二项分布与泊松分布

合集下载

泊松分布和二项分布的区别

泊松分布和二项分布的区别

泊松分布和二项分布的区别泊松分布和二项分布是概率论中的两个常见分布。

虽然它们都与事件发生的次数有关,但它们有着不同的特点和应用场景。

1. 定义泊松分布是一种描述在给定时间或空间内事件发生次数的概率分布,它假设事件的发生是随机且独立的,并且平均发生率是恒定的。

泊松分布通常用于描述一个系统中某个事件在一段时间内发生的次数,如一个工厂在一天内生产的产品数量。

二项分布是一种描述在一定次数的试验中,成功次数的概率分布。

它假设每次试验的结果是二元的(成功或失败),且每次试验的成功率是恒定的。

二项分布通常用于描述在一定次数的试验中,成功的概率以及成功的次数,如在一个班级的考试中,某个学生答对的题目数。

2. 参数泊松分布只有一个参数λ,它表示发生率或期望值。

二项分布有两个参数n和p,其中n表示试验次数,p表示每次试验中成功的概率。

3. 概率密度函数泊松分布的概率密度函数为P(X=k)=e^(-λ) * λ^k / k!,其中X表示事件发生的次数,k表示实际发生的次数。

二项分布的概率密度函数为P(X=k)=C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)表示从n个试验中选出k个成功的组合数,p表示每次试验成功的概率,1-p表示每次试验失败的概率。

4. 特点泊松分布的特点是,它适用于事件发生率低,但发生次数较多的情况。

例如,某一地区每年雷击的次数、一条街道上每小时经过的汽车数等。

二项分布的特点是,它适用于事件发生率较高,但试验次数较少的情况。

例如,一次考试中,某个学生答对的题目数、一件产品的合格率等。

5. 应用泊松分布的应用场景包括,人口出生率、电话接通率、网络流量等。

在工业生产中,泊松分布也经常用于描述故障发生的次数,以便制定维修计划。

二项分布的应用场景包括,硬币翻转、骰子掷出某个点数的次数、样本调查等。

在质量控制中,二项分布也经常用于描述一个批次中次品的数量,以便决定是否接受或拒绝这个批次。

二项分布与泊松分布比较

二项分布与泊松分布比较

二项分布与泊松分布比较二项分布与泊松分布是概率论中常见的两种离散概率分布,它们在实际问题中有着广泛的应用。

本文将对二项分布和泊松分布进行比较,分析它们的特点、适用范围以及优缺点,帮助读者更好地理解和应用这两种分布。

一、二项分布二项分布是最基本的离散概率分布之一,描述了在一系列独立重复的伯努利试验中成功的次数。

在每次试验中,事件发生的概率为p,不发生的概率为1-p。

若进行n次试验,成功的次数为X,则X服从参数为n和p的二项分布,记为X~B(n,p)。

二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)表示组合数。

二项分布的期望和方差分别为E(X) = np,Var(X) = np(1-p)。

二项分布适用于满足以下条件的问题:1)进行n次独立重复的伯努利试验;2)每次试验只有两种可能的结果;3)每次试验中成功的概率为常数p。

二、泊松分布泊松分布描述了单位时间或单位空间内随机事件发生的次数,适用于描述低概率事件在长时间或大空间内的发生情况。

泊松分布的参数λ表示单位时间或单位空间内事件的平均发生率。

泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中e为自然对数的底。

泊松分布的期望和方差均为E(X) = Var(X) = λ。

泊松分布适用于满足以下条件的问题:1)事件在时间或空间上是独立分布的;2)事件在任意非重叠的时间或空间区间内的发生概率相等;3)事件的平均发生率λ是已知的。

三、二项分布与泊松分布的比较1. 适用范围:二项分布适用于描述有限次独立重复试验中成功次数的分布,适用于成功概率固定的情况;而泊松分布适用于描述单位时间或单位空间内事件发生次数的分布,适用于事件发生率很低的情况。

