三角形易错题(经典自己整理)
小学四年级下册数学期末总复习:三角形常考易错题

四年级下册数学(期末总复习:三角形常考易错题】—、《内角和》1.在一个等腰三角形中,顶角是72°,求底角的度数。
180°-72°=108°答:底角的度数为108°2.已知一个等腰三角形的一个底角是35°,求其他两个角的度数?180°-35°×2=110°答:另一个底角是35°,顶角是110°。
3.已知一个等腰三角形的一个顶角是70°,它的每一个底角是多少度?(180°-70)-2=55°答:它的每个底角是55°。
4.已知么么A、么B、么C是三角形中的三个内角,∠A=4∠B,∠B=∠C,求∠A的度数?这是一个什么三角形?180°÷(1+4+1)=30°30°×4=120°答:这是个等腰钝角三角形。
5.任意一个七边形的内角和是多少度?(7-2)×180°=900°答:任意一个七边形的内角和是900°。
二、《面积》1.一个三角形面积是20平方厘米,高是8厘米,底是多少厘米?三角形的面积=底×高÷2底=三角形的面积×2÷高20×2÷8=5(厘米)答:底是5厘米。
2.一个平行四边形的底是6厘米,高14厘米,与它等底等高的三角形面积是多少平方厘米?6×14÷2=42(平方厘米)答:与它等底等高的三角形面积是42平方厘米。
3.一个等腰三角形的周长是16厘米,底边上的高是4厘米,一条腰是5厘米,它的面积是多少平方厘米?16-5×2=6(厘米)6×4÷2=12(平方厘米)答:它的面积是12平方厘米。
4.在一个长9厘米,周长26厘米的长方形内画一个最大的三角形,这个三角形的面积是多少平方厘米?26÷2-9=4(厘米)9×4÷2=18(平方厘米)答:这个三角形的面积是18平方厘米。
三角形易错题集锦(带答案解析)

三角形易错题一、填空题(共 10 小题) (除非特别说明,请填准确值)1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为_________ .2.等腰三角形 ABC 的周长是 8cm, AB=3cm,则 BC= _________ cm.3.等腰三角形的周长为 20cm,若腰不大于底边,则腰长 x 的取值范围是 _________ .4.如图: a∥ b, BC=4,若三角形 ABC 的面积为 6,则 a 与b 的距离是 _________ .5.小亮家离学校 1 千米,小明家离学校 3 千米,如果小亮家与小明家相距 x 千米,那么 x 的取值范围是 _________ .6.已知△ ABC 两边长 a,b 满足,则△ ABC 周长 l 的取值范围是 _________ .7.若等腰△ ABC (AB=AC),能用一刀剪成两个等腰三角形,则∠ A= _________ .8.图 1 是一个三角形,分别连接这个三角形三边的中点得到图 2;再分别连接图 2 中间小三角形的中点,得到图 3. (若三角形中含有其它三角形则不记入)(1) 图 2 有 _________ 个三角形;图 3 中有 _________ 个三角形(2)按上面方法继续下去,第 20 个图有 _________ 个三角形;第 n 个图中有 _________ 个三角形. (用 n 的代数式表示结论)9.一个三角形两边长为 5 和 7,且有两边长相等,这个三角形的周长是 _________ .10.两边分别长 4cm 和 10cm 的等腰三角形的周长是 _________ cm.参考答案与试题解析一、填空题(共 10 小题) (除非特别说明,请填准确值)1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为 8 .考点:多边形内角与外角.专题:计算题.分析:根据内角和公式,设该多边形为 n 边形,内角和公式为180°• (n ﹣ 2),因为最小角为100°,又依次增加的度数为10°,则它的最大内角为( 10n+90) °,根据等差数列和的公式列出方程,求解即可.解答:解:设该多边形的边数为 n.则为=180 • (n ﹣ 2),解得 n1=8, n2=9,n=8时,10n+90=10×80+90=170,n=9 时,10n+90=9 × 10+90=180, (不符合题意)故这个多边形为八边形.故答案为: 8.点评:本题结合等差数列考查了凸 n 边形内角和公式.方程思想是解此类多边形有关问题常要用到的思想方法,注意凸 n 边形的内角的范围为大于0°小于180°.2.等腰三角形 ABC 的周长是 8cm, AB=3cm,则 BC= 2 或 3 或 2.5 cm.考点:等腰三角形的性质;三角形三边关系.专题:计算题.分析:按照 AB 为底边和腰,分类求解.当 AB 为底边时, BC 为腰;当 AB 腰时, BC 为腰或底边.解答:解: (1) 当 AB=3cm 为底边时, BC 为腰,由等腰三角形的性质,得 BC= (8 ﹣ AB) =2.5cm;(2) 当 AB=3cm 为腰时,①若 BC 为腰,则 BC=AB=3cm,②若 BC 为底,则 BC=8 ﹣ 2AB=2cm.故本题答案为: 2 或 3 或 2.5cm.点评:本题考查了等腰三角形的性质,分类讨论思想.关键是明确等腰三角形的三边关系.3.等腰三角形的周长为 20cm,若腰不大于底边,则腰长 x 的取值范围是 5<x≤ .考点:等腰三角形的性质;三角形三边关系.分析:根据题意以及三角形任意两边之和大于第三边列出不等式组求解即可.