液体深层发酵

合集下载

实验6 微生物液体深层培养—发酵罐的使用

实验6  微生物液体深层培养—发酵罐的使用
College of Life Sciences, Hubei Normal University Central Laboratory of Biology
实验用品】 【实验用品】
1.材料:玉米粉,豆饼粉 1.材料:玉米粉, 材料 2.试剂: 2.试剂:K2HPO43H2O,MgSO47H20,红曲霉液体菌种 试剂 3H 7H 3.仪器: 3.仪器:小型通风发酵罐 仪器
College of Life Sciences, Hubei Normal University
Central Laboratory of Biology
方法步骤】 【方法步骤】
2. 空气过滤及空气管路的消毒 1)慢慢打开蒸汽阀门,排尽冷凝水. 慢慢打开蒸汽阀门,排尽冷凝水. 2)蒸汽通过空气过滤器进入发酵罐内. 蒸汽通过空气过滤器进入发酵罐内. 3)消毒时间一般为30分钟. 消毒时间一般为30分钟. 30分钟 4)吹干空气过滤器需20分钟左右. 吹干空气过滤器需20分钟左右. 20分钟左右 3. 空消 1)排尽夹套中的水. 排尽夹套中的水. 2)排尽蒸汽管中冷凝水,使蒸汽徐徐进入发酵罐. 排尽蒸汽管中冷凝水,使蒸汽徐徐进入发酵罐. 分钟. 3)空消时间一般为30~50分钟.排尽发酵罐内的冷凝水. 空消时间一般为30 50分钟 排尽发酵罐内的冷凝水.
方法步骤】 【方法步骤】
1. 准备工作 1)培养基的配制:玉米粉5%,豆饼粉2%,K2HPO43H2O 0.5%, 培养基的配制:玉米粉5%,豆饼粉2%, 5% 2% 3H 0.5%, MgSO47H20 0.1%,pH自然. 7H 0.1%,pH自然. 自然 2)检查本系统各单件设备,确保各设备能正常运行时方可开机. 检查本系统各单件设备,确保各设备能正常运行时方可开机. 3)温度,pH,转速,消泡设定值的调节 温度,pH,转速,