2. 参数设定:二项分布需要设定试验次数n和成功概率p两个参数;泊松分布只需要设定平均发生率λ一个参数。

3. 连续性:二项分布是离散分布,描述的是离散的事件发生次数;泊松分布是连续分布,描述的是连续的事件发生情况。

二项式分布和泊松分布

二项式分布和泊松分布

二项式分布和泊松分布二项式分布和泊松分布是概率论中常见的两种离散概率分布。

它们在不同的应用场景中具有重要的意义。

本文将分别介绍二项式分布和泊松分布的概念、特点以及应用,并通过实例来说明它们的实际意义。

一、二项式分布二项式分布描述了在n次独立重复实验中成功次数的概率分布。

其中,每次实验只有两个可能的结果:成功或失败。

成功的概率记为p,失败的概率记为q=1-p。

用X表示在n次实验中成功的次数,则X服从二项式分布B(n,p)。

二项式分布的特点是:每次实验之间相互独立,实验结果只有两种可能,成功和失败的概率不变。

二项式分布的应用场景很广泛。

例如,在工程质量控制中,可以使用二项式分布来计算在一批产品中不合格品的数量;在医学研究中,可以使用二项式分布来计算某种疾病在人群中的患病率。

例如,某公司生产的产品合格率为90%,现在从该公司的产品中随机抽取10个进行质量检测,问有几个产品合格的概率是多少?这个问题可以使用二项式分布来解决。

假设成功事件为产品合格,失败事件为产品不合格,成功概率为p=0.9,失败概率为q=0.1。

那么在10次实验中,成功的次数X服从二项式分布B(10,0.9)。

我们可以使用概率计算公式来计算出有几个产品合格的概率。

二、泊松分布泊松分布是描述在一段固定时间或空间内,事件发生次数的概率分布。

它适用于描述独立事件在单位时间或单位空间内发生的次数。

泊松分布的参数λ表示单位时间或单位空间内平均发生的事件次数。

泊松分布的特点是:事件之间独立,事件在单位时间或单位空间内平均发生率不变。

泊松分布在实际应用中有很多场景。

例如,在电话交换机的研究中,可以使用泊松分布来描述单位时间内通话请求的数量;在网络流量分析中,可以使用泊松分布来描述单位时间内收到的数据包数量。

例如,某个餐厅在一小时内平均接待10个客人,问在下一个小时内接待超过15个客人的概率是多少?这个问题可以使用泊松分布来解决。

假设事件为接待客人,单位时间内平均接待的客人数为λ=10。

二项分布与泊松分布的应用

二项分布与泊松分布的应用

二项分布与泊松分布的应用二项分布与泊松分布是概率论中常见的两种分布,它们在实际生活中有着广泛的应用。

本文将分别介绍二项分布与泊松分布的概念及特点,并结合实际案例探讨它们在不同领域的具体应用。

一、二项分布二项分布是离散型概率分布的一种,描述了在一系列独立重复的同类试验中成功次数的概率分布。

在每次试验中,事件发生的概率保持不变且相互独立。

二项分布的概率质量函数可以表示为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,n表示试验的次数,k表示成功的次数,p表示每次试验成功的概率,C(n,k)表示组合数。

二项分布的应用非常广泛,例如在工业生产中,可以用来描述产品合格率;在医学实验中,可以用来描述药物疗效;在市场营销中,可以用来描述广告点击率等。

二、泊松分布泊松分布是描述单位时间(或单位面积、单位体积)内随机事件发生次数的概率分布。

泊松分布的概率质量函数可以表示为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ表示单位时间(或单位面积、单位体积)内事件平均发生率,k表示事件发生的次数。

