金属工艺学论文

合集下载

金属工艺学课程论文

金属工艺学课程论文

金属工艺学课程论文题目:摩擦焊在汽车制造业中的应用姓名:班级:学号:一、前言焊接技术是一种在高温或高压条件下,利用焊接材料(焊条或焊丝)将两个或两个以上的母材(待焊接的工件)联接为整体的工程技术。

焊接工艺水平直接决定了结构件的制造成本、焊接质量以及可靠性.焊接是汽车生产流水线上一项不可或缺的加工工序,汽车最主要的车架、车桥、车身、车厢、变速箱、发动机等几大零部件的加工,也都离不开焊接。

目前,在汽车生产制造中使用的焊接工艺有很多种,如气体保护焊、电阻焊、氩弧焊、电弧焊、激光焊等。

在汽车制造中发动机、车身和总装是三大总成,在三大总成制造系统中,冲压、焊接、总成、涂装四大车间全都离不开焊接技术,即便涂装线上也有刮擦钎焊和金属腻子钎涂的工序。

车工业中,焊接是汽车零部件与车身制造中的一个关键环节,起着承上启下的特殊作用,同时,汽车产品的车型众多,成形结构复杂,零部件生产专业化、标准化以及汽车制造在质量、效率和成本等方面的综合要求,都决定了汽车焊接加工是一个多学科、跨领域和技术集成性强的生产过程.二、摩擦焊在汽车制造业中的应用2。

1 摩擦焊简介摩擦焊是一种通过工件接触面摩擦将机械能转换成热能进行焊接的一种固相连接方法。

摩擦焊起源于100多年前的英国,经半个多世纪的研究发展,摩擦焊技术逐渐成熟起来,进入推广应用阶段。

自从20世纪50年代以来,摩擦焊以其优质、高效、低耗环保的突出优点受到所有工业强国的重视。

自1957年哈尔滨焊接研究所开始研究摩擦焊技术以来,摩擦焊已经在我国汽车制造、电力电气、石油钻探、工艺装备等工业部门得到广泛应用.摩擦焊种类丰富,有旋转摩擦焊、线性摩擦焊、径向摩擦焊、搅拌摩擦焊、超声波焊接等。

几种焊接方式凭各自的优点在汽车制造业都有广泛应用。

2.2摩擦焊在汽车制造业的应用搅拌摩擦焊是一种连续的、纯机械的新型固相连接技术。

搅拌摩擦焊焊接过程中,搅拌针通过搅拌、摩擦使焊缝金属材料热塑化,热塑化材料在搅拌头的旋转摩擦作用下由搅拌针的前部向后部转移过渡,过渡后的热塑化金属在搅拌轴肩的作用下受到了挤压和锻造,最终得到了由精细的锻造组织构成的焊缝接头,由于整个焊接过程中被焊接金属材料没有经过“熔化—凝固”过程,所以得到的是优异的固相接头连接。

金属铸造工艺论文

金属铸造工艺论文

金属铸造工艺论文引言金属铸造作为一种常见的金属加工方法,具有广泛的应用和重要的经济价值。

本论文旨在介绍金属铸造的工艺过程、影响因素以及近年来的发展趋势。

1. 金属铸造工艺概述金属铸造是将熔融金属倒入预先制备好的模具中,通过熔铸和凝固来获得所需形状的金属零件的加工方法。

它通常包括以下几个步骤:•模具准备:根据产品的形状和尺寸,制备相应的模具。

•熔炼金属:选择适当的金属材料,并通过高温熔炼设备将其熔化。

•浇注:将熔融金属倒入模具中。

•凝固:金属在模具中冷却凝固。

•反模和整形:将凝固后的金属零件从模具中取出,并进行后续整形和表面处理。

2. 影响金属铸造质量的因素金属铸造的质量受到多个因素的影响,包括但不限于以下几点:2.1 材料选择不同的材料具有不同的熔点和流动性,因此在选择材料时需要考虑其适用性和熔点等特性,以确保获得所需的铸造质量。