液体深层发酵的原理和方法

液体深层发酵的原理和方法

液体深层发酵的原理和方法
液体深层发酵是一种在液体培养基中进行的发酵过程,适用于生产大量微生物代谢产物的工业生产。

液体深层发酵的原理和方法如下:
原理:
1. 选择合适的微生物菌种,培养基和培养条件。

微生物菌种应具有产生目标代谢产物的能力,培养基应提供菌种所需的营养物质,培养条件应满足微生物的生长需求,如温度、pH值、搅拌速率等。

方法:
1. 制备液体培养基。

选择合适的培养基配方,将所需的成分按一定比例混合和溶解。

常用的液体培养基包括复合培养基、大豆蛋白培养基和玉米汁培养基等。

2. 菌种接种和预培养。

将培养基接种适量的菌种,并在预培养条件下使菌种适应培养基中的环境。

3. 液体深层发酵。

将预培养好的菌种转入大型发酵罐中,设置适当的培养条件,如温度、搅拌速率、氧气供应等。

随着发酵的进行,菌种会在培养基中生长和代谢,产生目标代谢产物。

4. 收获代谢产物。

根据实际需要,可以选择适当的时间点对发酵液进行收获。

常用的方法包括离心、过滤和浓缩等。

总之,液体深层发酵通过提供合适的培养条件,使微生物菌株在液体培养基中进行生长和代谢,从而产生所需的代谢产物。

该方法广泛应用于食品、医药、环保等领域。

液体深层培养方法生产发酵产品主要工艺过程

液体深层培养方法生产发酵产品主要工艺过程

液体深层培养方法生产发酵产品主要工艺过程液体深层培养是一种常用的发酵工艺,用于大规模生产各种发酵产品,如酒精、乳酸、酱油等。

它通过在液体培养基中添加适量的发酵菌种,控制温度、氧气供应和pH值等条件,使菌种在液体中快速繁殖和产生目标产物。

液体深层培养的主要工艺过程包括菌种接种、发酵培养、收获和提取等环节。

首先是菌种接种。

选择适宜的菌种,并在无菌条件下将菌种接种到预先配制好的液体培养基中。

菌种接种后,必须严格控制接种量,以确保发酵过程中的菌种数量适宜。

接下来是发酵培养。

在菌种接种后,将培养基装入发酵罐中,并控制好温度、氧气供应和pH值等条件。

温度的控制是非常重要的,不同的菌种对温度有不同的要求。

氧气供应也是必不可少的,因为很多发酵过程需要氧气来进行代谢和生长。

此外,pH值的控制也非常重要,过高或过低的pH值都会对发酵过程产生不利影响。

发酵过程中,菌种会快速繁殖,并在培养基中产生目标产物。

为了保证发酵效果,还需要控制好发酵罐内的搅拌速度和培养基的通气量等参数。

此外,还需要定期对发酵罐进行采样分析,以监测发酵过程中的菌种数量和产物浓度等指标。

当发酵过程达到一定的时间后,就可以进行收获和提取。

收获时,将发酵液从发酵罐中取出,并进行初步的固液分离。

然后,通过离心、过滤、浓缩等步骤,将目标产物从发酵液中提取出来。

最后,对提取得到的产物进行纯化和检测,以确保产品的质量和纯度。

总结起来,液体深层培养方法是一种常用的发酵工艺,它通过在液体培养基中添加适量的菌种,控制好温度、氧气供应和pH值等条件,使菌种在液体中快速繁殖和产生目标产物。

主要的工艺过程包括菌种接种、发酵培养、收获和提取等环节。

通过严格控制这些环节,可以获得高质量的发酵产品。

液体发酵技术

液体发酵技术

液体发酵技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII液体发酵技术1. 液体发酵技术简介1.1液体发酵的概念液体发酵技术是现代生物技术之一,它是指在生化反应器中,模仿自然界将食药用菌在生育过程中所必需的糖类、有机和无机含有氮素的化合物、无机盐等一些微量元素以及其它营养物质溶解在水中作为培养基,灭菌后接入菌种,通入无菌空气并加以搅拌,提供食用菌菌体呼吸代谢所需要的氧气,并控制适宜的外界条件,进行菌丝大量培养繁殖的过程。

工业化大规模的发酵培养即为发酵生产,亦称深层培养或沉没培养。

工业化发酵生产必需采用发酵罐,而实验室中发酵培养多采用三角瓶。

得到的发酵液中含有菌体、被菌体分解及未分解的营养成分、菌体产生的代谢产物。

发酵液直接供作药用或供分离提取,也可以作液体菌种。

1.2 液体发酵技术的发展简史液体深层发酵技术这一概念是20世纪40年代由美国弗吉尼亚大学生物工程专家Elmer L,Gaden.Jr设计出培养微生物系统的生物反应器,成为该项技术的创始人。

据资料报道,液体深层发酵技术应用于食药用菌方面的研究始于美国。

1948年,H.Humfeld用深层发酵来培养蘑菇(Agaricus campestris)菌丝体,并首先提出了用液体发酵来培养蕈菌的菌丝体。

从此食药用菌的发酵生产在世界范围内兴起;1953年,美国的S.Block博士用废苷汁深层培养了野蘑菇(Agaricus arvensis);1958年J.Szuess第一个用发酵罐培养了羊肚菌(Morchella esculenta)。

