五年级下册数学试题-五升六讲义第11讲 同余问题(奥数板块)北师大版-推荐
五年级下册数学试题-第十一讲奇数和偶数-全国通用含答案解析

第十一讲奇数和偶数[同步巩固演练]1、有15支球队进行比赛,如果要求每支球队都与其他5支球队比赛一场,能办到吗?为什么?2、六(1)班同学毕业前,互相交换照片留念,那么全班用来交换的照片的总张数是奇数还是偶数?3、已知A、B、C、中有一个是7,一个是8,一个是9,则(A-3)×(B-4)×(C -5)的结果一定是奇数还是偶数。
4、1987个球无论多少人采用什么样的分法,最终每人都分得奇数个球的总人数不能是偶数。
为什么?5、小华买了一本共有96张纸的练习本,并依次将每张纸的正反两面编号(从第1页编到第192页),小丽从这本练习本中撕下25张纸,并将写在它们上的50个编号相加。
试问:小丽所加得的和数能不能是1998?6、任意写1000个连续自然数,它们的总和是奇数还是偶数?为什么?7、能不能将1010写成10个连续自然数的和?如果能,把它写出来;如果不能,说明理由。
8、有九只杯口全部向上的杯子,每次将其中四只同时“翻转”,问能不能经过若干次“翻转”使杯口全部向下?为什么?9、将36支香插进9个香炉中,要使每个香炉中香的支数都是奇数,能否做到?10、某教室有座位是三排,每排五把椅子,每个椅子上坐着一个学生,要让这些学生都必须换到与他相邻(前、后、左、右)的某一个同学的座位上,能不能实现?[能力拓展平台]1、平面上有99个点,每三个点都不在一条直线上,现在从每个点引出五条直线和其余的任意五个点相连,你能连成吗?如果不行,请说明道理。
2、设O点是正12边形,A1A2A3A4A5A6A7A8A9A10A11A12(见图)的中心,用1,2,3,…11,12给正12边形的和边任意编号,又用同样的这12个数把线段OA1,OA2,OA3,…OA12也任意编号,问能不能找到一种编号法,使三角形A1OA2,A2OA3,…A11OA12,A12OA1各边上的号码和都相等?能的话给出一种编法;能的话,请说明原因。
小学数学五年级下册《同余的概念和性质》奥数教材教案

小学五年级奥数下册教案:同余的概念和性质你会解答下面的问题吗?问题1:今天是星期日,再过15天就是“六·一”儿童节了,问“六·一”儿童节是星期几?这个问题并不难答.因为,一个星期有7天,而15÷7=2…1,即15=7×2+1,所以“六·一”儿童节是星期一。
问题2:1993年的元旦是星期五,1994年的元旦是星期几?这个问题也难不倒我们.因为,1993年有365天,而365=7×52+1,所以1994年的元旦应该是星期六。
问题1、2的实质是求用7去除某一总的天数后所得的余数.在日常生活中,时常要注意两个整数用某一固定的自然数去除,所得的余数问题.这样就产生了“同余”的概念.如问题1、2中的15与365除以7后,余数都是1,那么我们就说15与365对于模7同余。
同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b(modm). (*)上式可读作:a同余于b,模m。
同余式(*)意味着(我们假设a≥b):a-b=mk,k是整数,即m|(a-b).例如:①15≡365(mod7),因为365-15=350=7×50。
②56≡20(mod9),因为56-20=36=9×4。
③90≡0(mod10),因为90-0=90=10×9。
由例③我们得到启发,a可被m整除,可用同余式表示为:a≡0(modm)。
例如,表示a是一个偶数,可以写a≡0(mod 2)表示b是一个奇数,可以写b≡1(mod 2)补充定义:若m(a-b),就说a、b对模m不同余,用式子表示是:ab(modm)我们书写同余式的方式,使我们想起等式,而事实上,同余式与等式在其性质上相似.同余式有如下一些性质(其中a、b、c、d是整数,而m是自然数)。
性质1:a≡a(mod m),(反身性)这个性质很显然.因为a-a=0=m·0。
奥数余数和同余讲义及答案

