天津中考数学二轮 相似 专项培优 易错 难题
天津中考数学二轮 二次函数 专项培优 易错 难题

天津中考数学二轮二次函数专项培优易错难题一、二次函数1.(6分)(2015•牡丹江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【答案】(1)y=-2x-3;(2).【解析】试题分析:(1)把A,B两点坐标代入,求待定系数b,c,进而确定抛物线的解析式;(2)连接BE,点F是AE中点,H是AB中点,则FH为三角形ABE的中位线,求出BE的长,FH就知道了,先由抛物线解析式求出点E坐标,根据勾股定理可求BE,再根据三角形中位线定理求线段HF的长.试题解析:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴把A,B两点坐标代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E(2,m)在抛物线上,∴把E点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==.∵点F是AE中点,点H是抛物线的对称轴与x轴交点,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.∴线段FH的长.考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.2.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (±0)或(5±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论:①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m ,即点C 坐标为:(,0)或(﹣,0);②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5±,即:点C坐标为(5+,0)或(5﹣0);③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=9710,则点C坐标为(9710,0).综上所述:存在,点C的坐标为:(,0)或(5±0)或(9710,0);(3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k125=,故函数的表达式为:y125=x﹣3,设点P坐标为(m,12 5m2485-m﹣3),则点H坐标为(m,125m﹣3),S△PAB12=•PH•x B52=(125-m2+12m)=-6m2+30m=25756()22m--+,当m=52时,S△PAB取得最大值为:752.答:△PAB的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B,交x轴正半轴于点C.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M 秒. 【解析】 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;(2)计算出C 点的坐标,设出M 点的坐标,再根据△ABM 的面积为S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB ,化简成二次函数,再根据二次函数求解最大值即可. (3)首先证明△OHA ′∽△OA ′B ,再结合A ′H +A ′C ≥HC 即可计算出t 的最小值. 【详解】(1)将x =0代入y =﹣3x +3,得y =3, ∴点B 的坐标为(0,3),∵抛物线y =ax 2﹣2ax +a +4(a <0)经过点B , ∴3=a +4,得a =﹣1,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)将y =0代入y =﹣x 2+2x +3,得x 1=﹣1,x 2=3,∴点C 的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m , ∴0<m <3,点M 的坐标为(m ,﹣m 2+2m +3), 将y =0代入y =﹣3x +3,得x =1, ∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-,化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A ′H +A ′C ≥HC =,∴t ,即点M 在整个运动过程中用时最少是3秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t 的取值范围,难度系数较大,是中考的压轴题.4.已知,抛物线y=x 2+2mx(m 为常数且m≠0). (1)判断该抛物线与x 轴的交点个数,并说明理由.(2)若点A(-n+5,0),B(n-1,0)在该抛物线上,点M为抛物线的顶点,求△ABM的面积.(3)若点(2,p),(3,g),(4,r)均在该抛物线上,且p<g<r,求m的取值范围.【答案】(1)抛物线与x轴有2个交点,理由见解析;(2)△ABM的面积为8;(3)m 的取值范围m>-2.5【解析】【分析】(1)首先算出根的判别式b2-4ac的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m的值,进而求出抛物线的解析式,得出A,B,M三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m的取值范围,综上所述,求出m的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m的式子表示出p,g,r,再代入 p<g<r 即可列出关于m的不等式组,求解即可。
2020-2021中考数学二轮圆与相似专项培优易错试卷附答案.doc

2020-2021中考数学二轮圆与相似专项培优易错试卷附答案一、相似1.如图,抛物线 y=﹣ +bx+c 过点 A( 3,0), B( 0, 2). M( m, 0)为线段 OA 上一个动点(点 M 与点 A 不重合),过点 M 作垂直于 x 轴的直线与直线 AB 和抛物线分别交于点P、 N.(1)求直线AB 的解析式和抛物线的解析式;(2)如果点P 是 MN 的中点,那么求此时点N 的坐标;(3)如果以 B, P,N 为顶点的三角形与△ APM 相似,求点 M 的坐标.【答案】(1)解:设直线 AB 的解析式为 y=px+q,把 A( 3, 0), B( 0,2)代入得,解得,∴直线 AB 的解析式为y=﹣x+2;把A( 3 , 0 ), B( 0 , 2 )代入y=﹣+bx+c 得,解得,∴抛物线解析式为y=﹣x2+x+2(2)解:∵ M ( m, 0), MN ⊥ x 轴,∴N(m,﹣m2+m+2), P( m,﹣m+2 ),∴N P=﹣ m2+4m, PM=﹣ m+2,而NP=PM,∴﹣m2+4m=﹣m+2,解得 m1=3(舍去), m2=,∴N 点坐标为(,)(3)解:∵ A( 3, 0), B( 0, 2), P( m,﹣m+2),∴AB==,BP==m,而NP=﹣ m2+4m,∵MN ∥ OB,∴∠ BPN=∠ ABO,当=时,△BPN∽ △OBA,则△BPN∽ △MPA,即m : 2= (﹣m 2+4m ):,整理得 8m 2﹣11m=0 ,解得 m1=0(舍去), m2= ,此时 M 点的坐标为(, 0);当= 时,△ BPN∽△ ABO,则△ BPN∽ △ APM,即m:=(﹣m2+4m):2,整理得 2m 2﹣5m=0 ,解得 m1=0(舍去), m2=,此时 M 点的坐标为(, 0);综上所述,点M 的坐标为(,0)或(,0)【解析】【分析】( 1)因为抛物线和直线AB 都过点A( 3,0)、 B( 0,2),所以用待定系数法求两个解析式即可;(2)由题意知点P 是 MN 的中点,所以PM=PN;而 MN OA 交抛物线与点N,交直线AB 于点 P,所以 M、 P、 N 的横坐标相同且都是m, 纵坐标分别可用(1)中相应的解析式表示,即P( m,坐标的绝对值,代入) ,N( m,PM=PN 即可的关于),PM 与 PN 的长分别为相应两点的纵m 的方程,解方程即可求解;(3)因为以B, P, N 为顶点的三角形与△ APM相似,而△ APM是直角三角形,所以分两种情况:当∠ PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m 的值;当∠ PNB=时,则可得△PNB∽ △PMA,即得相应的比例式,可求得m 的值。
中考数学二轮 相似 专项培优易错试卷附详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
2020-2021中考数学二轮 相似 专项培优 易错 难题及答案

2020-2021中考数学二轮相似专项培优易错难题及答案一、相似1.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【答案】(1)解:由题意得:,解得:a= ,b=(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,∴△ABC为直角三角形,且∠ACB=90°.∵AE=2t,AF= t,∴ .又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE= AB= t= ÷2= ;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE= ,∴t= ;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= ,DH=2m,∴DB= .∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:.【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。
2020-2021天津中考数学二轮 二次函数 专项培优 易错 难题

