模电模电
模电基础知识总结

模电基础知识总结模拟电子技术(模电)是电子工程的重要基础学科,它研究的是电子元件与电路的工作原理和运行规律。
掌握模电的基础知识对于电子工程师来说至关重要。
本文将对模电的基础知识进行总结,希望能给读者提供一些帮助。
一、电路基础知识在学习模电之前,我们首先需要掌握一些电路的基础知识。
电路是电子工程中最基本的组成单元,它由电源、电阻、电容、电感等元件组成。
在电路中,电流和电压是重要的物理量。
电流表示电子在电路中的流动情况,而电压表示电子在电路中的能量转换。
二、放大器放大器是模电中一类重要的电子元件。
放大器的作用是将输入信号放大,以便输出信号具有较高的幅度。
常见的放大器有三种基本类型:电压放大器、电流放大器和功率放大器。
放大器有许多重要的性能指标,如增益、输入电阻、输出电阻等。
学习模电的过程中,我们需要熟悉这些性能指标的定义和计算方法。
三、滤波器滤波器是模电中用于剔除或改变信号中某些频率分量的电路。
滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
在实际应用中,我们经常需要使用滤波器来对信号进行处理。
了解滤波器的原理和性能对于电路设计至关重要。
四、振荡器振荡器是一种能够产生连续波形信号的电路。
在模电中有两种常见的振荡器:正弦波振荡器和方波振荡器。
振荡器的核心是一个反馈回路,该回路会使得输入信号被放大,并且以振荡的形式反馈给输入端。
振荡器在通信系统、计算机等领域有广泛的应用,掌握振荡器的原理和设计方法是模电学习的重要内容。
五、运算放大器运算放大器(Operational Amplifier)是模电中一种重要的集成电路。
它具有高增益、高输入阻抗和低输出阻抗的特点,在模拟电路中有广泛的应用。
运算放大器可以用于各种电路设计,如放大器、积分器、微分器和比较器等。
学习运算放大器的工作原理和应用是模电学习的核心内容。
六、模电实验模电实验是巩固和应用所学知识的重要环节。
通过实验,我们可以观察电路的实际运行情况,提高动手实践的能力。
《模电》第一章重点掌握内容

《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。
2、半导体奇妙特性:热敏性、光敏性、掺杂性。
3、本征半导体:完全纯净的、结构完整的、晶格状的半导体。
4、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。
它们在外电场作用下均能移动而形成电流,所以称载流子。
5、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而电子为少子。
6、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。
7、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。
所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。
8、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。
9、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。
其死区电压:S i管约0。
5V,G e管约为0。
1 V ,其死区电压:S i管约0.5V,G e管约为0.1 V 。
其导通压降:S i管约0.7V,G e管约为0.2 V 。
这两组数也是判材料的依据。
10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。
二、应用举例:(判二极管是导通或截止、并求有关图中的输出电压U0。
三极管复习完第二章再判)参考答案:a、因阳极电位比阴极高,即二极管正偏导通。
是硅管。
b 、二极管反偏截止。
f 、因V的阳极电位比阴极电位高,所以二极管正偏导通,(将二极管短路)使输出电压为U0=3V 。
模电的概念

模电的概念
模电是模拟电子学的简写,是电子学的一个分支领域,与数字电子学相对。
