平行四边形的定义及性质PPT课件
合集下载
平行四边形判定PPT课件

两组对边分别相等
四边形中,如果两组对边分别相等,则该四边形为平行四边形。
一组对边平行且相等
四边形中,如果有一组对边既平行又相等,则该四边形为平行四边 形。
角度判定法
两组对角分别相等
四边形中,如果两组对角分别相等,则该四边形为平行四边 形。
一组邻角互补
四边形中,如果有一组邻角互补(即两个角的度数之和为 180度),则该四边形为平行四边形。
在水准测量中,可以利用 平行四边形对角线互相平 分的性质进行高程传递和 计算。
05 误区提示与易错点剖析
常见误区提示
误区一
仅根据两组对边分别平行就判定为平行四边形。实际上, 还需要考虑其他条件,如对角线是否互相平分等。
误区二
忽视平行四边形的性质,仅根据图形外观判断。平行四边 形的性质包括两组对边分别平行且相等、对角线互相平分 等,需要综合考虑。
梯形判定
一组对边平行且不相等的四边形是梯形;只有一组对边平行的四边形是梯形。
其他特殊情况
01
等腰梯形判定
同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯
形。
02
直角梯形判定
有一个角是直角的梯形是直角梯形。
03
平行四边形与特殊四边形的转化
通过添加辅助线或改变条件,可以将平行四边形转化为矩形、正方形、
正方形
既是矩形又是菱形的四边形是正方形。 正方形具有矩形和菱形的所有性质,此 外还具有四个直角和四条相等的边。
菱形
有一组邻边相等的平行四边形是菱形。菱形 具有平行四边形的所有性质,此外还具有四 条相等的边和两条垂直且平分的对角线。
02 平行四边形判定方法
边长判定法
两组对边分别平行
四边形中,如果两组对边分别平行,则该四边形为平行四边形。
四边形中,如果两组对边分别相等,则该四边形为平行四边形。
一组对边平行且相等
四边形中,如果有一组对边既平行又相等,则该四边形为平行四边 形。
角度判定法
两组对角分别相等
四边形中,如果两组对角分别相等,则该四边形为平行四边 形。
一组邻角互补
四边形中,如果有一组邻角互补(即两个角的度数之和为 180度),则该四边形为平行四边形。
在水准测量中,可以利用 平行四边形对角线互相平 分的性质进行高程传递和 计算。
05 误区提示与易错点剖析
常见误区提示
误区一
仅根据两组对边分别平行就判定为平行四边形。实际上, 还需要考虑其他条件,如对角线是否互相平分等。
误区二
忽视平行四边形的性质,仅根据图形外观判断。平行四边 形的性质包括两组对边分别平行且相等、对角线互相平分 等,需要综合考虑。
梯形判定
一组对边平行且不相等的四边形是梯形;只有一组对边平行的四边形是梯形。
其他特殊情况
01
等腰梯形判定
同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯
形。
02
直角梯形判定
有一个角是直角的梯形是直角梯形。
03
平行四边形与特殊四边形的转化
通过添加辅助线或改变条件,可以将平行四边形转化为矩形、正方形、
正方形
既是矩形又是菱形的四边形是正方形。 正方形具有矩形和菱形的所有性质,此 外还具有四个直角和四条相等的边。
菱形
有一组邻边相等的平行四边形是菱形。菱形 具有平行四边形的所有性质,此外还具有四 条相等的边和两条垂直且平分的对角线。
02 平行四边形判定方法
边长判定法
两组对边分别平行
四边形中,如果两组对边分别平行,则该四边形为平行四边形。
平行四边形的ppt课件

VS
外角和定理的证明
通过平移、旋转等几何变换,将平行四边 形转化为三角形,再利用三角形外角和定 理进行证明。