2020-2021天津中考数学二轮二次函数专项培优易错难题一、二次函数1.(6分)(2015•牡丹江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【答案】(1)y=-2x-3;(2).【解析】试题分析:(1)把A,B两点坐标代入,求待定系数b,c,进而确定抛物线的解析式;(2)连接BE,点F是AE中点,H是AB中点,则FH为三角形ABE的中位线,求出BE的长,FH就知道了,先由抛物线解析式求出点E坐标,根据勾股定理可求BE,再根据三角形中位线定理求线段HF的长.试题解析:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0),∴把A,B两点坐标代入得:,解得:,∴抛物线的解析式是:y=-2x-3;(2)∵点E(2,m)在抛物线上,∴把E点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E(2,﹣3),∴BE==.∵点F是AE中点,点H是抛物线的对称轴与x轴交点,即H为AB的中点,∴FH是三角形ABE的中位线,∴FH=BE=×=.∴线段FH的长.考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.2.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【解析】【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值.【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,Q 函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=, y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+. Q 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<Q ,∴当90x <时,w 随x 的增大而增大,80x ∴=时,w 有最大值,当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.3.如图所示,抛物线2y ax bx c =++的顶点为()2,4M --,与x 轴交于A 、B 两点,且()6,0A -,与y 轴交于点C .()1求抛物线的函数解析式;()2求ABC V 的面积;()3能否在抛物线第三象限的图象上找到一点P ,使APC V 的面积最大?若能,请求出点P 的坐标;若不能,请说明理由.【答案】()1 2134y x x =+-;()212;()27334APC x S =-V 当时,有最大值,点P 的坐标是153,4P ⎛⎫--⎪⎝⎭. 【解析】【分析】 (1)设顶点式并代入已知点()6,0A -即可;(2)令y=0,求出A 、B 和C 点坐标,运用三角形面积公式计算即可;(3)假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F ,线段PF 的长度即为两函数值之差,将APC V 的面积计算拆分为APF CPF S S +V V 即可.【详解】()1设此函数的解析式为2()y a x h k =++,∵函数图象顶点为()2,4M --,∴2(2)4y a x =+-,又∵函数图象经过点()6,0A -,∴20(62)4a =-+- 解得14a =,∴此函数的解析式为21(2)44y x =+-,即2134y x x =+-; ()2∵点C 是函数2134y x x =+-的图象与y 轴的交点, ∴点C 的坐标是()0,3-,又当0y =时,有21304y x x =+-=, 解得16x =-,22x =,∴点B 的坐标是()2,0,则11831222ABC S AB OC =⋅=⨯⨯=V ; ()3假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F .设(),0E x ,则21,34P x x x ⎛⎫+- ⎪⎝⎭,设直线AC 的解析式为y kx b =+, ∵直线AC 过点()6,0A -,()0,3C -,∴603k b b -+=⎧⎨-=⎩, 解得123k b ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为132y x =--, ∴点F 的坐标为1,32F x x ⎛⎫-- ⎪⎝⎭, 则221113332442PF x x x x x ⎛⎫=---+-=-- ⎪⎝⎭, ∴1122APC APF CPF S S S PF AE PF OE =+=⋅+⋅V V V 2221113393276(3)22424244PF OA x x x x x ⎛⎫=⋅=--⨯=--=-++ ⎪⎝⎭,∴当3x =-时,APC S V 有最大值274, 此时点P 的坐标是153,4P ⎛⎫--⎪⎝⎭. 【点睛】 本题第3问中将所求三角形拆分为两个小三角形进行求解,从而将面积最大的问题转化为PF 最大进行理解.4.如图,已知A (﹣2,0),B (4,0),抛物线y=ax 2+bx ﹣1过A 、B 两点,并与过A 点的直线y=﹣12x ﹣1交于点C . (1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P ,使四边形ACPO 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N .问:是否存在这样的点N ,使以点M 、N 、C 为顶点的三角形与△AOC 相似,若存在,求出点N 的坐标,若不存在,请说明理由.【答案】(1)抛物线解析式为:y=211184x x --,抛物线对称轴为直线x=1;(2)存在P 点坐标为(1,﹣12);(3)N 点坐标为(4,﹣3)或(2,﹣1) 【解析】 分析:(1)由待定系数法求解即可;(2)将四边形周长最小转化为PC+PO 最小即可;(3)利用相似三角形对应点进行分类讨论,构造图形.设出点N 坐标,表示点M 坐标代入抛物线解析式即可.详解:(1)把A (-2,0),B (4,0)代入抛物线y=ax 2+bx-1,得042101641a b a b --⎧⎨+-⎩==解得1814 ab⎧⎪⎪⎨⎪-⎪⎩==∴抛物线解析式为:y=18x2−14x−1∴抛物线对称轴为直线x=-141228ba-=-⨯=1(2)存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-12∴y=-12x则P点坐标为(1,-12)(3)当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,-12a-1)由△EDN∽△OAC ∴ED=2a∴点D坐标为(0,-52a−1)∵N为DM中点∴点M坐标为(2a,32a−1)把M代入y=18x2−14x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)点睛:本题为代数几何综合题,考查了待定系数、两点之间线段最短的数学模型构造、三角形相似.解答时,应用了数形结合和分类讨论的数学思想.5.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524,);②△PQD 面积的最大值为8【解析】分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+6x+72,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题.详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3.(2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72, ∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94). 设直线PQ 的表达式为y=mx+n ,将P (-12,74)、Q (72,-94)代入y=mx+n ,得: 17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==, ∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),∴DE=-x2+2x+3-(-x+54)=-x2+3x+74,∴S△DPQ=12DE•(x Q-x P)=-2x2+6x+72=-2(x-32)2+8.∵-2<0,∴当x=32时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(32,154).(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=12DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.6.如图所示,已知平面直角坐标系xOy,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得:4b+c-16=0,b+c-1="3" ,解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).(2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ).三角形POF 的面积为:1/2×4×|n|= 2|n|,三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20,所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)故所求m 、n 的值分别为 5,-5.7.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根; (3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE ,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG ,∴t=﹣t 2+2t+3﹣3,即﹣t 2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK ⊥x 轴,AQ ⊥PK ,则PK=﹣t 2+2t+3,AQ=t ,KE=3﹣t ,PQ=﹣t 2+2t+3﹣3=﹣t 2+2t ,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE ,且∠PKE=∠PQA ,∴△PKE ∽△AQP , ∴,即,即t 2﹣t ﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P ,t 的值为1或. 考点:二次函数综合题8.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ).(1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式;(2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围.【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b )由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩(2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =- (3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+ 把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤- 224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.9.