2.2 模具设计模具的设计对于金属铸造过程中的产品质量至关重要。

模具的形状和尺寸必须与所需产品的形状和尺寸相匹配,并且要考虑到产品的收缩率和热胀冷缩等因素。

2.3 浇注温度和速度金属铸造中的浇注温度和浇注速度直接影响到产品的质量。

温度过高或过低都会导致铸件内部结构的不均匀,从而影响到产品的力学性能。

2.4 凝固过程金属的凝固过程是金属铸造中最关键的环节之一。

快速凝固会导致铸件的晶粒细小,从而提高产品的强度和硬度。

而过慢的凝固速度则会产生大晶粒现象,影响产品的性能。

3. 金属铸造的发展趋势近年来,随着科技的不断进步和工艺的改进,金属铸造工艺也在不断发展。

以下是几个金属铸造领域的发展趋势:3.1 数字化技术的应用随着计算机辅助设计(CAD)和计算机辅助制造(CAM)技术的发展,数字化技术开始在金属铸造中得到应用。

通过使用CAD/CAM系统,可以实现对模具设计和铸造工艺的数字化模拟和优化。

3.2 自动化生产线的建设自动化生产线可以提高金属铸造的生产效率和产品质量。

自动化设备的应用可以大幅度减少人工操作,提高生产的一致性和稳定性。

金属轧制方面毕业论文范文

金属轧制方面毕业论文范文

金属轧制方面毕业论文范文标题:金属轧制工艺在工业生产中的应用及优势摘要:金属轧制是一种重要的金属材料成形工艺,广泛应用于工业生产中。

本文通过详细介绍金属轧制的基本原理、工艺流程和应用领域,分析金属轧制在工业生产中的优势,并结合实际案例,探讨金属轧制工艺的进一步发展方向。

关键词:金属轧制;成形工艺;工业生产;应用优势一、引言金属轧制是一种利用辊和金属材料相互作用,通过力的作用将金属板材、棒材等进行压制和拉伸,以达到一定形状和尺寸的成形工艺。

金属轧制工艺广泛应用于冶金、机械制造、汽车、航空航天等领域。

本文将详细介绍金属轧制的基本原理、工艺流程和应用领域,并分析金属轧制在工业生产中的优势。

二、金属轧制的基本原理与工艺流程金属轧制的基本原理是通过辊的旋转与金属材料的相互作用,将金属材料逐渐拉长、压制,从而改变其形状和尺寸。

金属轧制工艺流程包括热轧和冷轧两种方式。

热轧是指在较高温度下进行轧制,适用于低碳钢、合金钢等材料;冷轧是指在常温下进行轧制,适用于不锈钢、铝合金等材料。

金属轧制的工艺流程包括预处理、装料、轧制、冷却等步骤,每个步骤都有严格的工艺要求和机械设备。

三、金属轧制的应用领域金属轧制广泛应用于工业生产中,其主要应用领域包括以下几个方面:1. 冶金行业:金属轧制是冶金行业中不可或缺的工艺之一,用于生产各种钢材、铝材、铜材等。

2. 机械制造业:金属轧制工艺用于生产各种工业设备的零部件,如齿轮、轴承等。

3. 汽车行业:金属轧制应用于汽车制造过程中的车身板材、车轮等零部件的生产。

4. 航空航天:金属轧制工艺在航空航天领域中用于生产飞机机身、发动机零部件等。

四、金属轧制在工业生产中的优势金属轧制在工业生产中具有以下几个优势:1. 成本效益:金属轧制能够使原材料得到有效利用,降低生产成本。

相对于其他金属成形工艺,金属轧制的材料利用率更高。

2. 产品质量稳定:金属轧制能够通过控制轧制工艺参数,使产品的尺寸和形状得到精确控制,提高产品的质量稳定性。

佳木斯大学《金属工艺学》课程论文

佳木斯大学《金属工艺学》课程论文

特种加工技术发展及其应用摘要:特种加工泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形、改变性能或被镀覆等。