解答:解:等腰三角形的底边为 20 ﹣ 2x,根据题意得,,由①得,x≤ ,由②得, x>5,所以,腰长 x 的取值范围是5<x≤ .故答案为: 5<x≤ .点评:本题考查了等腰三角形两腰相等的性质,三角形的三边关系,列出不等式组是解题的关键.4.如图:a∥ b, BC=4,若三角形 ABC 的面积为 6,则 a 与b 的距离是 3 .考点:平行线之间的距离;三角形的面积.分析:过 A 作AD⊥BC 于 D,则 AD 的长就是 a b 之间的距离,根据三角形的面积公式求出 AD 即可.解答:解:过 A 作 AD⊥BC 于 D,∵ 三角形 ABC 的面积为 6, BC=4,:×BC ×AD=6,×4×AD=6,AD=3,∵ a∥ b,:a 与b 的距离是 3,故答案为: 3.点评:本题考查了两条平行线间的距离和三角形的面积,关键是正确作辅助线后能求出 AD 的长.5.小亮家离学校 1 千米,小明家离学校 3 千米,如果小亮家与小明家相距 x 千米,那么 x 的取值范围是2≤x≤4 .考点:三角形三边关系.分析:小明、小亮家的地理位置有两种情况:(1)小明、小亮家都在学校同侧;(2)小明、小亮家在学校两侧.联立上述两种情况进行求解.解答:解: (1)小明、小亮家都在学校同侧时,x≥2;(2)小明、小亮家在学校两侧时, x≤4.因此 x 的取值为2≤x≤4.点评:本题注意考虑两种不同的情况,能够分析出每一种情况的范围,再进一步综合两种情况的结论.6.已知△ ABC 两边长 a,b 满足,则△ ABC 周长l 的取值范围是 6<l<10 .考点:分析:解答:非负数的性质:算术平方根;非负数的性质:偶次方;三角形三边关系.由,可得 + (b ﹣ 3) 2=0,则 a=2, b=3,可得第三边 c 的取值范围是 1<c<5,从而求得周长 l 的取值范围.解:∵ ,∴ + (b ﹣ 3) 2=0,∴ a=2, b=3,∴ 第三边 c 的取值范围是 1<c<5,∴ △ ABC 周长 l 的取值范围是 6<l<10.故答案为: 6<l<10.点评:此题主要考查了非负数的性质,其中首先灵活应用了非负数的性质,然后利用三角形三边之间的关系,难度中等.7.若等腰△ ABC (AB=AC),能用一刀剪成两个等腰三角形,则∠ A= 36。
2022年最新人教版小学数学四年级下册三角形易错习题总结(带答案)

四年级下册三角形易错题一、填空题1.一个三角形一个内角的度数是100°,这个三角形是三角形,一个等腰三角形的底角是65°,顶角是,等边三角形的每个内角都是。
2.等腰三角形的两条边分别是3cm和7cm,那么第三条边是cm。
3.在一个三角形中,∠1=72°,∠2=48°,∠3=;在一个等腰三角形中,一个底角是36°,顶角是。
4.一个直角三角形,其中一个锐角是45°,它又是三角形。
5.如图,∠1=°.6.一根绳子正好围成一个长23米、宽22米的长方形,如果改围成一个等边三角形,那么这个等边三角形的边长是米。
7.板凳腿之间加一根斜木条固定是利用了三角形的特性,伸缩门是利用了平行四边形的特性。
8.两点之间的所有连线中,最短。
9.一个等腰三角形的一个底角是45度,它的顶角是度,这个三角形按角分是三角形。
10.如果三角形的两边分别是4cm和5cm,那么第三条边可能是cm。
11.在等腰三角形中,其中一个角是100°,则另外两个角分别是°和°,这是一个三角形。
(填“锐角”“钝角”或“直角”)12.三角形有条高,平行四边形有条高,梯形有条高。
13.三角形最多有个锐角,最多有个直角,最多有个钝角。
14.如果一个三角形的三条边都是整厘米数,其中两条边分别是10cm和4cm,另外一条边最小是cm。
15.一个等腰三角形的两条边分别是9厘米和4厘米,另一条边是厘米。
16.用3厘米,8厘米和第三根小棒首尾相连组成三角形,这第三根小棒最小是厘米,最大是厘米.(都是整厘米长)17.三角形按角分类分为三角形、三角形和三角形.18.一个三角形的三个内角分别是∠A,∠B,∠C。
∠A的度数是∠B的2倍,∠C的度数是∠B的3倍,这是一个三角形。
19.红领巾按角分类是三角形,按边分类是三角形。
20.在长是3厘米,4厘米,5厘米和6厘米四根小棒中,任选三根围成一个三角形,能围成个不同的三角形。
(易错题精选)初中数学三角形经典测试题及答案

(易错题精选)初中数学三角形经典测试题及答案一、选择题1.如图,在ABC ∆中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.2.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .2【答案】B【解析】【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4,11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.3.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm A .6B .8C 5D .5【答案】B【解析】【分析】根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.【详解】设∠A =x ,则∠B =2x ,∠C =3x ,由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°,解得x =30°,即∠A=30°,∠C=3×30°=90°,此三角形为直角三角形,故AB=2BC=2×4=8cm,故选B.