模电主要研究模拟信号和模拟电路,其目的是分析、设计和实现模拟电子系统,包括模拟信号的传输、处理和转换。
模电涉及模拟信号的表示、传输和处理方法,其中模拟信号是一种连续变化的信号,与数字信号不同,后者是以离散的方式表示和处理的。
模拟电路是模电的重要组成部分,它由模拟元件(例如电阻、电容、电感等)和模拟运算器件(例如放大器、滤波器、振荡器等)组成,用于处理模拟信号的放大、滤波、混频等操作。
模电技术在电子通信、音频视频处理、无线传输等领域有着广泛的应用。
通过模电技术,可以将声音、图像、视频等模拟信号转换成数字信号,然后进行处理、传输和存储,再将其转换回模拟信号。
模电技术还可以用于设计和实现各种电子系统,例如模拟电视、模拟音频放大器、模拟雷达等。
总体来说,模电是研究模拟信号和模拟电路的学科,通过模拟电子系统的分析、设计和实现,实现对模拟信号的处理和转换。
它与数字电子学共同构成了电子学的两个主要分支。
(完整版)模拟电子技术(模电)部分概念和公式总结

1、半导体:导电性能介于导体和绝缘体之间的物质。
特性:热敏性、光敏性、掺杂性。
2、本征半导体:完全纯净的具有晶体结构完整的半导体。
3、在纯净半导体中掺入三价杂质元素,形成P型半导体,空穴为多子,电子为少子。
4、在纯净半导体中掺入五价杂质元素,形成N型半导体,电子为多子、空穴为少子。
5、二极管的正向电流是由多数载流子的扩散运动形成的,而反向电流则是由少子的漂移运动形成的。
6、硅管Uo n和Ube:0.5V和0.7V ;锗管约为0.1V和0.3V。
7、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
8、二极管主要用途:开关、整流、稳压、限幅、继流、检波、隔离(门电路)等。
9、三极管的三个区:放大区、截止区、饱和区。
三种状态:工作状态、截止状态、饱和状态,放大时在放大状态,开关时在截止、饱和状态。
三个极:基极B、发射极E和集电极C。
二个结:即发射结和集电结。
饱和时:两个结都正偏;截止时:两个结都反偏;放大时:发射结正偏,集电结反偏。
三极管具有电流电压放大作用.其电流放大倍数β=I C / I B (或I C=β I B)和开关作用.10、当输入信号I i很微弱时,三极管可用H参数模型代替(也叫微变电路等效电路)。
11、失真有三种情况:⑴截止失真原因I B、I C太小,Q点过低,使输出波形正半周失真。
调小R B,以增大I B、I C,使Q点上移。
⑵饱和失真原因I B、I C太大,Q点过高,使输出波形负半周失真。
调大R B,以减小I B、I C,使Q点下移。
⑶信号源U S过大而引起输出的正负波形都失真,消除办法是调小信号源。
1、放大电路有共射、共集、共基三种基本组态。
(固定偏置电路、分压式偏置电路的输入输出公共端是发射极,故称共发射极电路)。
共射电路的输出电压U0与输入电压U I反相,所以又称反相器。
模电数电面试基础知识

模电数电面试基础知识在模拟电路(模电)和数字电路(数电)的面试中,理解和掌握基础知识是非常重要的。
本文将介绍一些常见的模电和数电基础知识,帮助你在面试中展现自己的能力。
模电基础知识1. 电路元件模电中常见的电路元件包括电阻、电容和电感。
电阻用来限制电流大小,电容用来储存电荷,而电感用来储存能量。
理解电路元件的特性和使用方法对于解决电路问题至关重要。
2. 放大器放大器是模电中常见的电路,用于放大电压或电流信号。
常见的放大器有共射放大器、共基放大器和共集放大器。
理解放大器的工作原理和特性可以帮助你分析和设计放大电路。
3. 滤波器滤波器用于滤除特定频率的信号。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
了解滤波器的工作原理和频率响应可以帮助你设计和调整滤波电路。
4. 振荡器振荡器用于产生特定频率的信号。
常见的振荡器有晶体振荡器、RC振荡器和LC振荡器。
理解振荡器的工作原理和参数选择可以帮助你设计和调整振荡电路。
数电基础知识1. 逻辑门逻辑门是数电中常见的基本逻辑电路。
常见的逻辑门有与门、或门、非门、与非门、或非门和异或门等。
掌握逻辑门的真值表和功能可以帮助你分析和设计数字电路。
2. 时序电路时序电路用于处理时序信号,常见的时序电路有触发器、计数器和移位寄存器等。