本文对什么是特种加工、特种加工的特点、种类以及发展趋势等作了描述。

阐述了特种加工在现代社会发展过程中的重要地位,大力发展特种加工的必要性。

关键词:特种加工技术;种类;特点;应用;发展趋势The Development and Application of Special processingtechnologyAbstract:Special processing refers to the energy of electric energy, heat, light, electrochemical energy, chemical energy, acoustic energy, and the like to achieve specific mechanical energy to remove or increase the processing method of the material, the material is removed in order to achieve, deformation, or change the properties of the plating and so on. In this paper, what is special processing, special processing features, types and trends, etc. are described. Describes the special processing an important role in the process of development of modern society, the need to develop special processing.Key words:Special processing technology; species; characteristics; application; trends0引言传统的机械加工技术对推动人类的进步和社会的发展起到了重大的作用。

金属工艺学论文

金属工艺学论文

大连海洋大学金属工艺论文课程名称:金属工艺专业班级:轮工13-1 学号:1302170115 学生姓名:王秉瑞时间:2014.12.25钛合金的制造工艺摘要:钛是20世纪50年代发展起来的一种结构金属。

钛合金具有强度高,耐腐蚀性好,耐热性高等特点而被广泛应用于各个领域。

世界上许多国家意识到钛合金的重要性,相继对其研发,并应用到实际中去。

介绍了钛合金的发展现状、特性、铸造工艺性能及其热处理,阐述了钛合金的生产技术及其应用,对钛合金的发展趋势进行了展望。

Abstract:Titanium is a kind of metal structure developed in twentieth Century 50. Titanium alloy has high strength, good corrosion resistance, heat resistance and higher sexual characteristics are widely used in various fields. Many countries in the world to realize the importance of titanium alloy, in succession to the R & D, and applied to practice. Titanium alloy development status, characteristics, properties and heat treatment of casting process is introduced, elaborated the production technology of titanium alloy and its application, development trend of titanium alloy is discussed.关键词:钛合金结构材料合金化性能Keywords:Titanium alloy Structural materials Alloying Performance钛合金是以钛为基加入其他元素组成的合金。

金属工艺学实习教学探讨论文

金属工艺学实习教学探讨论文

金属工艺学实习教学探讨论文金属工艺学实习教学探讨论文摘要:技工教育的核心内容之一是培育学生的职业技术和实践操作能力。

这篇文章以金属技术学实习教育为例,讨论怎么展开单项课题实习教育和归纳出产实习教育。

实习教育是学生将学到的专业知识应用于实践出产,把职业技术转化为出产力,然后完结经济效益与社会效益的最重要途径。

金属技术学是一门实践性强、概念笼统的专业课程。

那么,老师又该怎么进步学生对该门课程的学习爱好?笔者以为,在金属技术学的实习教育中,老师应遵从系统性和按部就班的教育准则,依照以下过程展开教育。

一、进步学生对实习教育的知道技校学生根底知识对比单薄,实践经验不多。

因而,在专业课教育开端之前,老师应带领学生到出产车间观赏学习,了解出产过程、出产设备,调查商品、机械零件。

老师再联络挂图解说专业根本知识,让学生对所学专业有一个开端的感性知道。

在此环节的实习教育中,学生以看为主、以听为辅。

老师在让学生调查不同零件构造特色和使用性能时,进行简略介绍,让学生开端建立起对机械专业课的知道,为往后专业理论课的教育做好铺垫。

此外,老师在教育中还要多罗列一些日子、出产实例,将课程、日子、出产有机联络起来,才干将复杂、笼统的理论形象化、具体化。

比如在教育静载荷、冲击载荷和交变载荷时,笔者就以轿车在平整的道路上行进承受的载荷、轿车撞到大石头承受的载荷、轿车在凹凸不平的道路上行进时减震绷簧所承受的载荷为例,来阐明什么是静载荷、冲击载荷和交变载荷,教育效果显著。

开端形成对实习教育的感性知道,是学生向理性知道过渡的根底。

通过感性知道实习教育,进步了学生的专业学习爱好,调动了学生学习职业技术的积极性。

二、单项课题实习教育的施行单项课题实习教育是针对专业课的某一课题进行的单项实习教育,由专业课老师解说根本理论知识,演示实习操作根本动作,使学生了解实习的根本操作方法,把所学的根本知识应用于实践操作技术操练。