数学教师解题能力培训之四数的整除(4)余数和同余教室姓名学号【知识要点】1、例如:37÷5=7……2,四者之间的数量关系:被除数=除数×商+余数2、同余的概念:两个整数,被同一个大于1的整数m除,所得余数如果相同,那么,这两个整数对于除数m来说是同余的。
例如:14和26这两个数虽然大小不同,但它们分别除以6所得的余数相同,我们把14和26叫做关于模6同余。
3、同余最基本的性质是:几个同余式(模相同)相加、减、乘、乘方仍然同余。
【典型例题】例1、两个整数相除商8,余16;并且被除数、除数、商及余数的和是463.那么被除数是多少?解:因为:被除数=除数×8+16,并且被除数+除数=463―8―16=439,所以除数=(439-16)÷(8+1)=47,被除数=47×8+16=392.例2、被3除余2,被5除余3,被7除余4的最小自然数是多少?解:被3除余2的数有2,5,8,11,…其中8又能被5除余3,并且满足条件最小的,而[3,5]=15,所以8+15=23,23+15=38,38+15=53,53满足了被7除余4这个条件,并且最小。
例3、五(3)班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人,问上体育课的同学最少多少名?解:[3,4,5,6]=60, 60-1=59(人).例4、小刚在一次计算除法时,把被除数171错写成117,结果商少了3而余数恰好相同,这题中的除数是几?解:设除数为m,正确的商位q,余数为r,那么错写被除数后,除数仍为m,商为q-3,余数仍为r。
因为:171=m×q+r117= m×(q-3)+r于是171-117=(m×q+r)-(m×q-3 m+r)得m=18.【精英班】例5、有一个三位数,其中个位上的数是百位上的数的3倍,且这个三位数除以5余4,除以11余3.这个三位数是多少?解:这个三位数除以5余4,所以它的个位数字是4或9,因为个位数字是百位数字的3倍,所以个位数字只能是9,百位数字是3.因为这个数除以11余3,所以它的十位数字=3+(9-3)=9,这个三位数是399.【竞赛班】例6、11+22+33+44+55+66+77+88+99除以3的余数是多少?解:由数的整除性质和同余性质可推知:(1)3的倍数的任何次方(0除外)除以3的余数为0,可知33+66+99除以3余0.(2)不是3的倍数的偶次方除以3的余数为0,可知22+44+88除以3余1.(3)11除以3余1,55与25对于3同余,它们除以3余2. 77与17对于3同余,它们除以3余1.所以(1+2+1)÷3=1……1。
五年级下册讲义01讲尾数和余数B版(含答案、奥数板块)--北师大版

尾数和余数【名师解析】自然数末尾的数字称为自然数的尾数;除法中,被除数减去商与除数积的差。
尾数与余数在运算时是有规律可循的,利用这种规律能解决一些看起无从下手的问题。
【例题精讲】例1、写出除333后余3的全部两位数。
练习、317除以一个两位数后余数是2,符合条件的两位数有哪些?例2、44344219519...999个⨯⨯⨯⨯积的个位数字是几?练习、 44434442161201161...616161个⨯⨯⨯⨯积的尾数是几?例3、 64...4444100÷321个,当商是整数时,余数是多少?练习、1355 (5555)2001÷43421个,当商是整数时,余数是多少?例4、有一列数,前两个数是3与4,从第三个数开始,每一个数都是前两个数的和。
这一列数中第2001个数除以4,余数是多少?练习、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。
在这一串数字中,第1991个数被3除,所得的余数是几?例5、已知,甲数除以9余7,乙数除以9余5,甲数比乙数大。
(1)甲、乙两数的和除以9余数是几?(2)甲、乙两数的差除以9余数是几?(3)甲、乙两数的积除以9余数是几?练习、甲数除以5余3,乙数除以5余2,甲数比乙数大,那么甲、乙两数的和除以5余数是几?甲、乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?例6、有一个自然数,用它分别去除70,98,143,都有余数(余数不为0),三个余数的和是25。
这个数是。
练习、有一个自然数,用它分别去除63,80,32都有余数,得到的三个余数的和是10,这个数是。
【选讲】有一个(大于1)数,除122,148,187得到相同的余数,这个数是 。
练习、某个大于1的自然数分别去除442,297,210得到相同的余数,则该自然数是 。
【综合精练】1、写出除349后余4的全部两位数。
2、写出除1095后余3的全部三位数。
小学奥数 同余问题 精选练习例题 含答案解析(附知识点拨及考点)