了解时序电路的工作原理和时序图可以帮助你设计和调整时序电路。
3. 数字-模拟转换器和模拟-数字转换器数字-模拟转换器(DAC)和模拟-数字转换器(ADC)是数电中常见的电路,用于实现模拟信号和数字信号之间的转换。
理解DAC和ADC的工作原理和参数选择对于设计和调整转换电路非常重要。
4. 存储器存储器用于存储和读取数据,常见的存储器有随机存取存储器(RAM)和只读存储器(ROM)等。
了解存储器的工作原理和存储方式可以帮助你理解和设计存储电路。
总结以上介绍了一些模电和数电面试中常见的基础知识。
掌握这些知识可以帮助你更好地理解和分析电路问题,并能够进行电路设计和调整。
模电公式总结

模电公式总结1. 基本电路参数1.1 电流公式•电流公式:$$I = \\frac{V}{R}$$–其中,I为电流,V为电压,R为电阻。
1.2 电压公式•电压公式:$$V = I \\cdot R$$–其中,V为电压,I为电流,R为电阻。
1.3 功率公式•功率公式:$$P = V \\cdot I$$–其中,P为功率,V为电压,I为电流。
2. 放大电路2.1 电压放大倍数•电压放大倍数:$$A_v = \\frac{V_o}{V_i}$$–其中,A_v为电压放大倍数,V_o为输出电压,V_i为输入电压。
2.2 增益•增益:$$G = \\frac{V_o - V_i}{V_i}$$–其中,G为增益,V_o为输出电压,V_i为输入电压。
3. 滤波电路3.1 截止频率•截止频率:$$f_c = \\frac{1}{2\\pi RC}$$–其中,f_c为截止频率,R为电阻,C为电容。
4. 频率响应4.1 相位差•相位差:$$\\phi = \\arctan(\\frac{X_L - X_C}{R})$$–其中,X_L为电感的电抗,X_C为电容的电抗,R为电阻。
4.2 增益•增益:$$|A_v| = \\sqrt{\\frac{X_L - X_C}{R}^2 + 1}$$–其中,|A_v|为增益,X_L为电感的电抗,X_C为电容的电抗,R为电阻。
5. 脉冲响应5.1 集成电路•脉冲响应:$$h(t) = V_i(t) \\ast g(t)$$–其中,h(t)为脉冲响应,V_i(t)为输入信号,g(t)为脉冲响应函数。
6. 非线性电路6.1 二极管方程•二极管方程:$$I_D = I_s(e^{\\frac{V_D}{V_t}} - 1)$$–其中,I_D为二极管正向电流,I_s为饱和电流,V_D为二极管正向电压,V_t为温度标准电压。
7. 反馈电路7.1 闭环增益•闭环增益:$$A_f = \\frac{A}{1 + A\\beta}$$–其中,A为开环增益,$\\beta$为反馈系数。
模拟电路和数电电路必备的基础知识

模拟电路和数电电路必备的基础知识作为一位硬件工程师,必须面对的就是两个基本电路:模拟电路和数字电路。
下面我们就来了解一下这两个电路的基本知识。
一、模拟电路与数字电路的定义及特点模拟电路(电子电路)处理模拟信号的电子电路。
“模拟”二字主要指电压(或电流)对于真实信号成比例的再现,它最初来源于希腊语词汇,意思是“成比例的”。
其主要特点是:1、函数的取值为无限多个;2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。
3、初级模拟电路主要解决两个大的方面:1放大、2信号源。
4、模拟信号具有连续性。
数字电路((进行算术运算和逻辑运算的电路))用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。
其主要特点是:1、同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用。
2、实现简单,系统可靠以二进制作为基础的数字逻辑电路,可靠性较强。
电源电压的小的波动对其没有影响,温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。
3、集成度高,功能实现容易集成度高,体积小,功耗低是数字电路突出的优点之一。
电路的设计、维修、维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。