如图,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x ﹣b 与y 轴交于点B ;抛物线L :y =﹣x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标;(2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b =2019和b =2019.5时“美点”的个数.【答案】(1)b =4,(2,﹣2 );(2)1;(3)12;(4)当b =2019时“美点”的个数为4040个,b =2019.5时“美点”的个数为1010个.【解析】【分析】(1)求出A 、B 的坐标,由AB =8,可求出b 的值.从而得到L 的解析式,找出L 的对称轴与a 的交点即可; (2)通过配方,求出L 的顶点坐标,由于点C 在l 下方,则C 与l 的距离24b b -,配方即可得出结论;(3)由題意得y 1+y 2=2y 3,进而有b +x 0﹣b =2(﹣x 02+bx 0)解得x 0的值,求出L 与x 轴右交点为D 的坐标,即可得出结论;(4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x 直线解析式a :y =x ﹣2019,美点”总计4040个点,②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,“美点”共有1010个.【详解】(1)当x =0吋,y =x ﹣b =﹣b ,∴B (0,﹣b ).∵AB =8,而A (0,b ),∴b ﹣(﹣b )=8,∴b =4,∴L :y =﹣x 2+4x ,∴L 的对称轴x =2,当x =2时,y =x ﹣4=﹣2,∴L 的对称轴与a 的交点为(2,﹣2 );(2)y =﹣(x 2b -)224b +,∴L 的顶点C (2b ,24b ). ∵点C 在l 下方,∴C 与l 的距离b 2144b -=-(b ﹣2)2+1≤1,∴点C 与l 距离的最大值为1;(3)∵y 3是y 1,y 2的平均数,∴y 1+y 2=2y 3,∴b +x 0﹣b =2(﹣x 02+bx 0),解得:x 0=0或x 0=b 12-. ∵x 0≠0,∴x 0=b 12-,对于L ,当y =0吋,0=﹣x 2+bx ,即0=﹣x (x ﹣b ),解得:x 1=0,x 2=b .∵b >0,∴右交点D (b ,0),∴点(x 0,0)与点D 间的距离b ﹣(b 12-)12=. (4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x ,直线解析式a :y =x ﹣2019. 联立上述两个解析式可得:x 1=﹣1,x 2=2019,∴可知每一个整数x 的值都对应的一个整数y 值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点,∴总计4042个点.∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,联立上述两个解析式可得:x 1=﹣1,x 2=2019.5,∴当x 取整数时,在一次函数y =x ﹣2019.5上,y 取不到整数值,因此在该图象上“美点”为0,在二次函数y =x 2+2019.5x 图象上,当x 为偶数时,函数值y 可取整数,可知﹣1到2019.5之 间有1010个偶数,因此“美点”共有1010个.故b =2019时“美点”的个数为4040个,b =2019.5时“美点”的个数为1010个.【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.10.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180o ,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标;(2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:-. 【解析】【分析】 (1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标; (2)根据抛物线C 绕点O 旋转180o ,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可;(3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=o ,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可.【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩ 解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--, 配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -;(2)∵抛物线C 绕点O 旋转180o ,得到新的抛物线'C .∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a =∴新抛物线'C 的解析式为:22(2)44y x x x =--=-将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-, ∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --, ∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称,∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K , 则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++, ∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴∴//DH EK∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK = ∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-, ∵2m <-∴m 的值为:﹣3;(3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=o ,∴1tan3BG GAB AB ∠===,∵DEP GAB ∠=∠ ∴1tan tan 3DEP GAB ∠=∠=, 在x 轴下方过点O作OH OE ⊥,在OH 上截取123OH OE ==, 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点; ∵(3,3)E -,∴45EOT ∠=o∵90EOH ∠=o∴45HOT ∠=o∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--, 解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得11773735x y ⎧--=⎪⎪⎨-⎪=⎪⎩,22773735x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩, ∴点P 的横坐标为:7734+-或7374-.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.11.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或412或5-41②点M的坐标为(136,﹣176)或(236,﹣76).【解析】分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,-2),AC的解析式为y=5x-5,E点坐标为(12,-52),利用两直线垂直的问题可设直线EM1的解析式为y=-15x+b,把E(12,-52)代入求出b得到直线EM1的解析式为y=-15x-125,则解方程组511255y xy x-⎧⎪⎨--⎪⎩==得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),根据中点坐标公式得到3=13+62x,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5), 当y=0时,x ﹣5=0,解得x=5,则B (5,0), 把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0), ∵B (5,0),C (0,﹣5), ∴△OCB 为等腰直角三角形, ∴∠OBC=∠OCB=45°, ∵AM ⊥BC ,∴△AMB 为等腰直角三角形, ∴AM=2AB=2×4=22, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ , ∴PQ=AM=22,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴222=4,设P (m ,﹣m 2+6m ﹣5),则D (m ,m ﹣5), 当P 点在直线BC 上方时,PD=﹣m 2+6m ﹣5﹣(m ﹣5)=﹣m 2+5m=4,解得m 1=1,m 2=4, 当P 点在直线BC 下方时,PD=m ﹣5﹣(﹣m 2+6m ﹣5)=m 2﹣5m=4,解得m 15+41,m 25-41, 综上所述,P 点的横坐标为4或5+412或5-412; ②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M的坐标为(136,﹣176)或(236,﹣76).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.12.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.13.抛物线,若a,b,c满足b=a+c,则称抛物线为“恒定”抛物线.(1)求证:“恒定”抛物线必过x轴上的一个定点A;(2)已知“恒定”抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.【答案】(1)证明见试题解析;(2),或.【解析】试题分析:(1)由“恒定”抛物线的定义,即可得出抛物线恒过定点(﹣1,0);(2)求出抛物线的顶点坐标和B的坐标,由题意得出PA∥CQ,PA=CQ;存在两种情况:①作QM⊥AC于M,则QM=OP=,证明Rt△QMC≌Rt△POA,MC=OA=1,得出点Q的坐标,设抛物线的解析式为,把点A坐标代入求出a的值即可;②顶点Q在y轴上,此时点C与点B重合;证明△OQC≌△OPA,得出OQ=OP=,得出点Q坐标,设抛物线的解析式为,把点C坐标代入求出a的值即可.