这个实习教育环节有必要在出产实习车间进行。

对金属工艺学的认识2500字

对金属工艺学的认识2500字

对金属工艺学的认识2500字金属工艺学是研究金属材料的加工和制造工艺的学科。

它涉及金属材料的物理性能、力学行为、加工原理和工艺流程等方面的知识,旨在开发和优化金属制品的生产过程。

以下是对金属工艺学的认识,介绍了其重要性、主要内容以及应用领域等方面。

一、金属工艺学的重要性1. 促进金属制品的开发和创新:金属工艺学研究金属材料的加工过程和方法,可以帮助开发新的金属制品,满足人们不断变化的需求。

通过深入研究金属的物理性质和力学行为,可以探索新的加工技术和工艺流程,实现金属制品的创新和改进。

2. 提高金属制品的质量和性能:金属工艺学关注金属制品的加工过程中的微观结构和宏观性能。

通过选择合适的加工方法和控制工艺参数,可以改善金属制品的机械性能、耐腐蚀性能和表面质量等关键指标,提高产品的质量和性能。

3. 优化生产效率和降低成本:金属工艺学研究金属加工的工艺流程和方法,旨在提高生产效率和降低成本。

通过优化工艺参数和加工工艺,可以减少废品率、提高生产率,从而降低生产成本,提高企业的竞争力。

4. 保证金属制品的可靠性和安全性:金属工艺学的研究和应用可以帮助确保金属制品在使用过程中的可靠性和安全性。

通过对金属材料的加工过程进行控制和优化,可以减少制品中的缺陷和损伤,提高其使用寿命和安全性。

二、金属工艺学的主要内容1. 金属材料的性能与加工特性:研究金属材料的物理性质、力学行为和热力学特性等,包括金属的晶体结构、塑性变形行为、热处理效应等。

这些性质和特性对金属材料的加工性能和工艺选择具有重要影响。

2. 金属加工工艺与方法:研究金属加工的各种工艺方法和技术,包括锻造、轧制、挤压、拉伸、剪切、冲压等。

了解各种加工方法的原理、工艺流程和适用范围,为金属制品的生产提供技术支持。

3. 金属加工工具与设备:研究金属加工所需的各种工具和设备,如模具、切削工具、焊接设备等。

探索工具和设备的设计、制造和应用,提高加工的精度和效率。

4. 工艺参数与工艺规程:研究金属加工中的工艺参数和工艺规程,如温度、压力、速度、润滑剂的选择等。

金属铸造工艺论文[五篇范例]

金属铸造工艺论文[五篇范例]

金属铸造工艺论文[五篇范例]第一篇:金属铸造工艺论文金属铸造工艺论文摘要:铸造是将通过熔炼的金属液体浇注入铸型内,经冷却凝固获得所需形状和性能的零件的制作过程。

铸造是常用的制造方法,铸造是一种古老的制造方法,在我国可以追溯到6000年前。

随着工业技术的发展,铸大型铸件的质量直接影响着产品的质量,因此,铸造在机械制造业中占有重要的地位。

由零件的结构特点,提出多种浇注和分型方案,综合对比分析,选择最为理想的浇注位置及分型面。

制定出详细的铸造工艺方案。

关键字:铸造工艺性;铸造工艺方案;铸造工艺参数;补缩系统;浇注系统铸造工艺种类:铸造工艺可分为重力铸造、压力铸造、砂型铸造、压铸、熔模铸造和消失模铸造。

铸造方法常用的是砂型铸造,其次是特种铸造方法,如:金属型铸造、熔模铸造、石膏型铸造等。

各种特种铸造方法均有其突出的特点和一定的局限性,对铸件结构也各有各自的特殊要求。

重力铸造重力铸造是指金属液在地球重力作用下注入铸型的工艺,也称浇的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。

