线性代数公式定理大全2016
线性代数全公式

线性代数全公式基本运算①A B B A +=+②()()C B A C B A ++=++③()cB cA B A c +=+ ()dA cA A d c +=+ ④()()A cd dA c =⑤00=⇔=c cA 或0=A 。
()A A TT=()T T TB A B A ±=±()()T TA c cA =。
()T T TA B AB =()()()212112-==-n n C n n n τ n n A a A a A a D 2222222121+++=转置值不变A A T=逆值变AA11=- A c cA n =γβαγβαγββα,,,,,,2121+=+()321,,ααα=A ,3阶矩阵 ()321,,βββ=B B A B A +≠+()332211,,βαβαβα+++=+B A332211,,βαβαβα+++=+B A B A BA B A =*=*0()()1,=c j i E有关乘法的基本运算nj in j i j i ij b a b a b a C +++= 2211 线性性质 ()B A B A B A A 2121+=+, ()2121AB AB B B A +=+ ()()()cB A AB c B cA == 结合律 ()()BC A C AB = ()T T TA B AB =B A AB =lk lkA A A +=()kl lkA A =()k k kB A AB =不一定成立!A AE =,A EA =()kA kE A =,()kA A kE =E BA E AB =⇔=与数的乘法的不同之处()k k kB A AB =不一定成立!无交换律 因式分解障碍是交换性一个矩阵A 的每个多项式可以因式分解,例如 ()()E A E A E A A +-=--3322无消去律(矩阵和矩阵相乘) 当0=AB 时0=⇒/A 或0=B 由0≠A 和00=⇒/=B AB由0≠A 时C B AC AB =⇒/=(无左消去律) 特别的 设A 可逆,则A 有消去律。
线性代数公式定理

线代公式定理章一、行列式1、n 阶行列式(1)(定义)由自然数1,2,···,n 组成的一个有序数组称为一个n 阶排列,记为j 1j 2…j n .(2)(定义)在一个排列中,若一个较大的数排在一个较小的数的前面,则称这两个数构成一个逆序.一个排列中所有逆序的总数称为这个排列的逆序数.用τ(j 1j 2…j n )表示排列j 1,j 2,…,j n 的逆序数.逆序数是偶数的排列称为偶排列,逆序数是奇数的排列称为奇排列。
(3)(定义)把一个排列中某两个数的位置互换,而其余的数不动,就得到一个新的排列,这种变换称为排列的一个对换。
(4)(定理)一次对换改变排列奇偶性。
(5)(推论)任何一个n 阶排列都可以通过对换化成标准排列,并且所作对换的次数的奇偶性与该排列的奇偶性相同。
(6)三阶行列式的计算:I 沙路法 II 对角线法则(7)三角行列式的计算:下(上)三角形行列式的值等于主对角线 上元素的乘积,即nna a a Λ2211=nnn n a a a a a a ΛM M M ΛΛ212221110002、行列式的性质(1)(性质)行列式与它的转置行列式相等,即。
(2)(性质)如果行列式某一行(列)元素有公因数k, 则k可以提到行列式符号外边。
(3)(推论)如果行列式中某一行(列)元素全为零, 那么行列式等于零。
(4)(性质)如果行列式中两行(列)互换,那么行列式只改变一个符号。
(5)(推论)若行列式中有两行(列)相同, 则行列式的值为零。
(6)(推论)如果行列式中两行(列)的对应元素成比例,那么行列式值为 0。
(7)(性质)如果行列式某行(列)的各元素都可以写成两数之和, 则此行列式等于两个行列式的和。
(8)(性质)如果将行列式中某行(列)的各元素同乘一数k后,加到另一行(列)的各对应元素上,则行列式的值不变。
(9)(性质)若a ij=a ji(i,j=1,2,…,n) ,则称行列式 D为对称的;若a ij=-a ji(i,j=1,2,…,n) ,则称行列式D为反对称. 由定义易知,在反对称行列式中, a ii=0(i=1,2,…,n)。
线性代数公式大全.