试题解析:(1)由“恒定”抛物线,得:b=a+c,即a﹣b+c=0,∵抛物线,当x=﹣1时,y=0,∴“恒定”抛物线必过x轴上的一个定点A(﹣1,0);(2)存在;理由如下:∵“恒定”抛物线,当y=0时,,解得:x=±1,∵A(﹣1,0),∴B(1,0);∵x=0时,y=,∴顶点P的坐标为(0,),以PA,CQ为边的平行四边形,PA、CQ是对边,∴PA∥CQ,PA=CQ,∴存在两种情况:①如图1所示:作QM⊥AC于M,则QM=OP=,∠QMC=90°=∠POA,在Rt△QMC和Rt△POA中,∵CQ=PA,QM=OP,∴Rt△QMC≌Rt△POA(HL),∴MC=OA=1,∴OM=2,∵点A和点C是抛物线上的对称点,∴AM=MC=1,∴点Q的坐标为(﹣2,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点A(﹣1,0)代入得:a=,∴抛物线的解析式为:,即;②如图2所示:顶点Q在y轴上,此时点C与点B重合,∴点C坐标为(1,0),∵CQ∥PA,∴∠OQC=∠OPA,在△OQC和△OPA中,∵∠OQC=∠OPA,∠COQ=∠AOP,CQ=PA,∴△OQC≌△OPA(AAS),∴OQ=OP=,∴点Q坐标为(0,),设以Q为顶点,与x轴另一个交点为C的“恒定”抛物线的解析式为,把点C(1,0)代入得:a=,∴抛物线的解析式为:;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形,抛物线的解析式为:,或.考点:1.二次函数综合题;2.压轴题;3.新定义;4.存在型;5.分类讨论.14.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式;(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为4915129±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D的坐标,过点D分别作DE⊥x轴、DF⊥y轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得168020a ca c-+=⎧⎨++=⎩,解得:2383 ac⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x+-,∵过点B的直线y=kx+23,∴代入(1,0),得:k=﹣23,∴BD解析式为y=﹣2233x+;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,即52=52,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC =3CFP O,即523=103t,解得:t=49,∴t的值为49、151296±、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N坐标为(a,﹣21033a-),∴OENH =OFHD',即52104()33a---=1032a-,解得:a=﹣2,则N点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1,当x=﹣32时,y=﹣54,∴M 点坐标为(﹣32,﹣54), 此时,DM+MN 的值最小为22D H NH '+=2246+=213.点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.15.如图1,抛物线2112y ax x c =-+与x 轴交于点A 和点()1,0B ,与y 轴交于点30,4C ⎛⎫⎪⎝⎭,抛物线1y 的顶点为,G GM x ⊥轴于点M .将抛物线1y 平移后得到顶点为B 且对称轴为直l 的抛物线2y .(1)求抛物线2y 的解析式;(2)如图2,在直线l 上是否存在点T ,使TAC ∆是等腰三角形?若存在,请求出所有点T 的坐标:若不存在,请说明理由;(3)点P 为抛物线1y 上一动点,过点P 作y 轴的平行线交抛物线2y 于点Q ,点Q 关于直线l 的对称点为R ,若以,,P Q R 为顶点的三角形与AMC ∆全等,求直线PR 的解析式. 【答案】(1)抛物线2y 的解析式为2111424y x x =-+-;(2)T 点的坐标为13137(1,4T +,23137(1,4T -,377(1,)8T -;(3)PR 的解析式为13y x 24=-+或1124y x =--.【解析】分析:(1)把()1,0B 和30,4C ⎛⎫ ⎪⎝⎭代入2112y ax x c =-+求出a 、c 的值,进而求出y 1,再根据平移得出y 2即可;(2)抛物线2y 的对称轴l 为1x =,设()1,T t ,已知()33,0,0,4A C ⎛⎫- ⎪⎝⎭,过点T 作TE y ⊥轴于E ,分三种情况时行讨论等腰三角形的底和腰,得到关于t 的方程,解方程即可; (3)设2113,424P m m m ⎛⎫--+ ⎪⎝⎭,则2111,424Q m m m ⎛⎫-+- ⎪⎝⎭,根据对称性得21112,424R m m m ⎛⎫--+- ⎪⎝⎭,分点P 在直线的左侧或右侧时,结合以,,P Q R 构成的三角形。
中考数学二轮 圆与相似 专项培优 易错 难题

中考数学二轮圆与相似专项培优易错难题一、相似1.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,求PD的值,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为________,最大值为________.【答案】(1)解:相等理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;(2)解:作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE= ,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD= ;若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,BD= ,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB= ,∴PD=BD+PB= + = ,(3)1;7【解析】【解答】解:(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,CE= =4,在Rt△DAE中,DE= ,∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=7,在Rt△PDE中,PD= ,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD的最大值为7.故答案为:1,7.【分析】(1)BD,CE的关系是相等,理由如下:根据同角的余角相等得出∠BAD=∠CAE,根据等腰直角三角形的性质得出BA=CA,DA=EA,从而利用SAS判断出△ABD≌△ACE,根据全等三角形对应边相等得出BD=CE;(2)作出旋转后的图形,若点C在AD上,如图2所示:首先根据勾股定理算出CE的长,然后判断出△PCD∽△ACE,根据相似三角形对应边成比例得出,根据比例式列出方程,求解得出PD的长;若点B在AE上,如图2所示:根据勾股定理算出BD的长,然后判断出△BAD∽△BPE,根据相似三角形对应边成比例得出,根据比例式列出方程,求解得出PB的长,根据线段的和差即可得出PD的长;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD 的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,根据勾股定理算出CE,DE的长,根据正方形的性质得出PC=AB=3,进而得出PE的长,根据勾股定理算出PD 的长,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=7,即旋转过程中线段PD的最大值为7.2.如图1,在△ABC中,∠BAC=90°,AB=AC=4,D是BC上一个动点,连接AD,以AD为边向右侧作等腰直角△ADE,其中∠ADE=90°.(1)如图2,G,H分别是边AB,BC的中点,连接DG,AH,EH.求证:△AGD∽△AHE;(2)如图3,连接BE,直接写出当BD为何值时,△ABE是等腰三角形;(3)在点D从点B向点C运动过程中,求△ABE周长的最小值.【答案】(1)证明:如图2,由题意知△ABC和△ADE都是等腰直角三角形,∴∠B=∠DAE=45°.∵H为BC中点,∴AH⊥BC.∴∠BAH=45°=∠DAE.∴∠GAD=∠HAE.在等腰直角△BAH和等腰直角△DAE中,AH= AB= AG,AE= AD.∴,∴△AGD∽△AHE;(2)解:分三种情况:①当B与D重合时,即BD=0,如图3,此时AB=BE;②当AB=AE时,如图4,此时E与C重合,∴D是BC的中点,∴BD= BC=2 ;③当AB=BE时,如图5,过E作EH⊥AB于H,交BC于M,连接AM,过E作EG⊥BC于G,连接DH,∵AE=BE,EH⊥AB,∴AH=BH,∴AM=BM,∵∠ABC=45°,∴AM⊥BC,△BMH是等腰直角三角形,∵AD=DE,∠ADE=90°,易得△ADM≌△DEG,∴DM=EG,∵∠EMG=∠BMH=45°,∴△EMG是等腰直角三角形,∴ME= MG,由(1)得:△AHD∽△AME,且,∴∠AHD=∠AME=135°,ME= DH,∴∠BHD=45°,MG=DH,∴△BDH是等腰直角三角形,∴BD=DH=EG=DM= ;综上所述,当BD=0或或2 时,△ABE是等腰三角形;(3)解:当点D与点B重合时,点E的位置记为点M,连接CM,如图6,此时,∠ABM=∠BAC=90°,∠AMB=∠BAM=45°,BM=AB=AC.∴四边形ABMC是正方形.∴∠BMC=90°,∴∠AMC=∠BMC-∠AMB=45°,∵∠BAM=∠DAE=45°,∴∠BAD=∠MAE,在等腰直角△BAM和等腰直角△DAE中,AM= AB,AE= AD.∴.∴△ABD∽△AME.∴∠AME=∠ABD=45°∴点E在射线MC上,作点B关于直线MC的对称点N,连接AN交MC于点E′,∵BE+AE=NE+AE≥AN=NE′+AE′=BE′+AE′,∴△ABE′就是所求周长最小的△ABE.在Rt△ABN中,∵AB=4,BN=2BM=2AB=8,∴AN=.∴△ABE周长最小值为AB+AN=4+4 .【解析】【分析】(1)由等腰直角三角形的性质可得∠B=∠DAE=∠BAH=45°,所以∠GAD=∠HAE,计算可得比例式:,根据有两对边对应相等,且它们的夹角也相等的两个三角形相似可得△AGD∽△AHE;(2)根据等腰三角形的定义可知分3种情况讨论:①当B与D重合时,即BD=0,此时AB=BE;②当AB=AE时,此时E与C重合,用勾股定理可求得BD的值;③当AB=BE时,过E作EH⊥AB于H,交BC于M,连接AM,过E作EG⊥BC于G,连接DH,由已知条件和(1)的结论可求解;(3)当点D与点B重合时,点E的位置记为点M,连接CM,作点B关于直线MC的对称点N,连接AN交MC于点E′,由已知条件易证四边形ABMC是正方形,由已知条件通过计算易得比例式:,根据有两对边对应相等,且它们的夹角也相等的两个三角形相似可得△ABD∽△AME,则∠AME=∠ABD=45°,于是可得点E在射线MC上,根据轴对称的性质可得△ABE′就是所求周长最小的△ABE,在Rt△ABN中,用勾股定理即可求得AN的值,则△ABE周长最小值=AB+AN即可求解。
2020-2021中考数学二轮 相似 专项培优 易错 难题及答案解析