泊松分布常用于描述稀有事件在一定时间内发生的概率,例如在电话交换机中描述单位时间内收到的电话数、在保险业描述车辆事故发生的次数等。

三、二项分布与泊松分布的应用案例1. 电商平台广告点击率预测假设某电商平台在进行广告投放时,希望预测用户点击广告的概率。

可以利用二项分布来描述每次广告曝光后用户点击的概率,通过统计多次广告曝光和点击的数据,估计用户点击广告的整体概率。

2. 交通拥堵预测城市交通拥堵是一个复杂的问题,可以利用泊松分布来描述车辆在单位时间内通过某一路段的数量。

通过分析历史数据,可以预测未来某一时段交通流量的波动情况,从而采取相应的交通管理措施。

3. 医院急诊就诊量预测医院急诊就诊量的波动较大,可以利用泊松分布来描述单位时间内的就诊人数。

通过建立泊松分布模型,医院可以合理安排医护人员的工作时间,提高急诊服务的效率。

二项分布到泊松分布的推导

二项分布到泊松分布的推导

二项分布到泊松分布的推导二项分布和泊松分布是概率论中常见的两种离散分布。

二项分布描述了在一系列相互独立的重复试验中,成功的次数的概率分布。

而泊松分布则描述了在一个固定时间段内,事件发生的次数的概率分布。

在某些情况下,当试验次数很大,但成功的概率很小的时候,二项分布可以近似为泊松分布。

本文将从二项分布出发,推导出泊松分布。

我们先来回顾一下二项分布的定义和性质。

二项分布的概率质量函数可以表示为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,n表示试验的次数,k表示成功的次数,p表示每次试验中成功的概率,C(n,k)表示组合数。

接下来,我们假设当试验次数n趋向于无穷大,而每次试验成功的概率p趋向于0,同时n*p保持不变。

我们来推导一下当n趋于无穷大时,二项分布可以近似为泊松分布。

我们将二项分布的概率质量函数进行简化:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)= n! / (k! * (n-k)!) * p^k * (1-p)^(n-k)接下来,我们对n!进行近似处理。

根据斯特林公式,当n趋于无穷大时,n!可以近似表示为:n! ≈ √(2πn) * (n/e)^n将这个近似式代入二项分布的概率质量函数中,得到:P(X=k) ≈ √(2πn) * (n/e)^n * (1/√(2πk) * (k/e)^k * (1/√(2π(n-k)) * ((n-k)/e)^(n-k)) * p^k * (1-p)^(n-k)我们可以将这个式子进一步简化。

首先,我们将√(2πn)和√(2πk)和√(2π(n-k))合并在一起,得到一个常数A:P(X=k) ≈ A * (n/e)^n * (k/e)^k * ((n-k)/e)^(n-k) * p^k * (1-p)^(n-k)接下来,我们将 (n/e)^n * (k/e)^k * ((n-k)/e)^(n-k)进行合并,得到一个常数B:P(X=k) ≈ A * B * p^k * (1-p)^(n-k)我们可以看到,A和B都是与n和k无关的常数。

二项分布与泊松分布的应用

二项分布与泊松分布的应用

在物理学中,泊松分布 也被用于描述放射性衰 变的期望值,例如式为:DX = λ
方差可以用来衡量随机事件的波 动程度
添加标题
添加标题
添加标题
添加标题
方差的计算需要考虑随机事件的 概率和频率
在泊松分布中,方差与期望值λ相 等
适用场景的对比
计算成功次数
定义:二项分布是描述在n次独立 重复的伯努利试验中成功次数的 概率分布。
公式:X~B(n,p),其中X表示成 功次数,n表示试验次数,p表示 每次试验成功的概率。
添加标题
添加标题
添加标题
添加标题
应用场景:例如,在n次抛硬币试 验中,计算正面朝上的次数。
泊松分布与二项分布的关系:当n 很大,p很小,且np=λ(λ为常 数)时,二项分布近似于泊松分 布。
泊松分布的应用范 围广泛,包括物理 学、生物学、医学 、经济学等领域。
在实际应用中,泊 松分布可以通过数 学公式和概率图来 描述随机事件的概 率分布情况。
计算随机事件的概率
泊松分布适用于 描述单位时间内 随机事件的概率 分布情况
泊松分布的参数 λ表示单位时间 内随机事件的平 均发生率
通过泊松分布, 可以计算出随机 事件发生的具体 概率
注意事项:当n很大或者p很小时,二项分布可能会呈现出泊松分布的特性
与泊松分布的关系:当n充分大且p充分小时,二项分布近似于泊松分布
描述随机事件的概率模型
泊松分布适用于在 一定时间内随机事 件的概率分布,如 单位时间内随机事 件发生的次数。
泊松分布在二项分 布的基础上,考虑 了随机事件的独立 性和成功概率,从 而更准确地描述随 机事件。
二项分布与泊松分布在参数取值范围上也有所不 同,二项分布的参数p取值范围为0<p<1,而泊 松分布的参数λ可以取任意正值。