谢谢
THANKS
平行四边形的性质课件
目录
CONTENTS
• 平行四边形的基本概念 • 平行四边形的特殊形式 • 平行四边形与生活中的应用 • 平行四边形的证明实例 • 平行四边形的探究与拓展
01 平行四边形的基本概念
CHAPTER
平行四边形的定义
平行四边形定义
平行四边形是两组对边分别平行的四 边形。
平行四边形的符号表示
05 平行四边形的探究与拓展
CHAPTER
平行四边形的面积计算
面积计算公式
平行四边形的面积可以通过底乘高的方式进行计算,其中底为平行四边形的底边,高为该边上的垂直 距离。
面积计算的实际应用
面积计算在日常生活和数学领域中都有广泛的应用,如几何图形面积的求解、土地面积的测量等。
平行四边形的内角和
内角和定理
采光
平行四边形的窗户设计能够更好地利用自然光线 ,提高室内采光效果。
交通标志
方向性
平行四边形形状的交通标志具有明显的方向性,能够清晰地指示 车辆前行方向。
易识别性
平行四边形的简单形状和鲜明的颜色使得交通标志易于识别,有助 于提高交通安全。
规范性
平行四边形的交通标志符合道路交通规范,能够确保交通秩序和安 全。
矩形的四个角都是直角, 对角线相等。
判定
如果一个平行四边形有一 个角是直角,那么它是矩 形。
菱形
定义
有一组邻边相等的平行四 边形是菱形。
性质
菱形的四条边都相等,对 角线互相垂直平分。
判定
平行四边形课件ppt

判定
有一个角是直角的菱形是 正方形;对角线相等的菱 形是正方形。
03
CATALOGUE
平行四边形的应用
在几何作图中的应用
总结词:基础应用
详细描述:平行四边形是几何学中最基础的图形之一,它在证明定理、解决几何 问题等方面有着广泛的应用。通过平行四边形的性质和判定,可以解决各种几何 问题,如面积计算、线段长度比较等。
。
掌握平行四边形的面积和周长的 计算方法。
加深对平行四边形的应用的理解 ,如对称问题、最值问题等。
THANKS
感谢观看
进一步提高孩子们对平行四边形性质的理解和应用能力。
详细描述
给出一个不规则的图形,让孩子们通过重新排列或剪切得到一个平行四边形,并说明理由。
06
CATALOGUE
总结与回顾
主要概念总结
平行四边形定义
两组对边分别平行的四边形叫做 平行四边形。
平行四边形性质
平行四边形的对边相等且平行、 对角相等、对角线互相平分。
对角线互相平分的四边形是平行四边 形。
一组对边平行且相等的四边形是平行 四边形。
两组对角分别相等的四边形是平行四 边形。
02
CATALOGUE
平行四边形的特殊形式
矩形
定义
有一个角是直角的平行四边形是 矩形。
性质
矩形的四个角都是直角,矩形的对 角线相等。
判定
有一个角是直角的平行四边形是矩 形;对角线相等的平行四边形是矩 形。
平行四边形属于中心 对称图形,其对称中 心是两条对角线的交 点。
平行四边形的性质
01
02
03
04
对边平行:平行四边形的对边 平行且相等。
对角相等:平行四边形的对角 相等,邻角互补。
八年级数学《平行四边形概念及性质》课件

1、定义:有两组对边分别平行的四B 边形叫平行C四边形.
2、特征:a、属于四边形; b、有两组对边分别平行.
3.
因为 四边形ABCD是平行四边形AB CD;AD BC
4、有关名称:
A
D
(1)对边,(2)邻边;
∟
∟
(3)对角,(4)邻角;
B
C
(5)高。
返回
5.证明平行四边形的对边平行且相等
6.证明平行四边形的对角相等,邻角互 补
课堂回顾
1、定义:两组对边分别平行的四边形叫做平行四 边形.
