学会数列求和的几种常用方法

合集下载

数列求和七种方法技巧

数列求和七种方法技巧

数列求和的七种方法技巧包括:
1. 公式法:适用于等差数列、等比数列等基本数列的求和,可以直接使用求和公式进行计算。

2. 倒序相加法:将数列倒序排列,然后与原数列相加,得到一个常数列,再除以2得到原数列的和。

3. 错位相减法:适用于一个等差数列和一个等比数列相乘的形式,通过错位相减的方式将原数列转化为等比数列,再利用等比数列的求和公式进行计算。

4. 裂项相消法:将数列中的每一项都拆分成两个部分,使得中间项相互抵消,从而求得数列的和。

5. 分组法:将数列中的项进行分组,然后分别求和,最后得到整个数列的和。

6. 乘公因式法:适用于具有公因式的数列,将公因式提取出来,然后进行求和。

7. 构造法:通过构造新的数列或方程,将原数列的求和问题转化为其他形式的问题进行求解。

以上是数列求和的七种方法技巧,可以根据具体情况选择适合的方法进行计算。

数列求和常见五法

数列求和常见五法

数列求和常见五法一、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求.①等差数列求和公式:()()11122n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q qq ⎧=⎪=-⎨-=≠⎪--⎩ 二、倒序相加法:如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。

这一种求和的方法称为倒序相加法. 例1:设等差数列,公差为,求证:的前项和= 证明:...........① 倒序得:............②①+②得:又===...=针对训练:求值:222222222222123101102938101S =++++++++ 三、错位相减法:类似于等比数列的前n 项和的公式的推导方法。

若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法. 若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令112211n n n n n S b c b c b c bc --=++++ 则n qS =122311n n n n b c b c b c b c -+++++两式相减并整理即得例2、已知 12n n a n -=∙,求数列{a n }的前n 项和S n .解:01211222(1)22n n n S n n --=+++-+ ①12121222(1)22n n n S n n -=+++-+ ②②—①得01121222221n n n n n S n n -=---=-+小结:错位相减法的求解步骤:①在等式两边同时乘以等比数列{}n c 的公比q ;②将两个等式相减;③利用等比数列的前n 项和的公式求和.针对训练:、求和:()23230,1n n S x x x nx x x =++++≠≠四、裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。

数列求和的几种常用方法

数列求和的几种常用方法

数列求和的几种常用方法数列求和是数列部分的重要内容,题型复杂多变,我们根据不同题型总结出一些方法.它对数列的学习是有好处的.一、 反序相加法例1 求数列{n}的前n 项和.解 记S n =1+2+…+(n-1)+n,将上式倒写得: S n =n+(n-1)+…+2+1把两式相加,由于等式右边对应的项和均为n+1,∴2 S n =n(n+1),即S n =21 n(n+1) 说明 此法亦称为高斯求和.二、 错位相减法若{a n }为等差数列,{b n }为等比数列,则{a n b n }的前n 项和可用错位相减法.例2 求和S n =nn n n 212232252321132-+-++++- 解 由原式乘以公比21得: 21S n =1322122322321+-+-+++n n n n 原式与上式相减,由于错位后对应项的分母相同,可以合并,∴S n -21S n =21+112212212121+---+++n n n 即 S n =32232++-n n 一般地, 当等比数列{b n }的公比为q, 则错位相减的实质是作“S n - qS n ”求和.三、 累加法 例3 求和S n =2222321n ++++分析 由133)1(233+++=+k k k k 得133)1(233++=-+k k k k ,令k=1、2、3、…、n 得23-13=3·12+3·1+1 33-23=3·22+3·2+1 43-33=3·32+3·3+1 …… (n+1)3-n 3=3n 2+3n+1把以上各式两边分别相加得:(n+1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n =3S n +23n(n+1)+n 因此,S n =61n(n+1)(2n+1) 想一想 利用此法能否推导自然数的立方和公式:213)]1(21[+=∑=n n k n k 点拨 利用(k+1)4=k 4+4k 3+6k 2+4k+1进行累加.归纳 推导自然数的方幂和∑=n k r k 1公式的方法。

数列求和各种方法总结归纳

数列求和各种方法总结归纳

故数列{an}的通项公式为an=2-n.
an (2)设数列{ n-1}的前n项和为Sn, 2 a2 an 即Sn=a1+ 2 +…+ n-1,① 2 Sn a1 a2 an 故S1=1, 2 = 2 + 4 +…+2n,② 所以,当n>1时,①-②得
a2-a1 an-an-1 an Sn 2 =a1+ 2 +…+ 2n-1 -2n
- - -
(2)由题意知bn-an=3n 1,所以bn=3n 1+an=3n 1-2n+21. Tn=Sn+(1+3+…+3
n-1
3n-1 )=-n +20n+ 2 .
2
[冲关锦囊]
分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·n-1,利用等比数列前n项和公式直接求解; q (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列, 采用分组求和法求{an}的前n项和.
(1)求数列{an}的通项公式; 第三行
(2)若数列{bn}满足:bn=an+(-1)nln an,求 {bn}的前2n项和S2n
[自主解答]
(1)当a1=3时,不合题意;
当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18.所以公比q=3,
2 3a2=1,a3=9a2a6.
(1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得 3 9 3
1 1 2 2 2 a3=9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.