二项分布与泊松分布的应用

二项分布与泊松分布的应用在统计学和概率论中,二项分布和泊松分布是两种重要的离散概率分布,它们广泛应用于各个领域,如生物统计、金融、工程、社会科学和质量控制等。

理解这两种分布的特性及其应用场景,可以帮助我们更好地进行数据分析与决策。

一、二项分布的基本概念二项分布用于描述在固定次数的独立试验中成功次数的概率。

每次试验有两个可能的结果——成功或失败。

具体地说,如果我们进行( n ) 次独立试验,每次成功的概率为 ( p ),则成功次数 ( X ) 的分布可以表示为:[ P(X = k) = C(n, k) p^k (1 - p)^{n - k} ]其中,( C(n, k) ) 是组合数,表示从 ( n ) 次试验中成功( k ) 次的方式总数。

1.1 应用场景二项分布的应用非常广泛,常见的场景包括:医学临床试验:在药物测试中,通过一定数量的病人检测药物是否有效。

若成功则为阳性反应,失败则为阴性反应。

问卷调查:在市场研究中,我们可以用二项分布来模拟调查中选择特定选项人数的概率。

生产过程质量控制:在批量生产中,可以通过随机抽样来判断产品不合格率。

例如,在一家冰激凌厂,假设每个冰激凌都是合格的概率为 0.9。

如果我们随机挑选 10 个冰激凌,想知道其中恰好有 8 个是合格品的概率,可以使用二项分布进行计算。

二、泊松分布的基本概念泊松分布是一种用于描述单位时间或单位面积内事件发生次数的概率分布。

例如,在某个固定的时间段内,交通事故发生的次数、电话中心接到电话的次数等都可以用泊松分布来建模。

其概率质量函数为:[ P(X = k) = ]这里,( ) 是单位时间或面积内事件发生的平均次数,( k ) 是事件发生的实际次数。

2.1 应用场景泊松分布同样在许多领域具有实际应用,包括但不限于:排队理论:如银行、医院等服务场所,可以使用泊松分布来分析顾客到达的频率。

故障率分析:工程领域中,可以用来描述机器设备故障事件发生频率,以及维护需求。

06二项分布及泊松分布

●Bernoulli 试验(Bernoulli T est):将感兴趣的事件A出现的试验结果称为“成功”,事件A不出现的试验结果称为“失败”,这类试验就称为Bernoulli 试验●二项分布(binomial distribution):是指在只会产生两种可能结果如阳性或阴性之一的n次独立重复试验中,当每次试验的阳性概率π保持不变时,出现阳性次数X=0,1,2,…,n的一种概率分布。

●Poisson分布(Poisson distribution):随机变量X服从Poisson分布式在足够多的n次独立试验中,X取值为1,2,…,的相应概率为…的分布。

★二项分布成立的条件:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。

★二项分布的图形:当∏=0.5,二项分布图形是对称的,当∏不等于0.5,图形是偏态的,随着n增大,图形趋于对称。

当n趋于无穷大时,只有∏不太靠近0或者1,二项分布近似正态分布。

★二项分布的应用总体率的区间估计,样本率与总体率比较,两样本率的比较★Poisson 分布的应用总体均数的区间估计,样本均数与总体均数的比较,两个样本均数的比较:两个样本计数均较大时,可根据Poisson 分布的正态近似性对其进行u 检验。

★Poisson 分布成立的条件:①平稳性:X 的取值与观察单位的位置无关,只与观察单位的大小有关;②独立增量性:在某个观察单位上X 的取值与前面各观察单位上X 的取值无关;③普通性:在充分小的观察单位上X 的取值最多为1。

Poisson 分布,X~P(μ),X 的均数μX =μ,X的方差σ2 =μ,X的标准差σX★Poisson分布的性质1、总体均数λ与总体方差相等是泊松分布的重要特点。