2、性质:平行四边形的对边平行且相等。 平行四边形的对角相等。 平行四边形的邻角互补。
3、性质的运用
19.1.1 平行四边形的性质(一)
在数学的天地里, 重要的不是我们知道什么, 更重要的是我们应该,怎么知道什么。
——毕达哥拉斯
引入新课
下面的图片中,有你熟悉的哪些图形?
返回
教学目标:
1.能准确叙述平行四边形的概念和性质. 并能 用符号语言 表示.
2.能初步应用平行四边形的概念及其性质1和 性质2进行计算和证明.
自学课本
• 自学课本75页~77页内容,思考下列问题
1 .平行四边形定义,用符号语言如何表示? 2 .平行四边形的边具有哪些关系?说说你的理由。 3 .平行四边形的角具有什么关系?说说你的理由.
议探交流
请同学们根据思考题,以及自学中的疑惑,先组内 对议,再组内互议.
小组展示
A
D
一、 平行四边形的相关概念:
求 : ABCD 的面积.
A
D
解: 过A作AE⊥BC于点E
在Rt△ABE中,
B
∠B= 30°, AB=8 .
《平行四边形的性质》课件

平行四边形与三角形面积比较
平行四边形的面积始终大于其内接的三角形,且小于其外接的三角形。
真假题习题
使用真假题来检验你对平行四边形知识的掌握程度。
综合应用题
用综合应用题来加深你对平行四边形的应用能力。
总结
平行四边形是一个非常重要的几何形状,具有许多有趣且有用的性质。通过 本课件的学习,你现在已经掌握了平行四边形的各种性质和应用方法。
3
利用特殊四边形
通过证明其为矩形、菱形或等腰梯形,间接证明两组对边平行。
平行四边形的两组对边相等
平行四边形的两组对边分别相等。
平行四边形中线具有相同长度
平行四边形的中线(连接相对顶点中点的线段)具有相同的长度。
平行四边形中垂线长相等
平行四边形的垂线(从顶点向对边作垂直线)具有相同的长度。
平行四边形的高度
平行四边形的高度是从一条边到对边平行距离的垂直线段。
平行四边形内接圆和外接圆
1 内接圆
平行四边形可以有一个内接圆,圆心位于对 角线交点。
2 外接圆
平行四边形可以有一个外接圆,圆心位于四 个顶点外的某点。
平行四边形的面积公式
平行四边形的面积可以通过底边与高的乘积来计算。
平行四边形的周长公式
平行四边形的周长可以通过四条边长之和来计算。
平行四边形的对角线平分
平行四边形的对角线相交于一点,且互相平分。
边界角的性质
平行四边形的边界角互补,它们的和为180度。
平行四边形的中心对角线
平行四边形的中心对角线相等。
证明平行四边形的方法
1
利用定义
根据平行四边形的定义,证明其两组对边平行。
2
通过角度
利用内角和、对角线平分等性质,证明其两组对边。
平行四边形判定 PPT

2.本节课所学的解决问题的思路是:
(1)解决一个数学问题,常要通过”动手实践”----”大胆猜想”-----”验证猜想(证明)”-----”得出结 (2)碰到平行四边形的问论题”常转化为三角形来解决.
2.已知:在平行四边形ABCD中,对角线 AC 、BD相交于点,M 、 N 、 P、 Q 分别是OA 、OB 、OC 、 OD的中点
平行四边形的定义:
有两组对边平行的四边形是平行四边形.
平行四边形的性质: 定义:平行四边形的两组对边分别平行.
1.平行四边形的对边相等; 2.平行四边形的对角相等; 3.平行四边形的对角线互相平分.