压力铸造压力铸造是指金属液在其他外力(不含重力)的作用下注入铸型的工艺。

广义的压力铸造包括压铸机的压力铸造和真空铸造、低压铸造、离心铸造等;窄义的压力铸造专指压铸机的金属型压力铸造,简称压铸。

这几种铸造工艺是目前有色金属铸造中最常用的、也是相对价格最低的。

砂型铸造砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。

砂型一般采用重力铸造,有特殊要求时也可采用低压铸造、离心铸造等工艺。

砂型铸造的适应性很广,小件、大件,简单件、复杂件,单件、大批量都可采用。

砂型铸造用的模具,以前多用木材制作,通称木模。

木模缺点是易变形、易损坏;除单件生产的砂型铸件外,可以使用尺寸精度较高,并且使用寿命较长的铝合金模具或树脂模具。

虽然价格有所提高,但仍比金属型铸造用的模具便宜得多,在小批量及大件生产中,价格优势尤为突出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言
制造业是现代国民经济和综合国力的重要支柱,其生产总值一般占一个国家国内生产总值的20%~55%。在一个国家的企业生产力构成中,制造技术的作用一般占60%左右。专家认为,世界上各个国家经济的竞争,主要是制造技术的竞争。其竞争能力最终体现在所生产的产品的市场占有率上。随着经济技术的高速发展以及顾客需求和市场环境的不断变化,这种竞争日趋激烈,因而各国政府都非常重视对先进制造技术的研究。
3.先进制造技术发展展望
与科学技术的发展和人类社会的进步相适应,先进制造技术的发展将具有以下三个特点:
1)制造科学理论体系不断完善
现代制造正从技艺、技术走向科学:“数字化”将是建立制造科学理论体系的关键,它将贯穿包含设计、制造和控制等整个制造过程的数字化,如制造中从几何量、控制量的数字化到物理量、知识、经验的数字化等;“虚拟化”将在产品制造、制造系统运行全过程中广泛应用,是使预测和评价科学化的重要手段;“集成化”将使制造技术和管理更加深入和广泛地融合,其本质是知识与信息的集成;“网络化”可为制造企业的设计、生产、管理与营销等提供跨地域的运行环境,使制造业走向全球化、整体化和有序化; “智能化”将显著提高制造企业、系统和单元(装备)适应环境的能力,对海量和不完整信息的处理能力,相互间主动协调和协同能力。运作的自律性、组织结构的柔性、响应的敏捷性是智能化的典型特征,也是制造科学理论的重要特色。加工精度的“精密化”、加工尺度“细微化”、加工要求和条件的“极限化”都是当今制造科学与技术发展研究的焦点。
信息科学、纳米科学、材料科学、生命科学、管理科学和制造科学将是改变21世纪的主流科学,由此产生的高新技术及其产业将改变世界的面貌。因此,与以上领域相交叉发展的制造系统和制造信息学、纳米机械和纳米制造科学、仿生机械和仿生制造学、制造管理科学和可重构制造系统等会是21世纪机械工程科学的重要前沿科学。
2.1 制造科学与信息科学的交叉--制造信息科学
(2)在现代制造过程中,信息不仅已成为主宰制造产业的决定性因素,而且还是最活跃的驱动因素。提高制造系统的信息处理能力已成为现代制造科学发展的一个重点。由于制造系统信息组织和结构的多层次性,制造信息的获取、集成与融合呈现出立体性、信息度量的多维性、以及信息组织的多层次性。在制造信息的结构模型、制造信息的一致性约束、传播处理和海量数据的制造知识库管理等方面,都还有待进一步突破。
与制造有关的信息主要有产品信息、工艺信息和管理信息,这一领域有如下主要研究方向和内容:
(1) 制造信息的获取、处理、存储、传递和应用,大量制造信息向知识和决策转化。
(2) 非符号信息的表达、制造信息的保真传递、制造信息的管理、非完整制造信息状态下的生产决策、虚拟管理制造、基于网络环境下的设计和制造、制造过程和制造系统中的控制科学问题。