【点睛】本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.4.下列长度的三条线段能组成三角形的是()A.2, 2,5B.1,3,3C.3,4,8D.4,5,6【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】根据三角形三边关系可知,三角形两边之和大于第三边.A、2+2=4<5,此选项错误;B、1+3<3,此选项错误;C、3+4<8,此选项错误;D、4+5=9>6,能组成三角形,此选项正确.故选:D.【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.5.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12 B.10 C.8 D.6【答案】C【解析】【分析】由折叠的性质可知;DC=DE,∠DEA=∠C=90°,在Rt△BED中,∠B=30°,故此BD=2ED,从而得到BC=3BC,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.6.如图,在ABC 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒, ∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C.【点睛】本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.7.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是()A.60 B.48 C.24 D.96【答案】D【解析】【分析】由菱形的性质可得AC⊥BD,AO=CO,BO=DO=6,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=6,∴AO22100368AB OB-=-=,∴AC=16,BD=12,∴菱形面积=12162⨯=96,故选:D.【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.8.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A.B.C.D.【答案】C【解析】【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A、72+242=252,152+202≠242,(7+15)2+202≠252,故A不正确;B、72+242=252,152+202≠242,故B不正确;C、72+242=252,152+202=252,故C正确;D、72+202≠252,242+152≠252,故D不正确,故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.9.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB 于点E.如果点M是OP的中点,则DM的长是()A.2 B2C3D.3【答案】C【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM 的长.【详解】解:∵OP 平分∠AOB ,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP ∥OA ,∴∠AOP=∠CPO ,∴∠COP=∠CPO ,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE ⊥OB ,∴∠CPE=30°,∴CE=12CP=1, ∴PE=22CP CE 3-=, ∴OP=2PE=23,∵PD ⊥OA ,点M 是OP 的中点,∴DM=12OP=3. 故选C . 考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.10.如图,在四边形ABCD 中,,90,5,10AD BC ABC AB BC ∠=︒== ,连接,AC BD ,以BD 为直径的圆交AC 于点E .若3DE =,则AD 的长为( )A .55B .45C .35D .25【答案】D【解析】【分析】先判断出△ABC 与△DBE 相似,求出BD ,最后用勾股定理即可得出结论.【详解】如图1,在Rt△ABC中,AB=5,BC=10,∴AC=55,连接BE,∵BD是圆的直径,∴∠BED=90°=∠CBA,∵∠BAC=∠EDB,∴△ABC∽△DEB,∴AB AC DE DB=,∴5355DB =,∴DB=35,在Rt△ABD中,AD=2225BD AB-=,故选:D.【点睛】此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.11.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS 和HL是解题的关键.12.