平行四边形
边
对 边 平 行
对
边
相
等
角
对 角 相 等
邻
角
互
补
对 角 线
互相平分
1.两组对边分别相等的四边形是 平行四边形
求证 四边形MNPQ是平行四边形
A
D
M
Q
O
NP
B
C
如图,在 ▱ABCD中,已知两条对角线相交于
点O, E、F、G、H分别是AO、BO、CO、DO的中
点,
以图中的点为顶点,尽可能多地画出平行四边形。
A
D
E
H
F
O G
B
C
大家学习辛苦了,还是要坚持
继续保持安静
性质:
判定:
1.平行四边形的对边 1.两组对边分别平行的
平行;
四边形是平行四边形;
2.平行四边形的对边
2.两组对边分别相等的 四边形是平行四边形;
相等;
猜测:
3.平行四边形的对角
相等;
4.平行四边形的对角 线互相平分.
(1)解决一个数学问题,常要通过”动手实践”----”大胆猜想”-----”验证猜想(证明)”-----”得出结 (2)碰到平行四边形的问论题”常转化为三角形来解决.
2.已知:在平行四边形ABCD中,对角线 AC 、BD相交于点,M 、 N 、 P、 Q 分别是OA 、OB 、OC 、 OD的中点
平行四边形的定义:
有两组对边平行的四边形是平行四边形.
平行四边形的性质: 定义:平行四边形的两组对边分别平行.
1.平行四边形的对边相等; 2.平行四边形的对角相等; 3.平行四边形的对角线互相平分.
平行四边形
边
对 边 平 行
对
边
相
等
角
对 角 相 等
邻
角
互
补
对 角 线
互相平分
1.两组对边分别相等的四边形是 平行四边形
求证 四边形MNPQ是平行四边形
A
D
M
Q
O
NP
B
C
如图,在 ▱ABCD中,已知两条对角线相交于
点O, E、F、G、H分别是AO、BO、CO、DO的中
点,
以图中的点为顶点,尽可能多地画出平行四边形。
A
D
E
H
F
O G
B
C
大家学习辛苦了,还是要坚持
继续保持安静
性质:
判定:
1.平行四边形的对边 1.两组对边分别平行的
平行;
四边形是平行四边形;
2.平行四边形的对边
2.两组对边分别相等的 四边形是平行四边形;
相等;
猜测:
3.平行四边形的对角
相等;
4.平行四边形的对角 线互相平分.
平行四边形的定义及性质ppt课件

§18.1平行四边形的定义及性质 (一)
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
1
2
思考:什么样的四边形是平行四边形?
3
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
4
合作交流 解读探究
作业:
P75的练习第1题、
P80的习题18.1第1、3题 20
21
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
10
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
形性
质2
∵四边形ABCD是平行四边形
(关 于角)
邻角互补
∴ ∠A +∠ B =180° ∠A +∠D =180 °
∠C +∠ D=180°
∠C+∠ B =180° 11
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
12
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
1
2
思考:什么样的四边形是平行四边形?
3
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
4
合作交流 解读探究
作业:
P75的练习第1题、
P80的习题18.1第1、3题 20
21
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
10
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
形性
质2
∵四边形ABCD是平行四边形
(关 于角)
邻角互补
∴ ∠A +∠ B =180° ∠A +∠D =180 °
∠C +∠ D=180°
∠C+∠ B =180° 11
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
12
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,
《 平行四边形的判定》课件(共48张PPT)

【 ∵四边形 是平行四边形,∴OD=OB, 证明】 ABCD 已知:如图,四边形ABCD的对角线AC,BD相交于点O,并且 AO=CO,BO=DO。
将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.