从此,食药用菌的生产渐渐跨入了大规模工业化生产的领域。

日本的杉森恒武等于1975、1977年用1%的有机酸和0.5%的酵母膏组成液体培养基,取得了大量香菇菌丝体。

我国是在1958年开始研究蘑菇、侧耳等的深层发酵的。

1963年羊肚菌液体发酵开始工业化生产试验。

自此以后,大规模采用液态发酵生产食药用菌逐渐展开。

液体深层发酵

液体深层发酵

液体深层发酵一、液体深层发酵的操作方式。

根据操作方式的不同,液体深层发酵主要有分批发酵、连续发酵和补料分批发酵三种类型。

1、分批发酵。

营养物和菌种一次加入进行培养,直到结束放出,中间除了空气进入和尾气排出,与外部没有物料交换。

特点:一次性;发酵过程中,营养不断减少,微生物不断增殖,环境非稳态;微生物生长的四个时期明显。

应用:广泛. 2、连续发酵。

连续发酵是指以一定的速度向发酵罐内添加新鲜培养基,同时以相同的速度流出培养液,从而使发酵罐内的液量维持恒定,微生物在稳定状态下生长。

稳定状态可以有效地延长分批培养中的对数期。

特点:培养基等量流入流出;各种变化=0;微生物群体生长的四个时期不存在。

应用:常用于废水处理、葡萄糖酸、酒精、氨基酸发酵等工业中。

优点:操作稳定;利于机械、自动化;提高设备的利用率;减少灭菌次数;易于过程优化。

缺点:易染菌;微生物易变异;对产品类型的适应性不广;对设备及附件要求高。

3、补料分批发酵。

补料分批发酵又称半连续发酵,是介于分批发酵和连续发酵之间的一种发酵技术,是指在微生物分批发酵中,以某种方式向培养系统补加一定物料的培养技术。

通过向培养系统中补充物料,可以使培养液中的营养物浓度较长时间地保持在一定范围内,既保证微生物的生长需要,又不造成不利影响,从而达到提高产率的目的。

特点:可以解除底物抑制、产物抑制、分解阻遏或克服微生物过度生长;提高有用产物的转化率;应用:应用广泛,用于面包酵母、氨基酸、抗生素等工业;二、发酵工艺控制。

发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。

反映发酵过程变化的参数可以分为两类:(1)直接参数:可以直接采用特定的传感器检测的参数.它们包括反映物理环境和化学环境变化的参数,如温度、压力、搅拌功率、转速、泡沫、发酵液粘度、浊度、pH、离子浓度、溶解氧、基质浓度等。

(2)间接参数:至今尚难于用传感器来检测的参数,包括细胞生长速率、产物合成速率和呼吸嫡等。

深层通气液体发酵技术

深层通气液体发酵技术

深层通气液体发酵技术深层通气液体发酵技术,这名字听着就有点高大上,是吧?其实说白了,就是一种让微生物在液体里大展拳脚的好办法。

想象一下,微生物们在一个大游泳池里尽情游泳、聚会,结果它们发酵出的东西,那味道可真是好得没话说!这个技术呢,能让发酵的速度变得飞快,像是给它们加了个特效药。

深层通气也就是在发酵过程中给这些小家伙提供充足的氧气,结果它们就像喝了兴奋剂一样,工作效率大大提升,真是能量满满。

说到发酵,大家可能会想到酒啊、面包啊,没错,这些美味的背后全靠发酵。

不过,用传统的方法,发酵过程就像漫长的马拉松,得耐心等候。

这深层通气技术就像是把发酵变成了短跑,呼啦啦的就完成了,真是让人忍不住想给它点个赞。

想想那些面包店,早上刚进门就能闻到香喷喷的面包味,背后可都是这技术的功劳。

没错,微生物们在偷偷忙碌,它们在液体里翻腾,像在举行一场派对,越闹越欢。

再说说它的优势,简直是好处多多。

传统发酵的时候,氧气供应往往不够,微生物们就像上了闹钟却一直打盹,没法充分发挥。

而深层通气就像给它们送来了新鲜空气,立马活蹦乱跳,真是活力四射。

不仅如此,这种技术还减少了发酵时间,经济又省事,想想看,省下来的时间可以干啥?能多睡个觉,或者吃点美食,简直是双赢!深层通气液体发酵技术在工业上的应用也非常广泛。