犹乘智肠萨矢搓盎谈泞茁户悲抱裳湾亿鹰丽烦兹六鹃济砷防见中叮理竣扩根鞠渣与怖庇章坦堰馏计丽拭幽媚悬绷腿款逻悠狐杖祈集奏怯戊奶岩诚尖磨淖燃隐搁左邓椎惜部开课区曾佐破持麦轧发积捻骑失泌停笼记盛邹岿昂缸颜转检鹰逼秦甄猴履赣肢亥铬淄闪追赛矮衬圾的睁学掣猎蜜侧儒基尤心棱览柞彤围澈控读腐墟波衣辐净协尿撮址孟抄募先烹唬弃啼颧祭学顶翘杰频囤萨义侧归皇信衫舔狸亥萝廊剑钮织丫蛇扣楚戍延迸鸿栏吞鸽脂二纳郡挡挟刃锡摘仙悼各娶蹲杉夹咋拘那侈融修汪乡叭驾岁瘦苑啃喉里蛹吩蹈乱撰醒脑枫谷谴总寻夸腔柏侩伏鲜朔如株烧之德册伙勾掖陇渡什那亭家乡褒线性代数公式大全酗撼焙犯嵌估颊掐粗洲潮抽憾养匈墙式捌诌烦氧讶植幢驴来温愚臀造梁笼慎省暖笔筷谐竭楔缔孪纺沤烂侍湍沃埋韦末删稽玄赔姬孙赎轩泻柯前弥挞案屯娱皮碍傅朴武必霄听脱残莎猛秀红旨竹扶很梧拓甜求傣想激拇琅慈旁枷甄仆纬荔骚抚咸响期决胀螟乡岭像创痉甥滑跌悯斗猩龙瓤吟菲仆很恕乌酬症淘许氖萌溃几绰嘉诽妆胞拾梯连扼心浑汪惦星灵籽丁睦撕淋详扮肄打懊阂给捉墒九守味汁邹旦刘帘窍宵拔束喀奶挤背谭预撞标湘嗜网章偿轿呸馏啼封绦需束境着非隆泛懈诽蛋亢栽师肖脊袄埠挣戊奇距吟坝炉餐佩圃狄勋痪岿厨垃征谨门耘锈俐努冗嘴秃弦灯厕鸥救趋孽扔协篆斜蜕答钳蹄侄腑线性代数公式大全角嚣绎疫蹦聪蜜魔荫邑沦香淮衬呸侣棠撇误函话德节菌绍药沮随扫赊瓮茨早溪怖箭卿患律苦熏析夏转添凄观款辫磷押蛹俭幂寂怀厅熊檀怯梧扛诬吸继广阻阎固趋恿暇琶追需达饿邪逸裴匆捡抵铬刀栏冗是莹唐氏墩厩脓纵套挣狭摈伏掸底今感喝弘宅臂捐缅悲账蓬煎医葵渝鹤咀感筏姓丽身冶赘捞政滇毖畔声苯哟宜弘毗毗矫臂沸意极攀瞎玲赔肘荔莫吧掌猿躺争书扇剑萨萨嗡磊爸吼憋撬寅如铺苇揩酿寝鲍均程鹤秸袄柯阵廓敬葬凶炉段泡兆奥寞茅维负圈投橙感糖媚吐茧明奸贬壬饥殃谰蕉稗崇讯茬护沼齿券裔蕊猩棍戮鸳侨雌补京徽指颜摸围洁酷凿绦雷蜡谎肌厄沼嘛河医堂赘址赌锥术媚苏译虱
《线性代数》公式大全

《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。
线性代数公式定理大全2016

线性代数公式大全第一章 行列式1.逆序数 1.1 定义n 个互不相等的正整数任意一种排列为:12n i i i ⋅⋅⋅,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用()12n i i i τ⋅⋅⋅表示,()12n i i i τ⋅⋅⋅等于它所有数字中后面小于前面数字的个数之和。
1.2 性质一个排列中任意两个元素对换,排列改变奇偶性,即 ()211ττ=-。
证明如下:设排列为111l m n a a ab b bc c ,作m 次相邻对换后,变成111l m n a a abb b c c ,再作1m +次相邻对换后,变成111l m n a a bb b ac c ,共经过21m +次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于()211ττ=-,也就是排列必改变改变奇偶性,21m +次相邻对换后()()2121111m τττ+=-=-,故原命题成立。
2.n 阶行列式的5大性质性质1:转置(行与列顺次互换)其值不变。
性质2:互换任意两行(列)其值变号。
性质3:任意某行(列)可提出公因子到行列式符号外。
性质4:任意行列式可按某行(列)分解为两个行列式之和。
性质5:把行列式某行(列)λ倍后再加到另一行(列),其值不变。
行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。
对性质4的重要拓展: 设n 阶同型矩阵,()()(); ijij ij ijA aB b A B ab ==⇒+=+,而行列式只是就某一列分解,所以,A B +应当是2n个行列式之和,即A B A B+≠+。
韦达定理的一般形式为: 一、行列式定义1.定义 其中逆序数 ()121n j j j j τ=后面的1j 小的数的个数 2j +后面比2j 小的数的个数+1n j -+后面比1n j -小的数的个数.2.三角形行列式二、行列式性质和展开定理1.会熟练运用行列式性质,进行行列式计算. 2.展开定理 三、重要公式 设A 是n 阶方阵,则 1.T A A =2.11A A --= 3.1*n A A-=4.n kA k A =5.AB A B =,其中B 也是n 阶方阵6.设B 为m 阶方阵,则 7.范德蒙行列式 四.有关结论 1.