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°【答案】B【解析】【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选B.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.13.下列几组线段中,能组成直角三角形的是()A.2,3,4B.3,4,6C.5,12,13D.2,5,5【答案】C【解析】【分析】要验证是否可以组成直角三角形,根据勾股定理的逆定理,只要验证三边的关系是否满足两边平方是否等于第三边的平方即可,分别验证四个选项即可得到答案.【详解】A.222+≠,故不能组成直角三角形;234B. 222+≠,故不能组成直角三角形;346C .22251213+=,故可以组成直角三角形;D .222255+≠,故不能组成直角三角形;故选C .【点睛】本题主要考查了勾股定理的逆定理(如果三角形两边的平方等于第三边的平方,那么这个三角形是直角三角形),掌握勾股定理的逆定理是解题的关键.14.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】 试题分析:∵AC 为切线 ∴∠OAC=90° ∵∠C=40° ∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50° ∴∠ABD=∠ODB=25°. 考点:圆的基本性质.15.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】 利用垂直的定义得到90DAB EAC ∠=∠=︒,则ADC BAE ∠=∠,于是可对①进行判断;利用“SAS ”可证明DAC BAE ∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE ∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB ∠=∠=︒,于是可对③进行判断.【详解】解:AD AB ⊥,AE AC ⊥,90DAB ∴∠=︒,90EAC ∠=︒, DAB BAC EAC BAC ∴∠+=∠+∠,即ADC BAE ∠=∠,所以①正确;在DAC ∆和BAE ∆中,DA AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS ∴∆≅∆,所以②正确;ADC ABE ∴∠=∠,∵∠AFD=∠MFB ,90DMB DAB ∴∠=∠=︒,DC BE ∴⊥,所以③正确.故选:D .【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.16.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A 13B 31C 3+19D .7【答案】B【解析】如图,作点A 关于OB 的对称点点D ,连接CD 交OB 于点P ,此时PA +PC 最小,作DN ⊥x 轴交于点N ,∵B(3,3),∴OA=3,AB=3,∴OB=23,∴∠BOA=30°,∵在Rt△AMO中,∠MOA=30°,AO=3,∴AM=1.5,∠OAM=60°,∴∠ADN=30°,∵在Rt△AND中,∠ADN=30°,AD=2AM=3,∴AN=1.5,DN=332,∴CN=3-12-1.5=1,∴CD2=CN2+DN2=12+(332)2=314,∴CD=312.故选B.点睛:本题关键在于先借助轴对称的性质确定出P点的位置,然后结合特殊角30°以及勾股定理计算.17.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.18.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为( )A.30°B.45°C.36°D.72°【答案】A【解析】∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD,又∵∠BDC=∠A+∠ABD,∴∠BDC=∠C=∠ABC=2∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,即5∠A=180°,∴∠A=36°.故选A.19.如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若AD =5cm ,CD =3cm ,则点D 到AB 的距离DE 是( )A .5cmB .4cmC .3cmD .2cm【答案】C【解析】 ∵点D 到AB 的距离是DE ,∴DE ⊥AB ,∵BD 平分∠ABC ,∠C =90°,∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处,∴DE=CD ,∵CD =3cm ,∴DE=3cm.故选:C.20.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.。
(完整word版)三角形易错题(经典自己整理)