机电产品是信息在原材料上的物化。许多现代产品的价值增值主要体现在信息上。因此制造过程中信息的获取和应用十分重要。信息化是制造科学技术走向全球化和现代化的重要标志。人们一方面对制造技术开始探索产品设计和制造过程中的信息本质,另一方面对制造技术本身加以改造,以使得其适应新的信息化制造环境。随着对制造过程和制造系统认识的加深,研究者们正试图以全新的概念和方式对其加以描述和表达,以进一步达到实现控制和优化的目的。
1当前制造科学要解决的问题
当前制造科学要解决的问题主要集中在以下几方面:
(1)制造系统是一个复杂的大系统,为满足制造系统敏捷性、快速响应和快速重组的能力,必须借鉴信息科学、生命科学和社会科学等多学科的研究成果,探索制造系统新的体系结构、制造模式和制造系统有效的运行机制。制造系统优化的组织结构和良好的运行状况是制造系统建模、仿真和优化的主要目标。制造系统新的体系结构不仅对制造企业的敏捷性和对需求的响应能力及可重组能力有重要意义,而且对制造企业底层生产设备的柔性和可动态重组能力提出了更高的要求。生物制造观越来越多地被引入制造系统,以满足制造系统新的要求。
金属工艺学论文
论文标题
先进制造技术的新发展
系别
机械与能源工程系
年级专业
08机本2班
学生姓名
何涛
指导老师
彭北山
邵 阳 学 院
2010年பைடு நூலகம்月10日
先进制造技术的新发展
摘要: 本文介绍了当今制造技术面临的问题,论述了先进制造的前沿科学,并展望了先进制造技术的发展前景。
关键词:制造科学; 前沿科学; 应用前沿;绿色制造
这些问题是当前产品创新的关键理论问题,也是制造由一门技艺上升为一门科学的重要基础性问题。这些问题的重点突破,可以形成产品创新的基础研究体系。
2现代机械工程的前沿科学
不同科学之间的交叉融合将产生新的科学聚集,经济的发展和社会的进步对科学技术产生了新的要求和期望,从而形成前沿科学。前沿科学也就是已解决的和未解决的科学问题之间的界域。前沿科学具有明显的时域、领域和动态特性。工程前沿科学区别于一般基础科学的重要特征是它涵盖了工程实际中出现的关键科学技术问题。
这些内容是制造科学和信息科学基础融合的产物,构成了制造科学中的新分支--制造信息学。
2.2 微机械及其制造技术研究
微型电子机械系统(mems),是指集微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。mems技术的目标是通过系统的微型化、集成化来探索具有新原理、新功能的元件和系统。mems的发展将极大地促进各类产品的袖珍化、微型化,成数量级的提高器件与系统的功能密度、信息密度与互联密度,大幅度地节能、节材。它不仅可以降低机电系统的成本,而且还可以完成许多大尺寸机电系统无法完成的任务。例如用尖端直径为5μm的微型镊子可以夹起一个红细胞;制造出3mm大小能够开动的小汽车;可以在磁场中飞行的像蝴蝶大小的飞机等。mems技术的发展开辟了技术全新的领域和产业,具有许多传统传感器无法比拟的优点,因此在制造业、航空、航天、交通、通信、农业、生物医学、环境监控、军事、家庭以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。
超声电机、超高速切削、绿色设计与制造等领域,国内外已经做了大量的研究工作,但创新的关键是机械科学问题还不明朗。大型复杂机械系统的性能优化设计和产品创新设计、智能结构和系统、智能机器人及其动力学、纳米摩擦学、制造过程的三维数值模拟和物理模拟、超精度和微细加工关键工艺基础、大型和超大型精密仪器装备的设计和制造基础、虚拟制造和虚拟仪器、纳米测量及仪器、并联轴机床、微型机电系统等领域国内外虽然已做了不少研究,但仍有许多关键科学技术问题有待解决。
(3)各种人工智能工具和计算智能方法在制造中的广泛应用促进了制造智能的发展。一类基于生物进化算法的计算智能工具,在包括调度问题在内的组合优化求解技术领域中,受到越来越普遍的关注,有望在制造中完成组合优化问题时的求解速度和求解精度方面双双突破问题规模的制约。制造智能还表现在:智能调度、智能设计、智能加工、机器人学、智能控制、智能工艺规划、智能诊断等多方面。
相关文档
最新文档