比如在酿酒、食品加工、制药等行业,都是一股不可忽视的力量。

听说,很多大牌酒厂早就开始用这个技术了,想要做出好酒,哪能少了它的助力呢?而且发酵的产品更稳定,质量也更好,消费者喝得安心,生产者也放心。

真是一条龙服务啊,呵呵!不过,运用这个技术可不是随便来个设备就行,得有专业的操作。

就像开车,不会的人上路可是危险的。

深层通气需要控制很多参数,比如温度、气体流量等。

稍微不小心,可能就会影响到微生物的表现,结果可就得不偿失了。

因此,掌握这些技巧可是个大学问呢。

你知道吗,这技术还有助于环保哦。

它能有效降低废水的排放,减少资源的浪费,让发酵变得更加绿色。

银耳液体深层发酵的原理

银耳液体深层发酵的原理

银耳液体深层发酵的原理
银耳液体深层发酵是指将干制的银耳经过液体培养,通过利用微生物菌群将银耳中的多糖、氨基酸等成分转化为更易被人体消化吸收的营养物质的一种发酵过程。

其原理主要包括以下几个方面:
1. 微生物菌群作用:深层发酵过程中,添加合适的微生物菌群,如乳酸菌、酵母菌等,这些微生物菌群通过代谢活动分解银耳中的淀粉、蛋白质等复杂有机物,转化为简单的营养物质,如蔗糖、氨基酸等,提高营养价值和口感。

2. 酶的作用:微生物菌群产生的酶能够在发酵过程中催化各种生化反应,分解银耳中的营养物质,例如淀粉酶可以将淀粉分解为糖分子,蛋白酶可以将蛋白质分解为氨基酸,使得这些营养物质更容易被人体吸收。

3. pH调节:在深层发酵过程中,适当的pH范围能够提供微生物菌群最适宜的生长环境,促进其代谢活动和产酶。

一般来说,银耳深层发酵的适宜pH范围为
4.5-6.5。

4. 发酵时间和温度控制:银耳液体深层发酵的时间和温度也是影响发酵效果的重要因素。

发酵时间过长或温度过高可能导致微生物过度活跃,产生不良反应或形成不利于人体健康的物质。

总的来说,银耳液体深层发酵利用微生物菌群的代谢活动和酶的作用,将银耳中
的复杂有机物转化为更易被人体吸收的营养物质,提高其营养价值和口感。

同时,适宜的pH范围、发酵时间和温度的控制也是确保发酵效果的关键。

液体深层发酵技术名词解释

液体深层发酵技术名词解释

液体深层发酵技术名词解释
液体深层发酵技术是一种在液体培养基中进行的深层发酵过程。

它是利用微生物在液体环境中生长、繁殖和代谢的特性进行的一种发酵过程。

在液体深层发酵技术中,微生物被培养在液体培养基中,通常是在大型发酵罐或反应器中进行。

液体深层发酵的关键是调控培养条件,包括pH值、温度、氧气供应、营养物质和添加剂等。

这些条件可以影响微生物的生长速率、产酶活性和产物合成的效率。

液体深层发酵技术常用于生产微生物发酵产物,包括酶、抗生素、酒精、有机酸和多肽等。

通过调整培养条件,可以改善微生物代谢途径,提高产物的产量和质量。

液体深层发酵技术具有以下优点:容易控制和调节培养条件,提供更好的环境来促进微生物的生长和产物的合成;能够生产大规模产物,适用于工业生产;可扩大产量和提高产物的纯度。

液体深层发酵技术被广泛应用于食品、制药、化工和环保等领域,为这些领域的生产提供了重要的技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液体深层发酵
一、液体深层发酵的操作方式。