1、如图12,在Rt ABC ∆中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的点A 处,折痕为CD ,则∠A DB 的度数为( )A40° B30°C20° D10°2、如图,D 是线段AB 、BC 垂直平分线的交点,若∠ABC =150°,则∠ADC 的大小是( )A 60° B70° C75° D80°3、如图,已知ABC ∆中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 于点E 、F ,给出下列四个结论:1、AE =CF ;2、∆EPF 是等腰直角三角形;3、EF =AP; 4 、 S 四边形AEPF =21abc s ∆当∠EPF 在ABC ∆内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中正确的有( ) A 1 2 3 4 B 1 2 3 C 1 2 4 D2 3 44、已知A (m-1,3)与点B (2,n+1)关于X 的对称轴,则点P (m,n )的坐标为( ) 在ABC ∆中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50度,则∠B等于( )5、如图,在ABC ∆中,ADBC ⊥于D。
请你再添一个条件,就可以确定ABC ∆是等腰三角形。
你添加的条件是( )在线段,直线,射线,角,三角形,不一定是轴对称图形是( )6、如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a b相交点A(3,4),连接OA,若在直线a上存点P,使ABC ∆是等腰三角形。
那么所满足的条件的点P的坐标是( )7、如图是一块三角形的蛋糕,请将这块蛋糕平均分成两块以便分给小丽和小娜享用,并说明理由。
8、如图,AD是∆ABC的一条角平分线,∠B=2∠C。
试判断线段AB、AC、BD 之间的数量关系,并说明理由。
八年级数学《三角形》单元经典易错题大全(11)

⼋年级数学《三⾓形》单元经典易错题⼤全(11)⼋年级数学《三⾓形》单元经典易错题⼤全1.如图所⽰,⽤“>”连接∠1,∠2,∠3,∠4为____________.2.如果⼀个多边形的内⾓和为1260°,那么过这个多边形的⼀个顶点有_____?条对⾓线.3.已知,如图CE是△ABC的外⾓∠ACD的平分线,BE是∠ABC内任⼀射线,交CE于E.求证:∠EBC<∠ACE.4.如果⼀个多边形的边数增加1,则它的内⾓和将( )A增加90° B增加180° C增加360° D不变5.当围绕⼀点拼在⼀起的⼏个多边形的内⾓加在⼀起恰好组成⼀个周⾓时,就拼成⼀个平⾯图形.⽤正三⾓形和正⽅形组合铺满地⾯,每个顶点周围有___个正三⾓形和___个正⽅形。
6.阅读材料,并填表:在△ABC中,有⼀点P1,当P1、A、B、C没有任何三点在同⼀直线上时,可构成三个不重叠的⼩三⾓形(如图).当△ABC 内的点的个数增加时,若其他条件不变,三⾓形内互不重叠的⼩三⾓形的个数情况怎样?完成下表:7.三⾓形中最⼤的内⾓⼀定是( )A.钝⾓B.直⾓;C.⼤于60°的⾓D.⼤于等于60°的⾓8.已知:如图,P是△ABC内任⼀点,求证:∠BPC>∠A.9.如图所⽰,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.E CBA10.多边形的外⾓和等于___。
11.如图∠ACD是△ABC的外⾓,BE平⾏∠ABC,CE平分∠ACD,且BE、CE交于点E.求证:∠E=12∠A.12.如图所⽰,DE∥AB,FG∥BC,HM∥CA,求∠D+∠E+∠F+∠G+∠H+∠M的度数.13.在△ABC中,∠A等于和它相邻的外⾓的四分之⼀,这个外⾓等于等于∠B的两倍,那么∠A=______,∠B=_______,∠C=_______.14.如图AB⊥AC,则AB是△ABC的边____上的⾼,也是△BDC的边______上的⾼,也是△ABD的边____上的⾼.15.等腰三⾓形的⼀个⾓是80°,它的另外两个⾓的度数是___16.如图,分别画出三⾓形过顶点A的中线、⾓平分线和⾼。
(易错题精选)初中数学三角形经典测试题含解析

∵AE是△ABC中线,
∴BE=CE,
∴EF为△CBG的中位线,
∴EF= BG= ,
故选:D.
【点睛】
此题考查等腰三角形的判定和性质、三角形的中位线性质定理,解题关键在于掌握三角形的中位线平行于第三边,并且等于第三边的一半.
9.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()
∴∠CBA=30°,
∴∠EAB=∠CAE=30°,
∴CE= AE=4,
∴AE=8.
故选D.
【点睛】
此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.
8.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()
A.△ABD≌△ECDB.连接BE,四边形ABEC为平行四边形
C.DA=DED.CE=CD
【答案】D
【解析】
【分析】
根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.
【详解】
11.满足下列条件的两个三角形不一定全等的是()
A.有一边相等的两个等边三角形
B.有一腰和底边对应相等的两个等腰三角形
C.周长相等的两个三角形
D.斜边和一条直角边对应相等的两个等腰直角三角形
【答案】C
初中数学三角形易错题汇编含答案

D.∵AB=AE,∠BAC=∠EAD,AC=AD,∴△ABC≌△AED(SAS),故D不符合题意.