数列求和的七种基本方法

数列求和的七种基本方法

数列求和的七种基本方法数列求和是数学中常见的问题之一,它在各个领域都有广泛的应用。

本文将介绍数列求和的七种基本方法,包括等差数列求和、等比数列求和、算术平方平均数列求和、等差等比混合数列求和、调和数列求和、几何级数求和和级数求和。

通过了解和掌握这些方法,相信读者能更好地解决数列求和问题。

一、等差数列求和等差数列是指一个数列中的每两个相邻的项之差都相等。

求和等差数列的公式为:Sn = n(a1+an)/2,其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数。

二、等比数列求和等比数列是指一个数列中的每两个相邻的项之比都相等。

求和等比数列的公式为:Sn=a1(1-q^n)/(1-q),其中Sn是数列的和,a1是第一个数,q是公比,n是项数。

三、算术平方平均数列求和算术平方平均数列是指一个数列中的每两个相邻的项的算术平方平均数都相等。

求和算术平方平均数列的公式为:Sn=n(2a1+(n-1)d)/2,其中Sn是数列的和,n是项数,a1是第一个数,d是公差。

四、等差等比混合数列求和等差等比混合数列是指一个数列中的每两个相邻的项之比和差都相等。

求和等差等比混合数列的公式为:Sn = (a1+an)/2*n+(q^n-1)/(q-1),其中Sn是数列的和,n是项数,a1是第一个数,an是最后一个数,q是公比。

五、调和数列求和调和数列是指一个数列中的每一项的倒数都与它的序号之比都相等。

求和调和数列的公式为:Sn=Hn/a,其中Sn是数列的和,Hn是调和数列的第n项,a是常数。

六、几何级数求和几何级数是指一个数列中的每个数都与前一项的比值都相等。

求和几何级数的公式为:Sn=a*(1-q^n)/(1-q),其中Sn是数列的和,a是第一个数,q是比值,n是项数。

七、级数求和级数是无穷多个数连加的结果,求和级数的公式为:Sn=a/(1-r),其中Sn是级数的和,a是第一个数,r是比值。

这七种基本的数列求和方法能够解决大部分数列求和问题。

数列求和的8种常用方法

数列求和的8种常用方法

数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。

下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。

一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。

三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。

数列求和的常用方法

数列求和的常用方法

数列求和的常用方法
1.公式法
(1)如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式,注意等比数列公比q的取值情况要分q=1或q≠1.
2.倒序相加法
如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.
3.错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.
4.裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
5.分组转化求和法
若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.
6.并项求和法
一个数列的前n项和中,可两两结合求解,则称之为并
项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.
方法突破
1.等差、等比数列的求和
数列求和,如果是等差、等比数列的求和,可直接用求
和公式求解,要注意灵活选取公式.
2.非等差、等比数列的一般数列求和的两种思路
(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、倒序相加法等来求和.要记牢常用的数列求和的方法.。

数列求和公式七个方法

数列求和公式七个方法

数列求和公式七个方法数列求和是数学中常见的问题之一、下面将介绍七种常用的数列求和方法,包括等差数列求和、等比数列求和、等差数列二次项求和、递归数列求和、斐波那契数列求和、等差数列部分项求和、正弦数列求和。

一、等差数列求和:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

从首项到第n项的和Sn可以通过以下公式计算:Sn = (n/2)(a1 + an)其中,n为项数,a1为首项,an为末项,Sn为和。

二、等比数列求和:等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。

从首项到第n项的和Sn可以通过以下公式计算:Sn=a1(q^n-1)/(q-1)其中,n为项数,a1为首项,q为公比,Sn为和。

三、等差数列二次项求和:对于等差数列的二次项和,可以通过对等差数列求和公式进行二次求和得到。

Sn=(n/6)*(2a1+(n-1)d)(a1+(n-1)d+d)其中,n为项数,a1为首项,d为公差,Sn为和。

四、递归数列求和:递归数列是一种特殊的数列,其中每一项都是前一项的函数。

递归数列的求和可以通过编写一个递归函数来实现。

例如,对于斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1可以编写一个递归函数,将前两个项相加,并递归调用函数来求和。