电路的设计组成只需采用一些标准的集成电路块单元连接而成。
对于非标准的特殊电路还可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。
模电常见问题解答详解

1.开关稳压电源的主要缺点是什么?开关稳压电源的主要缺点是输出电压中含有较大的纹波。
2.开关稳压电源的主要优点是什么?由于开关稳压电源的调整管工作在开关状态,故效率高,可达80%-90%,且具有很宽的稳压范围3.开关稳压电源的主要特点是什么?开关稳压电源的调整管工作在开关状态,即导通和截止状态。
4.三端式稳压器的调整管工作在什么状态?三端式稳压器的调整管工作在放大状态。
5.三端式稳压器由哪些部分组成?三端式稳压器由调整管、取样电路、基准电压和比较放大器等部分组成。
6.三端式稳压器主要有哪几种?三端式稳压器主要有两种:固定输出三端稳压器和可调输出三端稳压器。
7.三端式稳压器主要有哪些优点?三端式稳压器只有三个引出端子,应用时外接元件少,使用方便、性能稳定、价格低廉。
8.稳压的作用主要是什么?稳压的作用主要是维持输出电压的稳定。
9.滤波最重要的元件是什么?滤波最重要的元件是电容元件。
10.滤波的作用主要是什么?滤波的作用主要是去掉脉动电压中的交流成分,使之成为平滑的直流电压。
11.最常用的整流电路是什么?最常用的整流电路是桥式整流电路。
12.整流主要采用什么元件实现?整流主要采用整流二极管,利用其单向导电性实现。
13.整流的作用主要是什么?整流的主要作用是将双向交变电压变换为单向脉动的直流电压。
14.直流电源由哪些部分组成?直流电源由变压、整流、滤波和稳压四部分组成。
15.什么是直流电源?直流电源是将交流电变换为稳定的直流电的电路。
16.当Q=0.707时的滤波器有什么特点?当Q=0.707时的滤波器,其过渡特性平坦,且截止频率数值上等于特征频率。
17.什么是滤波器的品质因数Q?滤波器的品质因数Q是一个描述滤波器过渡特性的常数。
18.什么是滤波器的特征频率f0?滤波器的特征频率f0是一个由电路决定的具有频率量纲的常数。
19.什么是滤波器的通带和阻带?滤波器允许通过的频段称为通带, 不允许通过的频段称为阻带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负热敏元件
起振时,AV
1
Rf R1
3
即 AV FV 1
热敏电阻的作用
Vo
Io
Rf 功耗
Rf 温度
第热九章敏电信号阻产生电路
Rf 阻值
AV
AV 3
AV FV 1 稳幅
4. 稳幅措施
采用非线性元件
场效应管(JFET)
D 、R4 、C3 整流滤波
T 压控电阻
AV
1
Rp3 R3 RDS
第九章 信号产生电路
正弦波振荡器实质上是一种满足自激震荡条件带选频网络的放大 电路。(正反馈,且在反馈支路中加选频网络;无需输入信号)。
1.反馈放大器产生自激振荡的基本原理
负反馈(放大):反馈信号与净输入信号反相。净输入减小。
信号发生器: 目的——产生波形; 措施——加强自激振荡的条件 (正反馈) 正反馈(振荡): 反馈信号与净输入信号同相,反馈送到同相输入端。
同相比例 放大系数
1
Rf R1
R
XC + XC
Vi
A
j
Vo j Vi j
AVF
XC R+ XC
把XC
1 代入
jC
A j AVF
1 + jRC
AVF
1+ j
C
令C
1 RC
A j AVF
1 + j C
因为传递函数A (j) 的分母为角频率 的一次幂,故称“一阶有源滤波器” 幅频响应
振幅条件的分析可在满足相位平衡条件后进行;
(3)计算fo——与选频网络有关;
(4)振荡的建立和稳定——起振条件、稳幅措施。
5、分类
正弦波振荡电路可分为
RC、LC(含石英晶体器件)两大类
RC—— 产生1Hz—1MHz低频信号;
LC—— 产生1MHz以上的高频信号。
9.6 RC正弦波振荡电路(低频)
第九章 信号产生电路
2.振荡条件。
gg g
g
因为 X f A F Xa Xa
所以 A&F& 1
第九章 信号产生电路
又 AF AFa f AF a f 所以振荡条件为
A() F() 1 振幅平衡条件 a ( ) f ( ) 2nπ 相位平衡条件 3.起振和稳幅