2、当n增大,而∏很小,且n∏=λ总体均数时,二项分布近似泊松分布。

3、当总体均数增大时,泊松分布渐近正态分布,一般而言,总体均数》20时,泊松分布资料做为正态分布处理。

二项分布与泊松分布

2、当π=0.5时,二项分布呈对称状态 ; 当n足够大,且π不太靠近0或1时,二项分布逼近
正态分布,; 当n足够大,但π很小时,如n≥100而π<0.1或π>0.9时
,二项分布近似于泊松分布。
样本率均数 样本率标准差
p
x
n
n
n
pnx
n(1)
n
(1)
n
样本率p的标准差
pnx
n(1)
n
(1)
二项分布(binomial distribution)
贝努利试验列中成功次数k的概率为: P(X=k)=Cnk πk (1-π)n-k (0<π<1) ,
k=0 , 1 , …,n, 而 Cnk πk (1-π)n-k 二 项 式 恰 好 是 牛 顿 展 开 式 ((π+(1-π)) n的项,故又称为二项分布。
二项分布与泊松分布
n重贝努利试验
在同一条件下独立重复n次试验,每次试验只 有两个可能的对立结果,A与非A , 如成功与 失败 , 其概率P(A)=π , (0< π<1) , 则称这 一系列独立重复试验为n重贝努利试验(贝努 利试验序列)。
n重贝努利试验的三个条件
(1)每次试验只有两个可能的对立结果, A与非A (2)每次试验的条件不变,即每次试验中, 结果A发生的概率P(A)=π (3)各次试验独立,即任一次试验结果与 其它次试验结果无关。
医学中Poisson分布
单位时间(空间、面积)内某稀有事件 发生次数的分布。
如研究细菌、某些血细胞、粉尘等在单 位面积或容积内计数结果的分布,放射 性物质在单位时间内放射出质点数的分 布,在单位空间中某些野生动物或昆虫 数的分布,在一定人群中某种低患病率 的非传染性疾病患病数或死亡数分布。

概率论中的二项分布与泊松分布

概率论中的二项分布与泊松分布概率论是数学中的一个重要分支,研究随机事件发生的概率以及它们之间的关系。

在概率论中,二项分布和泊松分布是两个常见且重要的概率分布。

本文将分别介绍二项分布和泊松分布的定义、特点以及应用。

一、二项分布二项分布是指在一系列独立的、相同概率的伯努利试验中,成功事件发生的次数服从二项分布的概率分布。

其中,伯努利试验是指只有两个可能结果的试验,如抛硬币的结果只有正面和反面两种情况。

二项分布的概率质量函数可以表示为:P(X=k)=C(n,k)p^k(1-p)^(n-k),其中,n代表试验次数,k代表成功事件发生的次数,p代表每次试验成功的概率,C(n,k)代表组合数。

二项分布的特点有以下几点:1. 二项分布的随机变量只能取非负整数值,即k只能取0,1,2,...,n。

2. 二项分布的期望值为E(X)=np,方差为Var(X)=np(1-p)。

3. 当试验次数n趋向于无穷大时,二项分布逼近于泊松分布。

二项分布在实际应用中有广泛的应用,比如在质量控制中,可以使用二项分布来计算在一定数量的产品中出现不合格品的概率;在投资决策中,可以使用二项分布来计算在一系列投资项目中成功项目的数量等。

二、泊松分布泊松分布是指在一段时间或区域内,事件发生的次数服从泊松分布的概率分布。

泊松分布适用于事件发生的概率很小,但试验次数很大的情况。

泊松分布的概率质量函数可以表示为:P(X=k)=(e^(-λ)*λ^k)/k!,其中,λ代表单位时间或单位区域内事件的平均发生率。

泊松分布的特点有以下几点:1. 泊松分布的随机变量只能取非负整数值,即k只能取0,1,2,...。

2. 泊松分布的期望值和方差均为λ。

3. 当试验次数n趋向于无穷大,每次试验成功的概率p趋向于0,但np保持不变时,二项分布逼近于泊松分布。

泊松分布在实际应用中也有广泛的应用,比如在电话交换机的排队系统中,可以使用泊松分布来描述单位时间内到达电话的数量;在可靠性工程中,可以使用泊松分布来描述设备的故障率等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