2020-2021中考数学二轮相似专项培优易错难题及答案解析一、相似1.如图,已知:在Rt△ABC中,斜边AB=10,sinA= ,点P为边AB上一动点(不与A,B重合),PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.(1)当AP=CP时,求QP;(2)若四边形PMQN为菱形,求CQ;(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?【答案】(1)解:∵AB=10,sinA= ,∴BC=8,则AC= =6,∵PA=PC.∴∠PAC=∠PCA,∵PQ平分∠CPB,∴∠BPC=2∠BPQ=2∠A,∴∠BPQ=∠A,∴PQ∥AC,∴PQ⊥BC,又PQ平分∠CPB,∴∠PCQ=∠PBQ,∴PB=PC,∴P是AB的中点,∴PQ= AC=3(2)解:∵四边形PMQN为菱形,∴MQ∥PC,∴∠APC=90°,∴ ×AB×CP= ×AC×BC,则PC=4.8,由勾股定理得,PB=6.4,∵MQ∥PC,∴ = = = ,即 = ,解得,CQ=(3)解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,∴QM=QN,PM=PN,∴S△PMQ=S△PNQ,∵四边形PMQN与△BPQ的面积相等,∴PB=2PM,∴QM是线段PB的垂直平分线,∴∠B=∠BPQ,∴∠B=∠CPQ,∴△CPQ∽△CBP,∴ = = ,∴ = ,∴CP=4× =4× =5,∴CQ= ,∴BQ=8﹣ = ,∴BM= × = ,∴AP=AB﹣PB=AB﹣2BM=【解析】【分析】(1)当AP=CP时,由锐角三角函数可知AC=6,BC=8,因为PQ平分∠CPB,所以PQ//AC,可知PB=PC,所以点P是AB的中点,所以PQ是△ABC的中位线,PQ =3;(2)当四边形PMQN为菱形时,因为∠APC=,所以四边形PMQN为正方形,可得PC=4.8,PB=3.6,因为MQ//PC,所以,可得;(3)当QM垂直平分PB 时,四边形PMQN的面积与△BPQ的面积相等,此时△CPQ∽△CBP,对应边成比例,可得,所以,因为AP=AB-2BM,所以AP=.2.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:________.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.【答案】(1)PA=PB(2)解:把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,,∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,在△PAC和△PBE中,∴△PAC∽△PBE,∴PA=PB(3)解:如图③,延长AP交直线n于点F,作AE⊥BD于点E,,∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF•BP=AE•BF,∵AF=2PA,AE=2k,BF=AB,∴2PA•PB=2k.AB,∴PA•PB=k•AB.【解析】【解答】解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P 为线段CD的中点,∴PA=PB.【分析】(1)根据直角三角形斜边上的中线等于斜边上的一半;(2)把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,根据直角三角形斜边上的中线等于斜边上的一半得出PD=PE=PC,根据等边对等角得出∠CDE=∠PEB,根据二直线平行,内错角相等得出∠CDE=∠PCA,故∠PCA=∠PEB,根据夹在两平行线间的平行线相等得出AC=BE,然后利用SAS判断出△PAC∽△PBE,根据全等三角形的对应边相等得出PA=PB;(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,根据平行线分线段成比例定理得出AP=PF,根据线段垂直平分线上的点到线段两个端点的距离相等得出BF=AB;然后判断出△AEF∽△BPF,根据相似三角形的对应边成比例即可得出AF•BP=AE•BF,根据等量代换得出2PA•PB=2k.AB,即PA•PB=k•AB.3.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形【解析】【分析】(1)要证△BEF∽△DCB,根据有两对角对应相等的两个三角形相似可得证。
2020-2021中考数学二轮 相似 专项培优易错试卷含答案
2020-2021中考数学二轮相似专项培优易错试卷含答案一、相似1.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2).(1)直接写出点C坐标及OC、BC长;(2)连接PQ,若△OPQ与△OBC相似,求t的值;(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,∴A(0,),令y=0,则x=10,∴B(10,0),由,解得,∴C(,).∴OC= =8,BC= =10(2)解:①当时,△OPQ∽△OCB,∴,∴t= .②当时,△OPQ∽△OBC,∴,∴t=1,综上所述,t的值为或1s时,△OPQ与△OBC相似(3)解:如图作PH⊥OC于H.∵OC=8,BC=6,OB=10,∴OC2+BC2=OB2,∴∠OCB=90°,∴当∠PCH=∠CBQ时,PC⊥BQ.∵∠PHO=∠BCO=90°,∴PH∥BC,∴,∴,∴PH=3t,OH=4t,∴tan∠PCH=tan∠CBQ,∴,∴t= 或0(舍弃),∴t= s时,PC⊥BQ.【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B点的坐标,解联立直线AB,与直线OC的解析式组成的方程组,求出C点的坐标,根据两点间的距离公式即可直接算出OC,OB的长;(2)根据速度乘以时间表示出OP=5t,CQ=4t,OQ=8-4t,①当OP∶OC=OQ∶OB时,△OPQ∽△OCB,根据比例式列出方程,求解得出t的值;②当OP∶OB=OQ∶OC时,△OPQ∽△OBC,根据比例式列出方程,求解得出t的值,综上所述即可得出t的值;(3)如图作PH⊥OC于H.根据勾股定理的逆定理判断出∠OCB=90°,从而得出当∠PCH=∠CBQ时,PC⊥BQ.根据同位角相等二直线平行得出PH∥BC,根据平行线分线段成比例定理得出OP∶OB=PH∶BC=OH∶OC,根据比例式得出PH=3t,OH=4t,根据等角的同名三角函数值相等及正切函数的定义,由tan∠PCH=tan∠CBQ,列出方程,求解得出t的值,经检验即可得出答案。
天津中考数学二轮 圆的综合 专项培优 易错 难题
天津中考数学二轮圆的综合专项培优易错难题一、圆的综合1.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.(1)求证:AE⊥DE;(2)若∠BAF=60°,AF=4,求CE的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.试题解析:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC 为直角三角形,AE=3,∴AC=2,连接OF ,∵OF=OA ,∠OAF=∠BAC+∠EAC=60°,∴△OAF 为等边三角形,∴AF=OA=AB ,在Rt △ACB 中,AC=2,tan ∠CBA=,∴BC=2,∴AB=4,∴AF=2.考点:切线的性质.2.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O e 外取一点H ,连接CH 、DH 分别交O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)37【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O Q e 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=o ,D E 90∠∠∴+=o ,2D 2E 180∠∠∴+=o ,AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=o .()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===o Q ,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR V 和ODG V 中,A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =,AOR ∴V ≌ODG V ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===o Q ,AF//OC//BT ∴,OA OB =Q ,CT CF 3m ∴==,ET m ∴=,CD Q 为直径,CBD CND 90CBE ∠∠∠∴===o ,E 90EBT CBT ∠∠∠∴=-=o ,tan E tan CBT ∠∠∴=,BT CT ET BT∴=, BT 3m m BT∴=, BT 3m(∴=负根已经舍弃),3m tan E 3∠∴== E 60∠∴=o ,CWD HDE H ∠∠∠=+Q ,HDE HCE ∠∠=,H E 60∠∠∴==o ,MON 2HCN 60∠∠∴==o ,OM ON =Q ,OMN ∴V 是等边三角形,MN ON ∴=,QM OB OM ==Q ,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=o o Q ,MQO P 180H 120∠∠∠+=-=o o , PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN V 中,2222CN CD DN 501448=-=-=,在Rt CHN V 中,CN 48tan H 3HN HN∠===, HN 163∴=,在Rt KNH V 中,1KH HN 832==,3NK HN 24==, 在Rt NMK V 中,2222MK MN NK 25247=-=-=,HM HK MK 837∴=+=+.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.3.如图1,以边长为4的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E . (1)图1中,线段AE= ;(2)如图2,在图1的基础上,以点A 为端点作∠DAM=30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt △ADM 绕点A 逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD 与⊙O 交于点F .