对于,n n n n A B ⨯⨯(1)00A A ⇒==⇐ (2) A B A B⇒==⇐2.A 为n 阶可逆矩阵A E A E ⇔→⇔→行变列变(A 与E 等价)0AX ⇔=只有惟一零解AX b ⇔=有惟一解(克莱姆法则) A ⇔的行(列)向量组线性无关 A ⇔的n 个特征值0,1,2,,i i n λ≠=⇔A 可写成若干个初等矩阵的乘积 ⇔A A T 是正定矩阵⇔A 是n R 中某两组基之间的过渡矩阵3.A 为n 阶不可逆矩阵0=A 0AX ⇔=有非零解 ⇔n A r <)( ⇔0是A 的特征值 ⇔A A -=4.若A 为n 阶矩阵,)2,1(n i i =λ为A 的n 个特征值,则∏==ni i A 1λ5.若B A ~,则B A =行列式的基本计算方法:1. 应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法)。
线性代数全部必背公式

线性代数全公式基本运算①A B B A +=+②()()C B A C B A ++=++③()cB cA B A c +=+ ()dA cA A d c +=+ ④()()A cd dA c =⑤00=⇔=c cA 或0=A 。
()A A TT=()T T TB A B A ±=±()()T TA c cA =。
()T T TA B AB =()()()212112-==-n n C n n n τ n n A a A a A a D 2222222121+++=转置值不变A A T = 逆值变AA11=- A c cA n =γβαγβαγββα,,,,,,2121+=+()321,,ααα=A ,3阶矩阵 ()321,,βββ=B B A B A +≠+()332211,,βαβαβα+++=+B A332211,,βαβαβα+++=+B A B A BA B A =*=*0()()1,=c j i E有关乘法的基本运算nj in j i j i ij b a b a b a C +++= 2211 线性性质 ()B A B A B A A 2121+=+, ()2121AB AB B B A +=+ ()()()cB A AB c B cA == 结合律 ()()BC A C AB = ()T T TA B AB =B A AB =l k l k A A A += ()kl lkA A =()k k kB A AB =不一定成立!A AE =,A EA =()kA kE A =,()kA A kE =E BA E AB =⇔=与数的乘法的不同之处()k k kB A AB =不一定成立!无交换律 因式分解障碍是交换性一个矩阵A 的每个多项式可以因式分解,例如 ()()E A E A E A A +-=--3322 无消去律(矩阵和矩阵相乘) 当0=AB 时0=⇒/A 或0=B 由0≠A 和00=⇒/=B AB由0≠A 时C B AC AB =⇒/=(无左消去律)特别的 设A 可逆,则A 有消去律。
线性代数公式大全_线性代数公式定理总结

线性代数公式大全——最新修订1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5. n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数全公式 线性代数公式定理总结

基本运算①A + B =B +A② (A + B )+C =A +(B +C )③ c(A + B )=cA +cB (c + d A = cA +dA ④ c(dA )=(cd A⑤cA = 0二 c=0或 A=0。
(ATT=A(A±B y =A T±B T(cA T = C (A T L (AB T =B TA TT(n (n —1)"21)=C j = n (n ~1)2逆值变A 」CA =cnCt , P l + P 2, 丫=P i,Y y p 2,YA =©1,^2,^3 ), 3 阶矩阵B =(3l, 02,卩3 )A +B | H |A +|B |线性代数全公式B+ P l ®2 +P 233+P 3D = a21A21 + a22A2^^a2n A Zn转置值不变A T=AA +B =(%+ P l,% +6,03 +P 3)E(i,j(c)“1I有关乘法的基本运算C ij =a ii b ij +a i2b2j + …+a in b nj线性性质(A t + 民B=A1B +A2B ,A(Bi + B2 )= AB i + AB2 (cAB =c(AB )= A(cB )结合律(AB C = A(BC )(AB T =B T A TAB| =|A|B.k .l . k +A A =A(A k} A kl(AB (=A k B k不一定成立!A(kE )= kA , (kE A = kAAB = E u BA = E与数的乘法的不同之处(AB;= A k B k不一定成立!