OA=OC,AB∥CD (2010·怀化中考)如图,平行四边形ABCD的对角线
E,F. 于点 ∴AB=B′C, AB=A′C(平行四边形的对边相等). AECF . 上两的组两 对点角,分求并别且相证等A:E的=四C四F边。形边是平形行四边形。是平行四边形
从实验结果得出什么结论? ∵ AO=OC,BO=OD 判定一个四边形是平行四边形应具备几个条件? 两组对角分别相等的四边形是平行四边形。 你认为下面四个条件中可选择的是( ) 证明:连结BD,交AC于点O ∵AB CD, ∴四边形ABCD是平行四边形 两组对边分别相等的四边形是平行四边形 求证:四边形BFDE是平行四边形 ∴四边形ABCD是平行四边形
A B
证明:∵四边形ABCD是
E
D
平行四边形
∴AD∥BC AD=BC
∵ DE=1/2AD
BF=1/2BC
∴DE∥BF DE=BF
F
C
∴四边形EBFD是平
行四边形
∴EB=DF
如图,在 ABCD中,已知AE、CF分别是
∠DAB、∠BCD的角平分线,
求证:四边形AECF是平行四边形。
A
F
D
256
1
34
8 7
∵AB ﹦∥CD, ∴四边形ABCD是平行四边形
A
通过了本节课学习,
你有哪些收获?
B
D
O
C
1、两组对边分别平行的 ∵AB∥CD,AD∥BC
将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.
OA=OC,AB∥CD (2010·怀化中考)如图,平行四边形ABCD的对角线
E,F. 于点 ∴AB=B′C, AB=A′C(平行四边形的对边相等). AECF . 上两的组两 对点角,分求并别且相证等A:E的=四C四F边。形边是平形行四边形。是平行四边形
从实验结果得出什么结论? ∵ AO=OC,BO=OD 判定一个四边形是平行四边形应具备几个条件? 两组对角分别相等的四边形是平行四边形。 你认为下面四个条件中可选择的是( ) 证明:连结BD,交AC于点O ∵AB CD, ∴四边形ABCD是平行四边形 两组对边分别相等的四边形是平行四边形 求证:四边形BFDE是平行四边形 ∴四边形ABCD是平行四边形
A B
证明:∵四边形ABCD是
E
D
平行四边形
∴AD∥BC AD=BC
∵ DE=1/2AD
BF=1/2BC
∴DE∥BF DE=BF
F
C
∴四边形EBFD是平
行四边形
∴EB=DF
如图,在 ABCD中,已知AE、CF分别是
∠DAB、∠BCD的角平分线,
求证:四边形AECF是平行四边形。
A
F
D
256
1
34
8 7
∵AB ﹦∥CD, ∴四边形ABCD是平行四边形
A
通过了本节课学习,
你有哪些收获?
B
D
O
C
1、两组对边分别平行的 ∵AB∥CD,AD∥BC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)四边形AFDE是什么图形,为什么?
(2)图中∠FDB与∠B大小关系怎样?∠C与∠EDC呢?
(3)图中哪些线段相等?为什么?
A
(4)能否求出 AEDF的边长?周长呢?
(2)∠FDB=∠B
∠C=∠EDC
F
(3)AF=DE=CE、AE=DF=BF
(4)可以求出,C AEDF
=AE+DF+DE+AF
=AE+CE+AF+BF
D C
习题1:判断题(对的在括号内填“∨”,错的填“×”)
(1)平行四边形两组对边分别平行. ( ∨ ) (2)平行四边形的四个内角都相等. ( × ) (3)平行四边形的相邻两个内角的和等于180°( ∨ ) (4)如果平行四边形相邻两边长分别是2cm和
3cm,那么周长是10cm. ( ∨ ) (5)在平行四边形ABCD中,如果∠A=35°,
小试牛刀:
如图:在 ABCD中,根据已知
你能得到哪些结论?为什么?