①当α=30°时,请求出线段AF 的长;②当α=60°时,求出线段AF 的长;判断此时DM 与⊙O 的位置关系,并说明理由; ③当α= °时,DM 与⊙O 相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM 与⊙O 相切【解析】(1)连接BE ,∵AC 是正方形ABCD 的对角线,∴∠BAC =45°,∴△AEB 是等腰直角三角形,又∵AB =8,∴AE =4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.4.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.(1)求证:AB为⊙O的切线;(2)若BC=6,sinA=35,求⊙O的半径;(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.【答案】(1)连OD,证明略;(2)半径为3;(3)最大值35+3 ,35-3.【解析】分析:(1)连接OD,OB,证明△ODB≌△OCB即可.(2)由sinA=35且BC=6可知,AB=10且cosA=45,然后求出OD的长度即可.(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.详解:(1)如图:连接OD、OB.在△ODB和△OCB中:OD=OC,OB=OB,BC=BD;∴△ODB≌△OCB(SSS).∴∠ODB=∠C=90°.∴AB为⊙O的切线.(2)如图:∵sinA=35,∴CB3AB5=,∵BC=6,∴AB=10,∵BD=BC=6,∴AD=AB-BD=4,∵sinA=35,∴cosA=45,∴OA=5,∴OD=3,即⊙O的半径为:3.(3)如图:连接OB,交⊙O为点E、F,由三角形的三边关系可知:当P点与E点重合时,PB取最小值.由(2)可知:OD=3,DB=6,∴223635+=∴PB=OB-OE=353.当P点与F点重合时,PB去最大值,PB=OP+OB=3+35点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.5.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴»»AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.6.如图,⊙O 是△ABC 的外接圆,AC 为直径,BD =BA ,BE ⊥DC 交DC 的延长线于点E(1) 求证:BE 是⊙O 的切线(2) 若EC =1,CD =3,求cos ∠DBA【答案】(1)证明见解析;(2)∠DBA 35=【解析】 分析:(1)连接OB ,OD ,根据线段垂直平分线的判定,证得BF 为线段AD 的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF 是矩形,即∠EBF=90°,可得出结论.(2)根据中点的性质求出OF 的长,进而得到BF 、DE 、OB 、OD 的长,然后根据等角的三角函数求解即可.详解:证明:(1) 连接BO 并延长交AD 于F ,连接OD∵BD=BA,OA=OD∴BF为线段AD的垂直平分线∵AC为⊙O的直径∴∠ADC=90°∵BE⊥DC∴四边形BEDF为矩形∴∠EBF=90°∴BE是⊙O的切线(2) ∵O、F分别为AC、AD的中点∴OF=12CD=32∵BF=DE=1+3=4∴OB=OD=35422-=∴cos∠DBA=cos∠DOF=332552OFOD==点睛:此题主要考查了圆的切线的判定与性质,关键是添加合适的辅助线,利用垂径定理和圆周角定理进行解答,注意相等角的关系的转化.7.如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C 点,连接AC、BC.(Ⅰ)求∠ACB的大小;(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.【答案】(Ⅰ)60°;(Ⅱ33【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=12∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴33,OP=2OA=2,∴OP=2OC,而S△OPA=123∴S△AOC=12S△PAO3∴S△ACP=334,∴四边形ACBP的面积=2S△ACP=332.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.8.阅读下列材料:如图1,⊙O 1和⊙O 2外切于点C ,AB 是⊙O 1和⊙O 2外公切线,A 、B 为切点,求证:AC ⊥BC证明:过点C 作⊙O 1和⊙O 2的内公切线交AB 于D ,∵DA 、DC 是⊙O 1的切线∴DA=DC .∴∠DAC=∠DCA .同理∠DCB=∠DBC .又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,∴∠DCA+∠DCB=90°.即AC ⊥BC .根据上述材料,解答下列问题:(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容;(2)以AB 所在直线为x 轴,过点C 且垂直于AB 的直线为y 轴建立直角坐标系(如图2),已知A 、B 两点的坐标为(﹣4,0),(1,0),求经过A 、B 、C 三点的抛物线y=ax 2+bx+c 的函数解析式;(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O 1O 2上,并说明理由.【答案】(1)见解析;(2)213222y x x =+- ;(3)见解析 【解析】 试题分析:(1)由切线长相等可知用了切线长定理;由三角形的内角和是180°,可知用了三角形内角和定理;(2)先根据勾股定理求出C 点坐标,再用待定系数法即可求出经过、、A B C 三点的抛物线的函数解析式;(3)过C 作两圆的公切线,交AB 于点D ,由切线长定理可求出D 点坐标,根据,C D 两点的坐标可求出过,C D 两点直线的解析式,根据过一点且互相垂直的两条直线解析式的关系可求出过两圆圆心的直线解析式,再把抛物线的顶点坐标代入直线的解析式看是否适合即可.试题解析:(1)DA 、DC 是1O e 的切线,∴DA =DC .应用的是切线长定理;180DAC DCA DCB DBC ∠+∠+∠+∠=o ,应用的是三角形内角和定理.(2)设C 点坐标为(0,y ),则222AB AC BC =+,即()()222224141y y --=-+++,即225172y =+,解得y =2(舍去)或y =−2.故C 点坐标为(0,−2),设经过、、A B C 三点的抛物线的函数解析式为2y ax bx c ,=++ 则164002,a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ 解得12322a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩, 故所求二次函数的解析式为213 2.22y x x =+- (3)过C 作两圆的公切线CD 交AB 于D ,则AD =BD =CD ,由A (−4,0),B (1,0)可知3(,0)2D -, 设过CD 两点的直线为y =kx +b ,则 3022k b b ⎧-+=⎪⎨⎪=-⎩, 解得432k b ⎧=-⎪⎨⎪=-⎩,故此一次函数的解析式为423y x =--, ∵过12,O O 的直线必过C 点且与直线423y x =--垂直, 故过12,O O 的直线的解析式为324y x =-, 由(2)中所求抛物线的解析式可知抛物线的顶点坐标为325(,)28--, 代入直线解析式得33252,428⎛⎫⨯--=- ⎪⎝⎭ 故这条抛物线的顶点落在两圆的连心12O O 上.9.如图,在直角坐标系中,⊙M 经过原点O(0,0),点6,0)与点B(02),点D在劣弧»OA上,连结BD 交x 轴于点C ,且∠COD =∠CBO.(1)求⊙M 的半径;(2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.【答案】(1)M 的半径r =2;(2)证明见解析;(3)点E 的坐标为(263,2). 【解析】 试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴e M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=263=∴点E 的坐标为(263,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.10.如图,线段BC 所在的直线 是以AB 为直径的圆的切线,点D 为圆上一点,满足BD =BC ,且点C 、D 位于直径AB 的两侧,连接CD 交圆于点E . 点F 是BD 上一点,连接EF ,分别交AB 、BD 于点G 、H ,且EF =BD .(1)求证:EF∥BC;(2)若EH=4,HF=2,求»BE的长.【答案】(1)见解析;(2) 233【解析】【分析】(1)根据EF=BD可得»EF=»BD,进而得到»»BE DF=,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF,根据切线的性质及垂径定理求出GF、GE的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出∠BHG,进而求出∠BDE的度数,确定»BE所对的圆心角的度数,根据∠DFH=90°确定DE为直径,代入弧长公式即可求解.【详解】(1)∵EF=BD,∴»EF=»BD∴»»BE DF=∴∠D=∠DEF又BD=BC,∴∠D=∠C,∴∠DEF=∠CEF∥BC(2)∵AB是直径,BC为切线,∴AB⊥BC又EF∥BC,∴AB⊥EF,弧BF=弧BE,GF=GE=12(HF+EH)=3,HG=1DB平分∠EDF,又BF∥CD,∴∠FBD=∠FDB=∠BDE=∠BFH ∴HB=HF=2∴cos∠BHG=HGHB =12,∠BHG=60°.∴∠FDB=∠BDE=30°∴∠DFH=90°,DE为直径,DE=43,且弧BE所对圆心角=60°.∴弧BE=16×43π=233π【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.11.如图,⊙O是△ABC的外接圆,AB是直径,过点O作OD⊥CB,垂足为点D,延长DO 交⊙O于点E,过点E作PE⊥AB,垂足为点P,作射线DP交CA的延长线于F点,连接EF,(1)求证:OD=OP;(2)求证:FE是⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(2)证明△POE≌△ADO可得DO=EO;(3)连接AE,BE,证出△APE≌△AFE即可得出结论.试题解析:(1)∵∠EPO=∠BDO=90°∠EOP=∠BODOE=OB∴△OPE≌△ODB∴OD="OP"(2)连接EA,EB∴∠1=∠EBC∵AB是直径∴∠AEB=∠C=90°∴∠2+∠3=90°∵∠3=∠DEB∵∠BDE=90°∴∠EBC+∠DEB=90°∴∠2=∠EBC=∠1∵∠C=90°∠BDE=90°∴CF∥OE∴∠ODP=∠AFP∵OD=OP∴∠ODP=∠OPD∵∠OPD=∠APF∴∠AFP=∠APF∴AF=AP 又AE=AE∴△APE≌△AFE∴∠AFE=∠APE=90°∴∠FED=90°∴FE是⊙O的切线考点:切线的判定.12.