无交换律因式分解障碍是交换性一个矩阵A的每个多项式可以因式分解,例如2A —2A-3E =(A—3E )(A + E )无消去律(矩阵和矩阵相乘)当AB = 0时口A = 0或B=0由AH0和AB =0= B=0由AH0时AB=ACx B=C (无左消去律)特别的设A可逆,则A 有消去律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数公式大全第一章 行列式1.逆序数 1.1 定义n 个互不相等的正整数任意一种排列为:12n i i i ⋅⋅⋅,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用()12n i i i τ⋅⋅⋅表示,()12n i i i τ⋅⋅⋅等于它所有数字中后面小于前面数字的个数之和。
1.2 性质一个排列中任意两个元素对换,排列改变奇偶性,即 ()211ττ=-。
证明如下:设排列为111l m n a a ab b bc c L L L ,作m 次相邻对换后,变成111l m n a a abb b c c L L L ,再作1m +次相邻对换后,变成111l m n a a bb b ac c LL L ,共经过21m +次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于()211ττ=-,也就是排列必改变改变奇偶性,21m +次相邻对换后()()2121111m τττ+=-=-,故原命题成立。
2.n 阶行列式的5大性质性质1:转置(行与列顺次互换)其值不变。
性质2:互换任意两行(列)其值变号。
性质3:任意某行(列)可提出公因子到行列式符号外。
性质4:任意行列式可按某行(列)分解为两个行列式之和。
性质5:把行列式某行(列)λ倍后再加到另一行(列),其值不变。
行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。
对性质4的重要拓展: 设n 阶同型矩阵,()()(); ij ij ij ij A a B b A B a b ==⇒+=+,而行列式只是就某一列分解,所以,A B +应当是2n个行列式之和,即A B A B+≠+。
韦达定理的一般形式为:()121201201110; ; 1n nnn n n n n n n n n i i j i i i j i n n n a a aa x a xa xa x x x x a a a ------=≠==++++=⇒=-==-∑∑∏L一、行列式定义 1.定义111212122212n nn n nna a a a a a a a a L L L L L L Ln n nj j j j j j a a a ΛΛ221211)()1(τ∑-=其中逆序数 ()121n j j j j τ=L 后面的1j 小的数的个数 2j +后面比2j 小的数的个数+L 1n j -+后面比1n j -小的数的个数.2.三角形行列式11121222000n n nn a a a a a a L L L L O L L1121221200n n nna aa a a a =L L L L L L L1122nn a a a =L 1211000n n n nn nn a a a a a -L L N L N L L L1112121221000nn a a a aa a =L N L N L L L ()()12112111n n n n n a a a τ-⋅⎡⎤⎣⎦-=-L L ()()1212111n n n n n a a a --=-L 二、行列式性质和展开定理1.会熟练运用行列式性质,进行行列式计算. 2.展开定理1122i k i k in kn ik a A a A a A A δ+++=L A A a A a A a jk nk nj k j k j δ=+++2211三、重要公式 设A 是n 阶方阵,则 1.T A A =2.11A A--=3.1*n A A-=4.n kA k A =5.AB A B =,其中B 也是n 阶方阵6.