨固定在绝缘水平面上,轨道间距为,金属杆ab的质量为,电容器电容为,耐压足够大,
为理想电流表,导轨与杆接触良好,各自的电阻忽略不计,整个装置处于磁感应强度大小为,方向垂直导轨平面向下的匀强磁场中.现用水平外力F拉ab向右运动,使电流表示数恒为.
(1)求时电容器的带电量
(2)说明金属杆做什么运动
(3)求时外力做功的功率.
答案解:(1)由,
(2)设杆某时刻的速度为v,此时电容器的电压
电容器的电量
电流恒定,a恒定,即金属杆做匀加速直线运动
(3)
由牛顿第二定律得:
由公式
答:(1)时电容器的带电量是1C;
(2)金属杆做匀加速直线运动;
(3)时外力做功的功率是.
3、如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。
导轨上端接有一平行板电容器,电容为C。
导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。
在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求:
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(25分)
(2)金属棒的速度大小随时间变化的关系。
(75分)
答案详解
解:
(1)设金属棒下滑的速度大小为v,则感应电动势为
①
平行板电容器两极板之间的电势差为②
设此时电容器极板上积蓄的电荷为Q,按定义有
③
联立①②③得
④
(2)设金属棒到达速度大小为v时经历的时间为t,通过金属棒的电流为i,金属棒受到的磁场力为
⑤
设在时间间隔内流经金属棒的电荷量为,按定义有
⑥
也是平行板电容器极板在时间间隔内增加的电荷量,由④式得
⑦
为金属棒的速度变化量,按定义有
⑧
金属棒所受到的摩擦力方向斜向上,大小为
⑨
式中,N是金属棒对斜面的正压力,有
⑩
金属棒在t时刻的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有
⑪
联立⑤至⑪式得
⑫
由⑫式和题设可知,金属棒做初速度为零的匀加速运动。
t时刻速度大小为:⑬
4、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为,电容器的电容为。
两根固定于水平面内的光滑平行金属导轨间距为,电阻不计。
炮弹可视为一质量为、电阻为的金属棒,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关接1,使电容器完全充电。
然后将接至2,导轨间存在垂直于导轨平面、磁感应强度大小为的匀强磁场(图中未画出),开始向右加速运动。
当上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,达到最大速度,之后离开导轨。
问:
(1)磁场的方向;
(2)刚开始运动时加速度的大小;
(3)离开导轨后电容器上剩余的电荷量是多少。
答案详解
(1)垂直于导轨平面向下。
(2)电容器完全充电后,两极板间电压为,当开关接2时,电容器放电,设刚放电时流经的电流为,有①设受到的安培力为,有②
由牛顿第二定律,有③
联立①②③式得④
(3)当电容器充电完毕时,设电容器上电量为,有⑤
开关接2后,开始向右加速运动,速度达到最大值时,设上的感应电动势为,有⑥
依题意有⑦
设在此过程中的平均电流为,上受到的平均安培力为,
有⑧
由动量定理,有⑨
又⑩
联立⑤⑥⑦⑧⑨⑩式得⑪。