故选C.
12.如图,在菱形 中,点 在 轴上,点 的坐标轴为 ,点 的坐标为 ,则菱形 的周长等于()
A. B. C. D.
【答案】C
【解析】
【分析】
如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD的周长.
3.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是( )
A.4B.3C.6D.2
【答案】B
【解析】
【分析】
首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.
【详解】
解:AD是△ABC中∠BAC的平分线,
【详解】
在Rt△ABC中,∠A=90°,
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
D、72+202≠252,242+152≠252,故D不正确,
故选C.
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图12,在Rt ABC ∆中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的点A 处,折痕为CD ,则∠A DB 的度数为( )
A40° B30°
C20° D10°
2、如图,D 是线段AB 、BC 垂直平分线的交点,若∠ABC =150°,则∠ADC 的大小是( )
A 60° B70° C75° D80°
3、如图,已知ABC ∆中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是
BC 中点,两边PE 、PF 分别交AB 于点E 、F ,给出下列四个结论:
1、AE =CF ;
2、∆EPF 是等腰直角三角形;
3、EF =AP; 4 、 S 四边形AEPF =2
1abc s ∆当∠EP 在ABC ∆内绕顶点P 旋转时
(点E 不与A ,B 重合),上述结论中正确的有( ) A 1 2 3 4 B 1 2 3 C 1 2 4 D2 3 4
4、已知A (m-1,3)与点B (2,n+1)关于X 的对称轴,则点P (m,n )的坐标为( ) 在ABC ∆中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50度,则∠B等于( )
5、如图,在ABC ∆中,ADBC ⊥于D。
请你再添一个条件,就可以确定ABC ∆是等腰三角形。
你添加的条件是( )
在线段,直线,射线,角,三角形,不一定是轴对称图形是( )
6、如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a b相交点A(3,4),连接OA,若在直线a上存点P,使ABC ∆是等腰三角形。
那么所满足的条件的点P的坐标是( )
7、如图是一块三角形的蛋糕,请将这块蛋糕平均分成两块以便分给小丽和小娜享用,并说明理由。
8、如图,AD是∆ABC的一条角平分线,∠B=2∠C。
试判断线段AB、AC、BD 之间的数量关系,并说明理由。
9、如图,在∆ABC 中,AB=AC ,∠A=36°,BD 、CE 分别是∠ABC 、∠BCD 的平分线,则图中等腰三角形有( )角\
A5个 B4个 B 3个 D2个
C A ' B
D A B A C D B P A
E
F C A A A D
C B E
E C D A B C B
10、如图,AD 是∆ABC 的边BC 上的高,有下列条件中的某一个就能推出∆ABC 是等腰三角形的是 。
(把所有正确答案的序号都填写在横线上)
①;ACD BAD ∠=∠②CAD BAD ∠=∠;③AB+BD=AC+CD;④AB —BD=AC —CD
作如下操作:在等腰三角形ABC 中,AB=AC ,AD 平分BAC ∠,交BC 于点D 。
将∆ABC 作关于直线AD 的轴对称变换,所得的像与ACD ∆重合。
对于下列结论:①在同一个三角形中,等校对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线和高互相重合。
有上述操作可得出的是___________.(将
正确结论的序号都填上)
11、在ABC ∆中,70=∠A P 为ABC 内一点,P 点关于AB 的对称点P1,P 点关于AC 的对称点为P2,连接PP1、PP2、P1P2,则21p p +∠的度数是 ( ) A70° B110° C40° D140°
12、如图3所示是一个等边三角形木框,甲虫P 在边框AC 上爬行(A 、C 端点除外),设甲虫P 到另外两边的距离之和为d ,等边三角形ABC 的高为h ,则d 与h 的大小关系是( )
Ad h B h d C h d = D 无法确定
13、如图4所示,Rt ABC ∆中,90=∠C °,AB 的垂直平分线DE 交BC 于E 当30=∠B °
时图中不一定相等的线段有 ( )
A AC=AE=BE
B AD=BD
C CD=DE
D AC=BD
14、如图5所示,已知ABC ∆中,AC+BC=24,AO 、BO 分别是角平分线,且BA MN ,分别交AC 于N ,BC 于M ,则CMN ∆的周长为 ( )
A 12
B 24
C 36
D 不确定
15、在ABC ∆中,三边长分别为a 、b 、c ,满足(a —b )(b —c )(c —a )=0,则这个三角形一定是
16、如图,点P 在AOB ∠的内部,且点C 、D 在边OA 上,点E 、F 在边OB 上,CD=EF 。
如果S ∆PCD =S ∆PEF ,那么下列结论正确的有( )
①PA=PE ; ②PD=PE; ③;EPF APD ∠=∠ ④BOP DOP =∠
.