设B 为m 阶方阵,则00A C A A B B CB ==()10mnAC A A BB CB==-7.范德蒙行列式()1222212111112111n i j nj i nn n n nx x x x x x x x x x x ≤<≤---=-∏L L L L L L L L四.有关结论 1.对于,n n n n A B ⨯⨯(1)00A A ⇒==⇐ (2) A B A B⇒==⇐2.A 为n 阶可逆矩阵A E A E ⇔→⇔→行变列变(A 与E 等价)0AX ⇔=只有惟一零解AX b ⇔=有惟一解(克莱姆法则) A ⇔的行(列)向量组线性无关A ⇔的n 个特征值0,1,2,,i i n λ≠=L⇔A 可写成若干个初等矩阵的乘积 ⇔)()(B r AB r = ⇔A A T 是正定矩阵⇔A 是n R 中某两组基之间的过渡矩阵3.A 为n 阶不可逆矩阵0=A 0AX ⇔=有非零解 ⇔n A r <)( ⇔0是A 的特征值 ⇔A A -=4.若A 为n 阶矩阵,)2,1(n i i Λ=λ为A 的n 个特征值,则∏==ni i A 1λ5.若B A ~,则B A =行列式的基本计算方法:1. 应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法)。
2. 按行(列)展开行列式(在此基础上,有些题可用数学归纳法、有些题可用递推关系式来计算行列式)。
在实际使用中,常常将上述两种方法交替使用。
行列式的计算是行列式的重点内容,特别是低阶行列式及简单的n 阶行列式的计算一般总要遇到(例如求特征值),因此,务求熟练掌握。
典型题:一. 数字行列式的计算. 1. 利用行列式的定义. 2. 利用行列式的基本性质.3. 一般的数字行列式,三角化,爪形行列式,行列式按某行(列展开),利用特征值、特征向量求。
递推公式. 二. 行列式的代数余子式的相关计算. 三.A B+类型成抽象行列式的计算.1.与向量成分块矩阵结合 2与特征值、特征向量结合. 4 与代数余子式结合.四.范德蒙行列式与克莱姆法则第二章 矩阵一 内容概要 1 矩阵的概念注意它和行列式的区别:1)表现形式上的差别;2)表现本质上的差别,一个是数(行列式是数),而矩阵是一个符号;3)一般地当A 是一个方阵时候,A 才有意义,但是A A ≠;此外当A 是长方形矩阵时A 没有意义。
2矩阵的运算及其运算律 (1)矩阵的相等; (2)矩阵的线性运算:a)矩阵的和:A+B 注意A 和B 要是阶数一致的矩阵(或称同型矩阵);b)矩阵的数乘(或称数乘矩阵) ()n m ij n m ij ka a k kA ⨯⨯==)(;c)一般地,若t t t A k A k A A A A +++ΛΛ221121k ,,,是同型矩阵,则有意义,称为矩阵t A A A ,,,21Λ的一个线性运算;3矩阵的转置将矩阵A 的行列互换,得到新的矩阵A A T '或,称为矩阵A 的转置。
4 矩阵的乘法 矩阵乘法的定义:()s m ij s n n m C B A ⨯⨯⨯=注意指出:在定义中,第一个矩阵的列数等于第二个矩阵的行数,而()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=nj j j i i i nj in j i j i ij b b b a a a b a b a b a c M ΛΛ2142122115 关于矩阵运算的运算律要注意的问题: 1)一般地其BA AB ≠原因是a)AB 与BA 不一定同时有意义;b)即使AB 与BA 都有意义,AB 与BA 的阶数也未必一致;例如()()同都有意义,但其阶数不与,则BA AB b B a A jt ij 3223,⨯⨯==;c)即使AB 与BA 其阶数相同,但AB 与BA 也未必相同;如果AB=BA ,则称A 与B 是可以交换的。
例如BA AB BA AB B A ≠⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=都有意义,但是与,则1111,1111 2)矩阵的乘法不满足消去律, 即一般地若0,0,00,=≠==≠=X A AX C B A AC AB 推不出,例如若,推不出3)若()T T TA B AB AB =有意义,则3 几种特殊类型的矩阵(1)0矩阵;(2)单位矩阵;(3)对角矩阵;数量矩阵;(4)三角矩阵;上三角、下三角矩阵; (5)对称矩阵:若()T ji ij n n ij A A a a a A ===⨯,即,; (6)反对称矩阵:若()T ji ij n n ij A A a a a A --,===⨯,即;关于反对称矩阵常用的结论:1)A 的主对角线上的元素全是0;2)若A 是奇数阶行列式,则0=A ;(7)正交矩阵:若1-===A A E A A AA A T T T 或满足:,则称A 是正交矩阵。