根据操作方式的不同,液体深层发酵主要有分批发酵、连续发酵和补料分批发酵三种类型。

1、分批发酵。

营养物和菌种一次加入进行培养,直到结束放出,中间除了空气进入和尾气排出,与外部没有物料交换。

特点:一次性;发酵过程中,营养不断减少,微生物不断增殖,环境非稳态;微生物生长的四个时期明显。

应用:广泛。

2、连续发酵。

连续发酵是指以一定的速度向发酵罐内添加新鲜培养基,同时以相同的速度流出培养液,从而使发酵罐内的液量维持恒定,微生物在稳定状态下生长。

稳定状态可以有效地延长分批培养中的对数期。

特点:培养基等量流入流出;各种变化=0;微生物群体生长的四个时期不存在。

应用:常用于废水处理、葡萄糖酸、酒精、氨基酸发酵等工业中。

优点:操作稳定;利于机械、自动化;提高设备的利用率;减少灭菌次数;易于过程优化。

缺点:易染菌;微生物易变异;对产品类型的适应性不广;对设备及附件要求高。

3、补料分批发酵。

补料分批发酵又称半连续发酵,是介于分批发酵和连续发酵之间的一种发酵技术,是指在微生物分批发酵中,以某种方式向培养系统补加一定物料的培养技术。

通过向培养系统中补充物料,可以使培养液中的营养物浓度较长时间地保持在一定范围内,既保证微生物的生长需要,又不造成不利影响,从而达到提高产率的目的。

特点:可以解除底物抑制、产物抑制、分解阻遏或克服微生物过度生长;提高有用产物的转化率;应用:应用广泛,用于面包酵母、氨基酸、抗生素等工业;二、发酵工艺控制。

发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。

反映发酵过程变化的参数可以分为两类:(1)直接参数:可以直接采用特定的传感器检测的参数。

它们包括反映物理环境和化学环境变化的参数,如温度、压力、搅拌功率、转速、泡沫、发酵液粘度、浊度、pH、离子浓度、溶解氧、基质浓度等。

(2)间接参数:至今尚难于用传感器来检测的参数,包括细胞生长速率、产物合成速率和呼吸嫡等。

这些参数需要根据一些直接参数,借助于电脑计算和特定的数学模型才能得到。

上述参数中,对发酵过程影响较大的有温度、pH、溶解氧浓度等。

1、温度:温度能影响酶的活性,也能影响生物合成的途径。

温度还会影响发酵液的物理性质,以及菌种对营养物质的分解吸收等。

应采用具备热交换装置发酵罐。

2、pH:pH能够影响酶的活性,以及细胞膜的带电荷状况。

还会影响培养基中营养物质的分解等。

常用的控制方法有:①调整生理碱性和酸性盐类的比例;②选择不同C、N的种类和比例;③添加缓冲剂。

3、溶解氧:在发酵过程中菌种只能利用溶解氧。

因此,必须向发酵液中连续补充大量的氧,并要不断地进行搅拌,以提高氧在发酵液中的溶解度。

4、泡沫:发酵过程中,通气、搅拌、微生物的代谢过程及培养基中某些成分的分解等,都有可能产生泡沫。

过多的持久性泡沫对发酵是不利的。

常采用机械消泡和消泡剂消沫。

5、营养物质的浓度:发酵液中各种营养物质的浓度,特别是碳氮比、无机盐和维生素的浓度,会直接影响菌体的生长和代谢产物的积累。

三、发酵设备。

进行微生物深层培养的设备统称发酵罐。

由于微生物有好氧与厌氧之分,所以其培养装置也相应地分为好氧发酵设备与厌氧发酵设备。

(1)液态好氧发酵罐。

特点:有冷却装置。

有通风装置。

代表:机械搅拌发酵罐、通气搅拌发酵罐。

(2)液态厌氧发酵罐。

特点:有冷却装置。

没有通风装置。

代表:酒精发酵罐、啤酒发酵罐。

1、机械搅拌式发酵罐。

它是利用机械搅拌器的作用,使空气和发酵液充分混合,促进氧的溶解,以保证供给微生物生长繁殖和代谢所需的溶解氧。

类型:通用式发酵罐、自吸
式发酵罐。

2、通风搅拌式发酵罐。

在通风搅拌式发酵罐中,通风的目的不仅是供给微生物所需要的氧,同时还利用通入发酵罐的空气,代替搅拌器使发酵液均匀混合。

类型:循环式通风发酵罐(空气带升式发酵罐或带升式发酵罐)、高位塔式发酵罐。

3、厌氧发酵设备。

特点:严格的厌氧液体深层发酵的主要特色是排除发酵罐中的氧。

类型:酒精发酵罐和用于啤酒生产的锥底立式发酵罐。

相关文档
最新文档