A A
C D B C B P A C D B E A B O A N M
C D C P O F E B
17、下列说法正确的有 ( )
① 角平分线分得两个角相等;②角平分线上的点到角两边的距离相等;③到角两边距离相
等的点都在角的平分线上。
A 0 个
B 1 个
C 2个
D 3个
18、如图,CD 是ABC ∆的角平分线,DE 垂直AC 于点E,DF BC ⊥于点F ,下列结论正确的有( )
①AD=BD ②DE=DF ③CE=CF ④AE=BF.
A 1个
B 2 个
C 3 个 D4个
19、如图,在ABC ∆与DEF ∆中,已有条件AB=DE ,还需添加两个条件才能使ABC ∆≅DEF ∆,不能添加的一组条件是( )
A EF BC E
B =∠=∠, B BC=EF, AC=DF
C E B
D A ∠=∠∠=∠, D EF BC D A =∠=∠,
20、如图,Rt ABC ∆中,AB BE BC AD AC ,,⊥⊥平分,ABC ∠交AD 于E ,E F ‖AC 下列结论一定成立的是( )
A AB=BF
B AE=ED
C AD=DC
D A ∠BE=DN
E ∠
21、已知等腰三角形两边分别为5 ,12则它的周长为( )
A22 B29
C22或29 D17
22、下列说法正确的是 ( )
A 腰相等的两个等腰三角形全等
B 三角形一个外角的平分线平行于三角形的一边,则该三角形为等腰三角形
C 腰相等且都有一个角为30°的两个等腰三角形全等
D 等腰三角形一边上的中线、高及该边所对角的平分线互相重合
23、如图3点C ,E 和点B,D,F 分别在GAH ∠的两边上,且AB=BC=CD=DE=EF 若=∠A 18°,则GEF ∠的度数是
( ) A ,80° B ,90° C ,100° D ,108°
24、如图4,在等边三角形ABC 中AC=9,点O 在AC 上,且AO=3,点P 是AB 上一动点连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD 要使点D 恰好落在BC 上则AP 的长是( ) B A C B C D E F
G
H A
A 4
B 5
C 6
D 8
25、在Rt ABC ∆中,CD 是斜边AB 上的高,30=∠B °, AD=2cm ,则AB 的长是 ( )
A2cm B4cm C8cm D16cm
26、如图9,在A B C ∆中,AB=AC ,120=∠BAC °,BC=6,D 为BC 上一点,AB DE ⊥于点E ,CA DF ⊥的延长线于点F,则DE
27、如图4,在Rt ABC ∆中,90=∠C °,直线BD 交AC 于点D ,把直角三角形沿着直线BD 翻折,恰使点C 落在斜边AB 上。
如果ABD ∆是等腰三角形 ,那么A ∠等于 ( ) A 60° B45° C30° D22.5°
28、等腰三角形一腰上的中线把其周长分为33cm 和24cm 两部分,则它的腰为 ( )
A13cm B16cm C22cm D16cm 或22cm
29、如图8,将一个等腰直角三角形按图示方式依次翻折,则下列说法:①C D '平分;BDE ∠'D C B '∆是等腰三角形;③CED ∆的周长等于BC 的长。
期中正确的个数有
( )
30、在平面直角坐标系中,已知点P 的坐标为(—3,2),点Q 是点P 关于x 轴的对称点,将点,Q 向右平移4个单位得到点R ,则点R 的坐标是_________
如图9,在等腰三角形ABC 中,AB=AC ,BC AD ⊥,且AD=8,BC=6,点E,F 是AD 上的两点,则图中阴影部分面积是_________
C
A O D P
B C A F
E
B D A C
C D B A C A B D E B D B C '
E C
A E
F
C O B。