如图,点B在数轴上对应的数是﹣2,以原点O为原心、OB的长为半径作优弧AB,使点A在原点的左上方,且tan∠AOB=3,点C为OB的中点,点D在数轴上对应的数为4.(1)S扇形AOB=(大于半圆的扇形);(2)点P是优弧AB上任意一点,则∠PDB的最大值为°(3)在(2)的条件下,当∠PDB最大,且∠AOP<180°时,固定△OPD的形状和大小,以原点O为旋转中心,将△OPD顺时针旋转α(0°≤α≤360°)①连接CP,AD.在旋转过程中,CP与AD有何数量关系,并说明理由;②当PD∥AO时,求AD2的值;③直接写出在旋转过程中,点C到PD所在直线的距离d的取值范围.【答案】(1)103(2)30(3)①AD=2PC33③1≤d≤3【解析】【分析】(1)利用扇形的面积公式计算即可.(2)如图1中,当PD与⊙O相切时,∠PDB的值最大.解直角三角形即可解决问题.(3)①结论:AD =2PC .如图2中,连接AB ,AC .证明△COP ∽△AOD ,即可解决问题. ②分两种情形:如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .求出PC 即可.如图④中,当PA ∥OA 时,作PK ⊥OB 于K ,同法可得.③判断出PC 的取值范围即可解决问题.【详解】(1)∵tan ∠AOB =3, ∴∠AOB =60°,∴S 扇形AOB =23002103603ππ⋅⋅= (大于半圆的扇形), (2)如图1中,当PD 与⊙O 相切时,∠PDB 的值最大.∵PD 是⊙O 的切线,∴OP ⊥PD ,∴∠OPD =90°,∵21sin 42OP PDO OD ∠=== ∴∠PDB =30°, 同法当DP ′与⊙O 相切时,∠BDP ′=30°,∴∠PDB 的最大值为30°.故答案为30.(3)①结论:AD =2PC .理由:如图2中,连接AB ,AC .∵OA =OB ,∠AOB =60°,∴△AOB 是等边三角形,∵BC =OC ,∴AC ⊥OB ,∵∠AOC =∠DOP =60°,∴∠COP =∠AOD , ∵2AO OD OC OP==, ∴△COP ∽△AOD , ∴2AD AO PC OC==, ∴AD =2PC . ②如图3中,当PD ∥OA 时,设OD 交⊙O 于K ,连接PK 交OC 于H .∵OP =OK ,∠POK =60°,∴△OPK 是等边三角形,∵PD ∥OA ,∴∠AOP =∠OPD =90°, ∴∠POH +∠AOC =90°, ∵∠AOC =60°,∴∠POH =30°,∴PH =12OP =1,OH 33, ∴PC 2222PH CH 1(13)523+=++=+∵AD =2PC ,∴AD 2=4(3)=3如图④中,当PA ∥OA 时,作PK ⊥OB 于K ,同法可得:PC 2=12+3﹣1)2=5﹣3AD 2=4PC 2=20﹣3③由题意1≤PC≤3,∴在旋转过程中,点C到PD所在直线的距离d的取值范围为1≤d≤3.【点睛】本题属于圆综合题,考查了切线的性质,相似三角形的判定和性质,旋转变换,勾股定理,等边三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AB=2,BC=2,求⊙O的半径.6【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O【解析】【分析】(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程222-=,解此方程即可求得⊙O的半径.x x3)6)【详解】解:(1)直线CE与⊙O相切.…理由:连接OE,∵四边形ABCD是矩形,∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,∴∠DCE+∠DEC=90°,∠ACB=∠DAC,又∠DCE =∠ACB ,∴∠DEC +∠DAC =90°,∵OE =OA ,∴∠OEA =∠DAC ,∴∠DEC +∠OEA =90°,∴∠OEC =90°,∴OE ⊥EC ,∵OE 为圆O 半径,∴直线CE 与⊙O 相切;…(2)∵∠B =∠D ,∠DCE =∠ACB ,∴△CDE ∽△CBA ,∴ BC AB DC DE =, 又CD =AB =2,BC =2,∴DE =1根据勾股定理得EC =3,又226AC AB BC =+=,…设OA 为x ,则222(3)(6)x x +=-,解得6x =, ∴⊙O 的半径为6.【点睛】此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.14.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P e 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P e与边BC相切时,求P e的半径;()2联结BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围;()3在()2的条件下,当以PE长为直径的Qe与Pe相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409;(2)()25880010320x x xy xx-+=<<+;(3)1025-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=R10R-=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx y--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2BP=()2284x+-=2880x x-+,DA=25x,则BD=45-25x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则55EB=BDcosβ=(555x)525x,∴PD∥BE,∴EBPD=BFPF,即:2248805x x x yx y--+=,整理得:y=)2x8x800x103x20-+<<+;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=45,设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=10-25,相交所得的公共弦的长为10-25.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.15.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点.(1)求证:是小半圆的切线;(2)若,点在上运动(点不与两点重合),设,.①求与之间的函数关系式,并写出自变量的取值范围;②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.。
中考数学二轮 相似 专项培优易错试卷及详细答案
中考数学二轮相似专项培优易错试卷及详细答案一、相似1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。
(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。
(3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。
2.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°).(1)当α=0°时,连接DE,则∠CDE=________°,CD=________;(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;(3)若m=10,n=8,当旋转的角度α恰为∠ACB的大小时,求线段BD的长;(4)若m=6,n= ,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.【答案】(1)90;(2)解:如图3中,∵∠ACB=∠DCE,∴∠ACE=∠BCD.∵,∴△ACE∽△BCD,∴.(3)解:如图4中,当α=∠ACB时.在Rt△ABC中,∵AC=10,BC=8,∴AB= =6.在Rt△ABE中,∵AB=6,BE=BC﹣CE=3,∴AE= = =3 ,由(2)可知△ACE∽△BCD,∴,∴ = ,∴BD= .故答案为:(4)解:∵m=6,n= ,∴CE=3,CD=2 ,AB= =2,①如图5中,当α=90°时,半圆与AC相切.在Rt△DBC中,BD= ==2 .②如图6中,当α=90°+∠ACB时,半圆与BC相切,作EM⊥AB于M.∵∠M=∠CBM=∠BCE=90°,∴四边形BCEM是矩形,∴,∴AM=5,AE= = ,由(2)可知 = ,∴BD= .故答案为:2 或.【解析】【解答】(1)①如图1中,当α=0时,连接DE,则∠CDE=90°.∵∠CDE=∠B=90°,∴DE∥AB,∴ =.∵BC=n,∴CD= .故答案为:90°, n.【分析】(1)连接DE,当α=0时,由直径所对的圆周角时直角可得∠CDE=90°,判断DE∥AB,从而可得比例式进而求解。
(2)旋转过程中 B D: A E 的大小有无变化,可以看 B D, A E 所在的三角形相似,从而可的△ACE∽△BCD,进而得出结论。
(3)根据勾股定理求得AB和AE,即可求出BD。
(4)由题意分两种情况:当α=90°时,半圆与AC相切。
当α=90°+∠ACB时,半圆与BC相切。
3.如图1,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)请直接写出PM与PN的数量关系及位置关系________;(2)现将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H.请直接写出PM与PN的数量关系及位置关系________;(3)若图2中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图3,写出PM与PN的数量关系,并加以证明.【答案】(1)PM⊥PN,PM=PN(2)PM=PN,PM⊥PN(3)解:PM=kPN,∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE,∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PN= AE.∴PM=kPN.【解析】【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠BCD=90°,∴∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM= BD,PN= AE,∴PM=PN,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM∥BC,PN∥AE,∴∠NPD=∠EAC,∠MPN=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案为:PM⊥PN,PM=PN;( 2 )PM=PN,PM⊥PN,理由:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS).∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PM∥BD;PN= AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.故答案为:PM⊥PN,PM=PN【分析】(1)利用等腰直角三角形的性质得出结论判断出△ACE≌△BCD,得出AE=BD,再用三角形的中位线即可得出结论;(2)同(1)的方法即可得出结论;(3)利用两边对应成比例夹角相等,判断出△BCD∽△ACE,得出BD=kAE,最后用三角形的中位线即可得出结论.4.(1)如图1所示,在中,,,点在斜边上,点在直角边上,若,求证: .(2)如图2所示,在矩形中,,,点在上,连接,过点作交 (或的延长线)于点 .①若,求的长;②若点恰好与点重合,请在备用图上画出图形,并求的长.【答案】(1)证明:∵在中,,,∴,∴,∵,∴,∴,∴ .(2)解:①∵四边形是矩形,∴,∴,∵,∴,∴,∴,∴,∵,∴,,∴,;②如图所示,设,由①得,∴,即,整理,得:,解得:,,所以的长为或 .【解析】【分析】(1)利用平角的定义和三角形的内角和证明即可证得结论;(2)①仿(1)题证明,再利用相似三角形的性质即可求得结果;②由①得,设,根据相似三角形的性质可得关于x的方程,解方程即可求得结果.5.如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接 .(1)求证: .(2)求证:(3)若,求的值.【答案】(1)解:∵是正方形,∴,,∵是等腰三角形,∴,,∴,∴,∴(2)解:∵是正方形,∴,,∵是等腰三角形,∴,∵,∵,∴,∴,∴,∴,∴,(3)解:由(1)得,,,∴,由(2) ,∴,∵,∴,在中,,∴【解析】【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;(2)根据正方形的性质和全等三角形的性质得到,∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到,由(2)可得,等量代换可得∠CBQ=∠CPQ即可求解.6.如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB 边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,(1)当t=2时,求△PBQ的面积;(2)当t= 时,试说明△DPQ是直角三角形;(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.【答案】(1)解:当t=2时,AP=t=2,BQ=2t=4,∴BP=AB-AP=4,∴△PBQ的面积= ×4×4=8;(2)解:当t= 时,AP=1.5,PB=4.5,BQ=3,CQ=9,∴DP2=AD2+AP2=2.25+144=146.25,PQ2=PB2+BQ2=29.25,DQ2=CD2+CQ2=117,∵PQ2+DQ2=DP2,∴∠DQP=90°,∴△DPQ是直角三角形.(3)解:设存在点Q在BC上,延长DQ与AB延长线交于点O.设QB的长度为x,则QC的长度为(12-x),∵DC∥BO,∴∠C=∠QBO,∠CDQ=∠O,∴△CDQ∽△BOQ,又CD=6,QB=x,QC=12-x,∴,即,解得:BO= ,∴AO=AB+BO=6+ ,∵∠ADP=∠ODP,∴12:DO=AP:PO,代入解得x=0.75,∴DP能平分∠ADQ,∵点Q的速度为2cm/s,∴P停止后Q往B走的路程为(6-0.75)=5.25cm.∴时间为2.625s,加上刚开始的3s,Q点的运动时间为5.625s.【解析】【分析】(1)根据路程等于速度乘以时间得出AP=t=2,BQ=2t=4,所以BP=4,进而根据三角形的面积计算方法即可算出答案;(2)当t= 时,根据路程等于速度乘以时间得出AP=1.5,BQ=3,故PB=4.5,CQ=9,根据勾股定理表示出DP2,PQ2,DQ2,从而根据勾股定理的逆定理判断出∠DQP=90°,△DPQ是直角三角形;(3)设存在点Q在BC上,延长DQ与AB延长线交于点O ,设QB的长度为x,则QC 的长度为(12-x),判断出△CDQ∽△BOQ,根据全等三角形的对应边成比例得出,根据比例式可以用含x的式子表示出BO的长,根据角平分线的性质定理得出12:DO=AP:PO,根据比例式求出x的值,从而即可解决问题.7.如图,已知一次函数y=﹣ x+4的图象是直线l,设直线l分别与y轴、x轴交于点A、B.(1)求线段AB的长度;(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与x轴相切时,求点M的坐标;②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x 轴于点E,直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.【答案】(1)解:当x=0时,y=4,∴A(0,4),∴OA=4,当y=0时,- x+4=0,x=3,∴B(3,0),∴OB=3,由勾股定理得:AB=5(2)解:①如图1,过N作NH⊥y轴于H,过M作ME⊥y轴于E,tan∠OAB= ,∴设EM=3x,AE=4x,则AM=5x,∴M(3x,-4x+4),由旋转得:AM=AN,∠MAN=90°,∴∠EAM+∠HAN=90°,∵∠EAM+∠AME=90°,∴∠HAN=∠AME,∵∠AHN=∠AEM=90°,∴△AHN≌△MEA,∴AH=EM=3x,∵⊙N与x轴相切,设切点为G,连接NG,则NG⊥x轴,∴NG=OH,则5x=3x+4,2x=4,x=2,∴M(6,-4);②如图2,由①知N(8,10),∵AN=DN,A(0,4),∴D(16,16),设直线DM:y=kx+b,把D(16,16)和M(6,-4)代入得:,解得:,∴直线DM的解析式为:y=2x-16,∵直线DM交x轴于E,∴当y=0时,2x-16=0,x=8,∴E(8,0),由①知:⊙N与x轴相切,切点为G,且G(8,0),∴E与切点G重合,∵∠QAP=∠OAB=∠DCE,∴△APQ与△CDE相似时,顶点C必与顶点A对应,分两种情况:i)当△DCE∽△QAP时,如图2,∠AQP=∠NDE,∵∠QNA=∠DNF,∴∠NFD=∠QAN=90°,∵AO∥NE,∴△ACO∽△NCE,∴,∴,∴CO= ,连接BN,∴AB=BE=5,∵∠BAN=∠BEN=90°,∴∠ANB=∠ENB,∵EN=ND,∴∠NDE=∠NED,∵∠CNE=∠NDE+∠NED,∴∠ANB=∠NDE,∴BN∥DE,Rt△ABN中,BN= ,sin∠ANB=∠NDE= ,∴,∴NF=2 ,∴DF=4 ,∵∠QNA=∠DNF,∴tan∠QNA=tan∠DNF= ,∴,∴AQ=20,∵tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,∴5x=20,x=4,∴QH=3x=12,AH=16,∴Q(-12,20),同理易得:直线NQ的解析式:y=- x+14,∴P(0,14);ii)当△DCE∽△PAQ时,如图3,∴∠APN=∠CDE,∵∠ANB=∠CDE,∵AP∥NG,∴∠APN=∠PNE,∴∠APN=∠PNE=∠ANB,∴B与Q重合,∴AN=AP=10,∴OP=AP-OA=10-4=6,∴P(0,-6);综上所述,△APQ与△CDE相似时,点P的坐标的坐标(0,14)或(0,-6)【解析】【分析】(1)由一次函数解析式容易求得A、B的坐标,利用勾股定理可求得AB的长度;(2)①根据同角的三角函数得:tan∠OAB= ,设EM=3x,AE=4x,则AM=5x,得M(3x,-4x+4),证明△AHN≌△MEA,则AH=EM=3x,根据NG=OH,列式可得x的值,计算M的坐标即可;②如图2,先计算E与G重合,易得∠QAP=∠OAB=∠DCE,所以△APQ与△CDE相似时,顶点C必与顶点A对应,可分两种情况进行讨论:i)当△DCE∽△QAP时,证明△ACO∽△NCE,列比例式可得CO= ,根据三角函数得:tan∠QNA=tan∠DNF= ,AQ=20,则tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,求出x的值,得P(0,14);ii)当△DCE∽△PAQ时,如图3,先证明B与Q重合,由AN=AP可得P(0,-6).8.已知,如图,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)求▱DEFG对角线DF的长;(2)求▱DEFG周长的最小值;(3)当▱DEFG为矩形时,连接BG,交EF,CD于点P,Q,求BP:QG的值. 【答案】(1)解:如图1所示:连接DF,∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF=;故▱DEFG对角线DF的长(2)解:如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD由①和②DE+EF的值最小时就是点E与点N重合时,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD=,∴NF+DF=MD=2 ,∴l▱DEFG=2(NF+DF)=4(3)解:①当AE=1,BE=2时,过点B作BH⊥EF,如图3(甲)所示:∵▱DEFG为矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中有,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF=,∴BH ,又∵△BEF~△FHB,∴,HF=,在△BPH和△GPF中有:,∴△BPH∽△GPF(AA),∴∴PF=,又∵EP+PF=EF,∴,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴ .②当AE=2,BE=1时,过点G作GH⊥DC,如图3(乙)所示:∵▱DEFG为矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED=,EF=,∴∠ADE=45°,又∵四边形DEFG是矩形,∴EF=DG,∠EDG=90°,∴DG=,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∴△HGQ∽△BCQ(AA),∴,∵HC=HQ+CQ=2,∴HQ=,又∵DQ=DH+HQ,∴DQ=1+ =,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴,综合所述,BP:QG的值为或 .【解析】【分析】(1)▱DEFG对角线DF的长就是Rt△DCF的斜边的长,由勾股定理求解;(2)▱DEFG周长的最小值就是求邻边2(DE+EF)最小值,DE+EF的最小值就是以AB 为对称轴,作点F的对称点M,连接DM交AB于点N,点E与N点重合时即DE+EF=DM 时有最小值,在Rt△DMC中由勾股定理求DM的长;(3)▱DEFG为矩形时有两种情况,一是一般矩形,二是正方形,分类用全等三角形判定与性质,等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解.。