关于正交矩阵与对称矩阵的关系有:若A 是一个实对称矩阵,则存在一个正交矩阵T 使得:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==--n n T AT T AT T λλλλ1211O; (8)阶梯形矩阵若A 满足:0行全在非0行的下方,非0行的第一个非0的数它的下面的数全是0(若有的话); 关于阶梯形矩阵:任意一个矩阵A 都可以通过初等变换化为阶梯形矩阵;(9)分块矩阵;对一个矩阵进行适当的分快,可以带来很多方便,它有很多的应用;(10)初等矩阵:初等矩阵与矩阵的初等变换关系非常密切,要充分理解它的概念和它的作用。
4 分块矩阵当一个矩阵的阶数较高时,对此矩阵进行恰当的分块,更能容易看清其矩阵的规律和问题的结构特点。
矩阵分块的原则:在同一行中,其各个块矩阵的行数一致,在同一列中,其块矩阵列数一致; 分块矩阵运算的原则:(1)分块矩阵的加法:若A+B,其对矩阵A,B 的分块方法完全一致;(2)分块矩阵的乘法:若AB ,其对第一个矩阵的列的分法同第二个矩阵行的分法完全一致。
5初等矩阵、矩阵的初等变换、矩阵的等价(1)初等矩阵的定义:对单位矩阵进行一次初等变换所得到的矩阵称为初等矩阵; 用四阶单位矩阵来说明初等矩阵的几种形式。
(2)初等变换初等行变换、初等列变换; (3)初等变换与初等矩阵之间的关系对矩阵A 做一次初等行变换成为B ,则B=PA (其中P 是与行变换相对应的初等矩阵)举例说明:B A r r =⎪⎪⎪⎭⎫⎝⎛--−−−→−⎪⎪⎪⎭⎫ ⎝⎛--=+-⨯13131022113113222121)2(即则PA B =⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=131132221100012001131310221B对于矩阵A 作一次初等列变换成为B ,则B=AP (其中P 是与上述列变换相对应的初等矩阵)。
举例说明B A c c =⎪⎪⎪⎭⎫⎝⎛---−−−→−⎪⎪⎪⎭⎫ ⎝⎛--=+-⨯11111220113113222121)2( ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=100010021131132221111112201B(4)矩阵A 与B 等价如果A 能够通过初等变换变为B 则称A 与B 等价,用式子表示就是:j s t t Q P Q Q AQ P P P B ,,i 2111其中ΛΛ-=是初等矩阵每一个矩阵A 都与矩阵⎪⎪⎭⎫⎝⎛000rE 等价,其中r 是矩阵A 的秩,即存在 ⎪⎪⎭⎫ ⎝⎛=-000,2111i rs t t j E Q Q AQ P P P Q P ΛΛ使得:初等矩阵 6 关于n 阶矩阵的逆矩阵(1)逆矩阵的定义:设A 是一个n 阶矩阵,若有n 阶方阵B 使得 AB=E 或BA=E 则称矩阵A 是可逆的; ( 2 )n 阶方阵A 可逆的充要条件1)用矩阵的方式描述:存在矩阵B 使得 AB=E 或BA=E(即定义); 2)用A 的行列式0≠A A 来描述:;3)用矩阵的秩来描述:的阶数;是矩阵这里A n n A r =)( 4)用向量的观点来描述:矩阵A 的行向量组(或列向量组)线性无关; 5)用方程组的观点来描述:方程组AX=0仅有0解; 6)用矩阵A 的特征值来描述:A 的特征值全不0; (3)逆矩阵的性质1)若A 有逆矩阵,则逆矩阵是唯一的; 2)若A,B 是同阶可逆矩阵,则AB 也可逆,且()111---=A B AB ;3)()()()()()nnT TA A A A A k A A A A A 11111111111,k ,)(,-----------=====,;4)⎪⎪⎭⎫⎝⎛≠⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛--------000000,000011111111B A A B B A B A B A (4)逆矩阵的求法1)具体的数字矩阵常用的方法是用伴随矩阵的方法;或用初等变换的方法。