µ Ê Æ Â
100 50 0 0 2 4
µ Ê Æ Â
6 8 10 Æ Ë ä û
100 50 0
n=20
0
3
6
9
12
Æ Ë ä û
n=30
二项分布总体不同样本例数时的抽样分布
二、二项分布的应用
(一 )、总体率的估计
有点值估计和区间估计。 1 查表法 : 当n较小,如n≤50时,特别是 p 很接近于0或1时,可由附表6百分率的置 信区间表直接查出。P709 or p817 例:某地对13名输卵管结扎的育龄妇女经 壶腹部吻合术后,观察其受孕情况,发现 有6人受孕,据此估计该吻合术妇女的受 孕的95%可信区间 此例:n=13,x=6 查表得95%CI为:19%~75%。
(五) 群检验
1-Qm=X/n 从而Q=√P=1-Q第四节 泊松分布(Poisson distribution)
一、Poisson分布 (一)泊松分布的概念
泊松分布(旧译普哇松分布 )是离散型随机变量的另 一重要分布,最早由S.D.Poisson于1837年提出。 定义:若离散型随机变量x的取值为非负整数,且相 应的概率函数为: X x 0,1,2,......
0.000006 0.000138 0.001447 0.009002 0.036757 0.102919 0.200121 0.266828 0.233474 0.121061 0.028248
如果甲乙两药疗效无差别,按甲药的治愈率(70%)用 乙药治疗10人应治愈7人,实际治愈9人,相差2人。 双侧检验,计算相差±2人及2人以上的总概率,即 x≥9和x≤5的概率之和: ΣP=0.000006+0.000138+0.001447+0.009002+0.036757 +0.102919+0.121061+0.028248=0.299577 或:ΣP=1-(0.200121+0.266828+0.233474)=0.299577
第一节 二项分布和总体率的估计
二项分布(binomial distribution) 就是对这种只具有两种互斥结果的离散型 随机变量的规律性进行描述的一种概率分 布。由于这一种分布规律是由瑞士学者贝 努里(Bernoulli)首先发现的,又称贝努里 分布。
二项分布有两个基本假设: 1.各事件是相互独立的,即任一事件 的发生与否,不影响其它事件的发生 概率; 2.各个随机事件只能产生相互排斥的 两种结果。
二项分布展开计算表
发病人数 x 展开式 Cxn π x(1-π)n-x
C04 (0.1858)0(0.8142)4 C14 (0.1858)1(0.8142)3
概率 P
理论户数 T=P×288
实际户数 A
0 1 2 3 4
C24 (0.1858)2(0.8142)2
C34 (0.1858)3(0.8142)1 C44 (0.1858)4(0.8142)0
1 直接法 例 某医院用甲药治疗某病,其治愈率为70%, 今用乙药治疗该病10人,治愈9人,问甲乙两药 疗效有无差别? 已知: π =0.7,1- π =0.3,假设两药疗效无差别, 则治愈与非治愈的概率应符合二项分布,即:
[ (1 )] [0.7 0.3]
n
10
[0.7 0.3]10
115.52 39.54 6.02 0.35
1634.58
4162.83 109.41 120.56 7.02
12.91
36.04 2.77 20.03 20.06
χ2=91. 81,按ν=组数-2=5-2=3查χ2界值表得: χ20.01(3)=11.345,
故P<0.01,说明该疾病的家庭分布不符合二项分布,可以认 为该病有家族集聚性。
0 1 2 3 C10 (0.7) 0 (0.3)10 C10 (0.7)1 (0.3) 9 C10 (0.7) 2 (0.3) 8 C10 (0.7) 3 (0.3) 7 4 5 6 7 C10 (0.7) 4 (0.3) 6 C10 (0.7) 5 (0.3) 5 C10 (0.7) 6 (0.3) 4 C10 (0.7) 7 (0.3) 3 8 9 10 C10 (0.7) 8 (0.3) 2 C10 (0.7) 9 (0.3)1 C10 (0.7)10 (0.3) 0
此例:n=50,x=10 查表得95%CI为:10%~34%。
二项分布的应用
2 正态近似法:应用条件:np及n(1−p)均≥5
p±uαsp
例:在某地随机抽取329人,做HBsAg检验,得阳性 率为8.81%,求阳性率95%置信区间。 已知:p=8.81%,n=329,故:
sp p (1 p ) / n 0.0881(1 0.0881) / 329 0.0156 1.56%
P( x) C (1 )
x n x
x n
n x
, ( x 1,2,3...... ) n
n! 式中: C 称二项系数。 x!(n x)!
(二)二项分布的应用条件
1. 各观察单位只能具有互相对立的一种结 果,属于二项分类资料; 2. 已知发生某一结果的概率为π,其对立结 果的概率则为1-π 。实际工作中要求π是从 大量观察中获得的比较稳定的数值; 3. n个观察单位的观察结果互相独立,即每 个观察单位的观察结果不会影响到其它观 察单位的结果。
95%CI:8.81±1.96×1.56;即5.75%~11.87%。
二项分布
下表是用P±Uasp时要求的P值 与N的大小参考数字。
P
0.5 0.4 0.3 0.2 0.1 0.05 n 30 50 80 200 600 1400 nP 15 20 24 40 60 70
二项分布的应用
(二 )差异的显著性检验
二项分布的标准差:
n (1 )
标准差表示x取值的离散度或变异的大小。
如n=5,π=5/6,1-π=1-5/6,则:
n (1 ) 5 5 6 1 6 0.8333
(三)二项分布的性质
二项分布的标准误
若以比值或百分数表示,则标准误为 : (1 ) p