A 32cm D
124°
56°
30cm
30cm
56°
124°
B 32cm C
例1 如图,在 ABCD中,已知∠A=40°, 求其他各个内角的度数。
解:
∵四边形ABCD是平行四边形, 且∠A=40°(已知)
∴∠D=180°-∠A(平行四边形邻角互补) =180°-40° =140°
A
B
C
5、几何语言:
AB∥CD AD∥BC
D 1、定义: 有两组对边分别平行的四边形 叫做平行四边形。
2、记作: ABCD
3、读作:平行四边形ABCD
4、两要素:
四边形 两组对边分别平行
四边形ABCD是平行四边形
判断下列四边形是否是平行四边形。
(× )
(√ )
(× )
(√ )
(×)
√( )
(× )
=AB+AC=10
B
E DC
课堂小结:
1、平行四边形的概念:两组对边____ 的四边形是平行四边形。
2、平行四边形的性质:平行四边形对 边____,对角____,邻角____;平行四 边形是____图形
作业:
P75的练习第1题、
P80的习题18.1第1、3题
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
∴AD=BC=½(24-2AB)=4
如图,在 ABCD中,AC=4
㎝ ,CD=3 ㎝ ,BC=5 ㎝ ,
则SABC的面积
为 __6_㎝__2___ .
A
D
4
3
B
5
C
习题2、已知在 ABCD中 (1)∠A=120°,求其余各内角的度数。 (2)AB=5,BC=3,求它的周长。
思考:
如图,点D是等腰△ABC的底边BC上的一点,且 AB=5E、F分别在AC、AB上,DE∥AB,DF∥AC,试 问:
那么∠B=55°. ( ×) (6)在平行四边形ABCD中,如果∠A=35°,
那么∠B=145°. ( ∨)
例2: 如图,在 ABCD中,已知AB=8,周长 等于24,求其余三边的长。
解:在 ABCD中,
AB=CD,AD=BC(平行四边形的对边 相等)
∵AB=8,∴DC=8,
又∵AB+BC+DC+AD=24
形性
质1
(关 对边相等
于边)
∵四边形ABCD是平行 四边形
∴ AB=DC ,AD=BC
平行四边形的性质
A
D
B
C
文字叙述
符号语言
平行 四边
对角相等
形性
质2
(关 于角)
邻角互补
∵四边形ABCD是平行四边形 ∴ ∠A=∠C ,∠B=∠D
∵四边形ABCD是平行四边形 ∴ ∠A +∠ B =180°
∠A +∠D =180 ° ∠C +∠ D=180° ∠C+∠ B =180°
§18.1平行四边形的定义及性质 (一)
学习目标: 1、掌握平行四边形的定义及对边相等、 对角相等的性质; 2、会证明平行四边形的性质1、2。
思考:什么样的四边形是平行四边形?
对边 相对的两条边 对角 相对的两个角
邻角 相邻的两个角 对角线 平行四边形不相邻的两个顶点连成 的线段
合作交流 解读探究
∠1=∠2,BD=DB,∠3=∠4
A
∴ ABD≌ CDB(ASA)
∴AB=CD,AD=CB,∠A=∠C
D
2 3
又∵∠1=∠2,∠3=∠4
41
∴∠1+∠4=∠2+∠3
B
C
即∠ABC=∠CDA
A
D
平行四边形的性质
B
C
文字叙述
符号语言
∵四边形ABCD是平行四
平行 对边平行 边形
四边
∴ AB∥DC ,AD∥BC
猜想: 我们已经知道平行四边形的对边的位 置关系是平行,那么对边、对角的大 小关系呢?
平行四边形的性质:
1、平行四边形的对称性 2、平行四边形的性质1、2
平行四边形的对称性:
AA
D D
B
Cቤተ መጻሕፍቲ ባይዱ
B
C
对称性:平行四边形是中心对称图形, 对角线的交点即为对称中心
已知: ABCD(如图)
求证:AB=CD,AD=CB;∠A=∠C,∠ABC=∠CDA 证明:连结BD ∵AB∥DC,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABD和 CDB中
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
∴ ∠B=∠D=140° ∠ C=∠A=40° (平行四边形对角相等)
随堂练习:
1.在 ABCD 中,AD=40,CD=30, A ∠B=60°,则BC= 40 ;AB= 30 ; ∠A= 120,°∠C= 12,0∠°D= 60° B
2.在 ABCD 中,∠ADC=120°, ∠CAD=20°,则∠ABC= 120°, ∠CAB= 40°