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
小学奥数。同余问题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数。
同余问题精选练习例题含答案解析(附知识点拨及考点)同余问题教学目标:1.掌握同余的性质。
2.利用整除性质判断余数。
知识点拨:同余定理1.定义:若两个整数a和b被自然数m除有相同的余数,那么称a和b对于模m同余,用式子表示为:a≡b(modm),左边的式子叫做同余式。
同余式读作:a同余于b,模m。
2.重要性质及推论:1)若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除。
例如:17与11除以3的余数都是2,所以能被3整除。
(17-11=6,6可以被3整除)2)用式子表示为:如果有a≡b(modm),那么一定有a-b=mk,k是整数,即m|(a-b)。
3.余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的。
建立余数判别法的基本思想是:为了求出“N被m除的余数”,我们希望找到一个较简单的数R,使得:N与R对于除数m同余。
由于R是一个较简单的数,所以可以通过计算R被m除的余数来求得N被m除的余数。
⑴整数N被2或5除的余数等于N的个位数被2或5除的余数。
⑵整数N被4或25除的余数等于N的末两位数被4或25除的余数。
⑶整数N被8或125除的余数等于N的末三位数被8或125除的余数。
⑷整数N被3或9除的余数等于其各位数字之和被3或9除的余数。
⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数。
(不够减的话先适当加11的倍数再减)⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数。
例题精讲模块一、两个数的同余问题例1】有一个整数,除39、51、147所得的余数都是3,求这个数。
考点】两个数的同余问题【难度】1星【题型】解答解析】法1)39-3=36,51-3=48,147-3=144,(36,144)=12,12的约数是1、2、3、4、6、12,因为余数为3要小于除数,这个数是4、6、12.法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数。
小学五年级奥数—数论之同余问题

数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
五年级下册讲义 01讲 尾数和余数B版(含答案、奥数板块)--北师大版-推荐