450 400 350 300
350 300 250
µ Ê Æ Â
200 150 100 50 0 0 1 2 3 4 5 Æ Ë ä û
µ Ê Æ Â
250
200 150 100 50 0 0 1 2 3 4 5 6 7 8 Æ Ë ä û
n=5
250 200 150
n=10
250 200 150
3.研究疾病的家族聚集性
例 某单位发生乙肝暴发流行,经调查4口之家共288 户,其中无病例的167户,发生1例的51户,2例的 50户,3例的17户,全家发病的3户,问乙肝的发 病是否具有家族集聚性? π=214/1152=0.1858,1-π=0.8142 计算发病数x=0,1,2,3,4时的理论概率 和理论户数。列表,比较实际户数与理论户数差 别有无显著性意义。
n
σp被称为率的标准误(standard error of rate), 用来反映随机抽样获得的样本率p与总体π之间 的抽样误差大小。
(三)二项分布的性质
二项分布的标准误
若以比值或百分数表示,则标准误为 :
p

(1 )
n
实际工作中常用p作为π 的估计值,得:
sp
p(1 p) n
(五)群检验
用于混合样本分析:常见于阳性率很低或 检出率低的分析样本 根据二项分布的原理:1份混合样本中含 有k份阳性的概率为 P(k)=
c (1 p)
k n
n k
p
k
当k=0时P(0)是说混合样品中没有1阳 性样品的原始概率,反映的是混合样品 阴性的概率
p(0) c (1 p) p (1 p)
(三)二项分布的性质
2.二项分布的累计概率
常用的有左侧累计和右侧累计2种方法。 从阳性率为π 的总体中随机抽取n个个体,则 (1)最多有k例阳性的概率
P(x≤k)=P(0) + P(1) +……+ P(k)
(2)最少有k例阳性的概率
P(x≥k)=P(k) + P(k+1) +……+ P(n) =1- P(x≤k-1)
抓中三个黑球的概率: P(3)=0.5×0.5×0.5=0.125
抓中两黑一白的概率: 定理:几个相互独立事件同时发生 P(2)=3×0.125=0.375 的概率等于各独立事件的概率之积。 定理:在几个互不相容的事件中, 任一事件发生的概率等于这几个事 件的概率之和。
P( x) C (1 )
k n n 0
n
(1 p) n p(0)
(五) 群检验
当收集的样本数量很大时,全部检验费 时费力可以用群检验的方法进行解决, 若每个标本的阳性概率为π,则其阴性 概率为Q=1-π Qm便是某个群m个标本均
为阴性的概率,一个群为阴性的群的概率, 而1-Qm就为一个群阳性的概率。假设受检 的n个群中有X个阳性群,用x/n作为阳性 群概率的估计值
P=0.299577>0.05,差异无统计学意义,尚 不能认为乙药疗效优于甲药。 本例如采用单侧检验,即要求判断乙药疗效 优于甲药?此时只需计算相差2人及以上的 总概率: ΣP=P(9)+P(10)=0.121061+0.028248=0.149309 P>0.05,差异无统计学意义,尚不能认为乙药 疗效优于甲药。
x n x
n x
, ( x 1,2,3...... ) n
相关文档
最新文档