五、斐波那契数列求和:斐波那契数列是一种特殊的递归数列,其中前两个项为1,从第三项开始每一项都是前两项的和。

斐波那契数列求和可以通过编写一个循环来实现,累加每一项的值。

六、等差数列部分项求和:对于等差数列的部分项求和,可以通过求解两个和的差来实现。

设Sn为从第m项到第n项的和,Sm为从第1项到第m-1项的和,Sn 可以通过以下公式计算:Sn = Sn - Sm = (n-m+1)(a1 + an) / 2其中,m和n为项数,a1为首项,an为末项。

七、正弦数列求和:正弦数列是一种特殊的数列,其中每一项的值由正弦函数确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学会数列求和的几种常用方法
数列求和是高中数学的一个重要知识点,是高考的热点。

数列求和方法有很多,但在高考中离不开以下三种常用方法。

1、分解为等差数列与等比数列的前n 项和
【例1】求2
22222)2()12(4321n n S n --++-+-=
【解】
)12(2
2)21(]2)12(4321[]
2)12)][(2()12[()43)(43()21)(21(+-=+-
=+-+++++-=+---+++-++-=n n n
n n n n n n n S n
【例2】设数列}{n a 满足:当5≤n 时,1
2-=n n a ,当6≥n 时,12-=n a n ,求它的前n
项和n S .
【解】当5≤n 时,122
12122211
2
-=--=++++=-n n n n S ;当6≥n 时,由于前5项








6









)12()172()162()12(5-++-⨯+-⨯+-=n S n
62)5)(12162()12(2
5
+=--+-⨯+-=n n n S n ,所以⎪⎩⎪⎨⎧≥+≤-=)
6(6)5(122
n n n S n n 【例3】求)1()1()1(11
22-+++++++++++=n n a a a a a a S
【解】当1≠a 时,a
a a a a n a a a a a a a a S n
n n -+++--=--++--+--+--=1111111111232 即2
1
)
1(1]1)1([111a a a a n a a a a a n S n n n ----=-----=+ 当1=a 时,2)1(321+=++++=n n n S n ,故⎪⎪⎩⎪⎪⎨⎧=+≠----=+)
1(2
)1()1()1(12
1
a n n a a a a a n S n n
2、裂项相消法
【例4】求∑=-=n
k n k
S 1
2
1
41
【解】由于
)1
21121(211
412+--=
-k k k ,所以 12)1211(21)]121121()5131()311[(21141
1
2
+=+-=+--++-+-=-=∑
=n n n n n k S n
k n 【例5】求∑=-+=n
k n k k S 12
2
391
【解】由于
)2
31
131(3123912
+--=-+k k k k ,所以 23)23121(31)]231131()7151()5121[(312
39112
+=+-=+--++-+-=-+=∑
=n n
n n n k k S n
k n 一般地,数列}{n a 是公差d 不为零且各项不为零的等差数列,则∑=+=
n
k k k n a a S 11
1
与∑
=+=n
k k k n a a S 12
1
的求和问题都是用裂项求和法。

3、错位相减法
【例6】求1
2321-++++=n n nq q q S ,其中0≠q
【解】当0,1≠≠q q 时,在 1
2321-++++=n n nq q q S (1)式两边同乘以q 得到
n n nq q q q qS ++++= 3232 (2)
由(1)-(2)得 n n
n
n n nq q
q nq q
q q S q ---=-++++=--111)1(1
2
所以当0,1≠≠q q 时,q
nq q q S n
n n ----=1)1(12
当1=q 时,2
)
1(321+=
++++=n n n S n 故⎪⎪⎩⎪⎪⎨
⎧=+≠----=++++=-)1(2
)1()1(1)1(132121
2q n n q q
nq q q nq
q q S n
n n n 【说明】这是“错位相减法”中最基本的示例,要求由等差数列}{n a 与等比数列}{n b 的
乘积构成的数列}{n n b a 的前n 项和时都要用到此示例的结果或方法。

【例7】求n n n S 2
12854321-++++=
【解1】n
n n S 2
1
221322122211232-++-⨯+-⨯+-⨯= 2
11)211(21
211)21()211(211)2
1212121(22322123212-
------
=
++++-++++=-n n n n n n n n
n 2
3
23+-= 【解2】在n
n n S 212854321-++++= 式中两边同乘以21

12
1
2165834121+-++++=n n n S 两式相减得 12
1222162824221)211(+--+++++=-n n n n S
=----+
=--+++++=∴--n n n n n n n S 2122
112111212214121111
2 n n 2323+-= 这里,解法1用了例6的结果,解法2用了例6的方法。

相关文档
最新文档