尾数和余数【名师解析】自然数末尾的数字称为自然数的尾数;除法中,被除数减去商与除数积的差。
尾数与余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。
【例题精讲】例1、写出除333后余3的全部两位数。
练习、317除以一个两位数后余数是2,符合条件的两位数有哪些?例2、9519...999个⨯⨯⨯⨯积的个位数字是几?练习、61201161...616161个⨯⨯⨯⨯积的尾数是几?例3、 64...4444100÷个,当商是整数时,余数是多少?练习、1355 (5555)2001÷个,当商是整数时,余数是多少?例4、有一列数,前两个数是3与4,从第三个数开始,每一个数都是前两个数的和。
这一列数中第2001个数除以4,余数是多少?练习、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。
在这一串数字中,第1991个数被3除,所得的余数是几?例5、已知,甲数除以9余7,乙数除以9余5,甲数比乙数大。
(1)甲、乙两数的和除以9余数是几?(2)甲、乙两数的差除以9余数是几?(3)甲、乙两数的积除以9余数是几?练习、甲数除以5余3,乙数除以5余2,甲数比乙数大,那么甲、乙两数的和除以5余数是几?甲、乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?例6、有一个自然数,用它分别去除70,98,143,都有余数(余数不为0),三个余数的和是25。
这个数是。
练习、有一个自然数,用它分别去除63,80,32都有余数,得到的三个余数的和是10,这个数是。
【选讲】有一个(大于1)数,除122,148,187得到相同的余数,这个数是。
练习、某个大于1的自然数分别去除442,297,210得到相同的余数,则该自然数是 。
【综合精练】1、写出除349后余4的全部两位数。
2、写出除1095后余3的全部三位数。
3、)3631(50)3631(...)3631()3631(⨯⨯⨯⨯⨯⨯⨯个积的尾数是几?4、9919...999个⨯⨯⨯⨯积的个位数是多少?5、下列各小题中,当商是整数时,余数各是多少?(1)46...666650÷ 个 (2)78 (8888)80÷个(3)744...44441000÷ 个 (4)51 (1111)1000÷个6、把71化成小数,那么小数点后面第100位上的数字是多少?7、一列数1,2,4,7,11,16,22,29,...。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲 数论之同余(选讲)
一、 余数定理:若A x ÷余a ,B x ÷余b ,则有
① ()A B x ⨯÷的余数=()a b x ⨯÷的余数;
② 当,A B a b >>时,()A B x ±÷的余数=()a b x ±÷的余数;
③ 当,A B a b ><时,()A B x -÷的余数=()x a b x +-÷的余数;
④ ()()A B a b x +-+÷⎡⎤⎣⎦的余数为0;
⑤ 若a 、b 相等,则()A B x -÷的余数为0
【例 1】 一个两位奇数除1477,余数是49,那么,这个两位奇数是多少?
【巩固】 2024除以一个两位数,余数是22.求出符合条件的所有的两位数.
【例 2】 求4373091993⨯⨯被7除的余数.
【巩固】 一个数被7除,余数是3,该数的3倍被7除,余数是多少?
【例 3】 20032与22003的和除以7的余数是多少?
【巩固】
2008222008+除以7的余数是多少?
【例 4】 19977
77777⋅⋅⋅个除以41的余数是多少?
【巩固】 已知20082008
200820082008a =个,问:a 除以13所得的余数是多少?
【例 5】 若2836,4582,5164,6522四个自然数都被同一个自然数相除,所得余数相同
且为两位数,除数和余数的和是多少?
【巩固】 有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整
数是多少?
【例 6】 六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华
书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是多少元?
【巩固】 商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中
的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是多少千克?
【例7】著名的斐波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2013个数除以3所得的余数为多少?
【巩固】有一列数:1,3,9,25,69,189,517,…其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前面两个数之和的2倍再加上1,那么这列数中的
第2013个数除以6,得到的余数是.
【例8】5年级3班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6排多5人,问上体育课的同学最少有多少人?
【巩固】有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,则这个数最小是多少?
【例9】将七位数“1357924”重复写287次组成一个2009位数“13579241357924…”。
删去这个数中所有位于奇数位上的数字;按上述方法一直删除下去直到剩下一个
数字为止,则最后剩下的数字是多少?
【巩固】30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色…的次序串成一圈,一只蚂蚱从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上,这只蚂蚱至少要
跳次才能落到黑珠子上?
【例10】有5000多根牙签,可按6种规格分成小包.如果10根一包,那么最后还剩9根.
如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8,7,6,5
根为一包,那么最后也分别剩7,6,5,4根.原来一共有牙签多少根?
【巩固】五只猴子找到一堆桃子,怎么也平分不了,于是大家同意去睡觉,明天再说。
夜里,一只猴子偷偷起来,吃掉一只桃子,剩下的桃子正好平分五等份,它拿走自
己的一份,然后去睡觉;第二只猴子起来,也吃掉一只桃子,剩下的桃子也正好
分成五等份,它也拿走了自己的一份,然后去睡觉。
第三、四、五只猴子也都这
样做。
问:最初至少有多少个桃子?
课后作业
1.一个三位数除以36,得余数8,这样的三位数中,最大的是多少?
2.三个数:23,51,72,各除以大于1的同一个自然数,得到同一个余数,则这个除数是多少?
3.有一个三位数,其中个位上的数是百位上的数的3倍。
且这个三位数除以5余4,除以11余3。
这个三位数是多少?
4.一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3
倍,这个自然数是多少?
5. 用一个自然数去除另一个自然数,商为40,余数是1
6.被除数、除数、商、余数的和
是933,求这2个自然数各是多少
6. 用某自然数a 去除1992,得到商是46,余数是r ,求a 和r .
7. 号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?
8. 将13579111315171921......依次写到第2013个数字,组成一个2013位数,那么此数除以9的余数是多少?
9. 小朋友们做游戏,若3人分成一组,则最后余下2人;若4人分成一组,则最后余下3人;若5人分成一组,则最后余下4人。
那么一起做游戏的小朋友至少有多少人?
10. 求
2007200720072007 (2007)
个除以9、99、999、的余数分别是多少?。