电路中的 噪声、扰动信号(含fo)选频网络选出fo,并使 其符合相位平衡条件;
Z1 R sC
FV (s)
Vf (s) Vo (s)
Z2 Z1 Z2
sCR
1 3sCR (sCR )2
又 s j
且令
0
1 RC
则
FV
3
j(
1
0
)
0
幅频响应
FV
1
32 ( 0 )2
0
( 0 )
相频响应
f arctg
0
3
第九章 信号产生电路
R
Z2
R
sC 1
R 1 sCR
3
稳幅原理
Vo
VGS (负值)
AV
RDS
可变电阻区, 斜率随vGS不 同而变化
分类
低通(LPF) 高通(HPF) 带通(BPF) 带阻(BEF) 全通(APF)
第九章 信号产生电路
第九章 信号产生电路
各种滤波器的用途 低通滤波器(LPF)——削弱高次谐波或频率较高的干扰和噪声(低 频、直流信号可通过) 高通滤波器(HPF)——削弱低频、直流分量(高频信号可通过) 带通滤波器(BPF)——突出有用频段的信号; 带阻滤波器(BEF)——抑制某一频段的干扰信号;
若开始时, A&F&,1 fo得不到有效放大,不能起振。 ∴起振的幅值条件是: 1A&F&
若 A&F& 1一直存在,起振后信号越来越大波形失真;
∴起振后还需要稳幅环节,使波形基本不失真。
4、分析方法
第九章 信号产生电路
(1)确定电路中的基本环节——放大电路、反馈网络和选频网络;
(2)分析是否满足:A&F&=1——关键是相位平衡条件(瞬时极性法);
sC
2. RC串并联选频网络的选频特性第九章 信号产生电路
FV
1
32 ( 0 )2 0
( 0 )
f arctg
0
3
当
0
1 RC
或
f
f0
1 2πRC
幅频响应有最大值
1 FVmax 3
相频响应 f 0
3. 振荡电路工作原理
第九章 信号产生电路
Hale Waihona Puke 当0 1 RC
时,
f
0
选频网络呈电阻性
又称桥式振荡电路器(由Z1、Z2、R1、Rf组成四个臂)
1.电路的构成
(+) (-) (+) (-)
(+) (-)
基本环节——放大电路: 同相比例 选频反馈网络: RC串、并联选频网络 当f=fo时,选频网络对外呈电阻性,C不产生附加相移。 瞬时极性法——正反馈
2.RC串并联选频网络的选频特性
1
反馈系数
第9章 信号处理与信号产生电路第九章 信号产生电路
本章主要讨论信号的处理(滤波)和信号产生(振荡)电路。 9.1 滤波电路的基本概念与分类
1)基本概念
滤波器——让有用频率信号顺利通过,同时抑制无用频率信号。
有源滤波器:由有源器件构成的滤波器。
滤波电路传递函数定义
A(s) Vo (s) Vi (s)
有源滤波器的主要参数 通带增益Ao;通带宽度BW;特征角频率n( c );等效品质
因数Q;中心角频率o 。
9.2 一阶有源滤波电路
第九章 信号产生电路
1. 低通滤波电路
RC为无源低通,另加同相电压放大。
1)传递函数
在通带范围内电压增益:
A0
Vp
=
AVF 1
XC R+ XC
Rf R1
Vi
Vo = Vp AVF
vI(t) v 滤波电路 o(t)
s j 时,有 A(j ) A(j ) ej( ) A(j ) ( )
其中
A(j ) —— 模,幅频响应 () —— 相位角,相频响应 ( ) d( ) (s) 时延响应
d
2) 有源滤波电路的分类 各种滤波器的幅频特性
通带——允许信号通过的频率范围; 阻带——能够阻断信号的频率范围; 截止频率——通带与阻带的界限频率
A (j) = AVF 1+( c)2
第九章 信号产生电路
幅频响应按– 20dB 十倍频程 衰减,滤波性能差。 通带增益:Ao=AVF = (R1+Rf)/R1 ;
通带宽度:BW= c ; 特征频率:c=1 RC 2. 高通滤波电路
低通电路中的R和C交换 位置便构成高通滤波电路
9.5 正弦波振荡电路的振荡条件
用瞬时极性法判断可知,电 路满足相位平衡条件
a f 2nπ
此时若放大电路的电压增益为
AV
1
Rf R1
3
则振荡电路满足振幅平衡条件
AV FV
1 3 1
3
电路可以输出频率为
f0
1 2πRC
的正弦波
RC正弦波振荡电路一般用于产生频率低于 1 MHz 的正弦波
4. 稳幅措施
起振条件 AV FV 1 振幅平衡条件 AV FV 1