高中数学求轨迹方程的六种常用技法
高中数学轨迹方程求轨迹方程的的基本方法关点法参数法交轨法向量法新人教版选修

轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
高中数学求轨迹方程的六种常用技法汇总

------------------------------------------------------------精品文档--------------------------------------------------------求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。
学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程的常用技法。
1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
4MM6AB?BMAM,相交于,直线.已知线段,求点,且它们的斜率之积是例19的轨迹方程。
x ABAB(3,0)B(A?3,0),y,所在直线为垂直平分线为解:以轴,轴建立坐标系,则y(k?x??3)BMMAM)y(x,的斜,直线,则直线设点的坐标为的斜率AM x?3y(x?3)k?率AM3?x4yy3)???(x?由已知有9?x3x?322yx??1(x??3)M的轨迹方程为化简,整理得点94练习:Px?4P(10,0)F的轨迹方.1平面内动点,到点则点的距离之比为的距离与到直线2程是。
22x ABPll4??2yx上满足交于.设动直线两点,垂直于、轴,且与椭圆是2PA?PB?1P的轨迹方程。
的点,求点3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法点的轨迹方程是描述点在运动过程中所经过的路径的数学方程。
在数学和物理等领域,有许多方法可以推导和描述点的轨迹方程。
下面介绍六种常见的方法。
一、直角坐标系方法直角坐标系方法是最常见的一种方法,通常用于平面分析。
在直角坐标系下,点的位置可以用横坐标x和纵坐标y来表示。
如果已知点的坐标与时间的关系,可以通过方程联立或者曲线拟合的方法得到点的轨迹方程。
二、参数方程方法参数方程方法是一种将点的位置用参数表示的方法。
通过引入参数t,点的坐标可以用关于t的函数表示,如x=f(t)和y=g(t),这样就可以得到点的轨迹方程。
参数方程方法适用于描述直线、圆和其他曲线的方程。
三、极坐标系方法极坐标系方法是一种将点的位置用极径r和极角θ来表示的方法。
通过引入极径和极角的关系表达式,可以得到点的轨迹方程。
例如,对于圆的方程可以表示为r=f(θ),其中f(θ)是关于极角θ的函数。
四、矢量方程方法矢量方程方法是一种用矢量表示点的位置的方法。
通过引入位置矢量r(t),可以得到点的轨迹方程。
位置矢量r(t)通常用分量表示,如r=(x,y,z)。
矢量方程方法适用于描述曲线在三维空间中的轨迹。
五、微分方程方法微分方程方法是一种通过点的运动规律和动力学方程来推导轨迹方程的方法。
通过对点的位置向量或者其分量进行微分,并代入运动规律方程,可以得到点的轨迹方程。
微分方程方法适用于描述受力作用下点的运动。
六、变分原理方法变分原理方法是一种通过极小化或者极大化一些物理量来推导轨迹方程的方法。
通过对点的位置或路径的泛函进行变分,可以得到使泛函取得极值的轨迹方程。
变分原理方法适用于描述光的传播、质点在介质中的传播等问题。
综上所述,点的轨迹方程可以通过直角坐标系方法、参数方程方法、极坐标系方法、矢量方程方法、微分方程方法和变分原理方法等六种常见方法推导和描述。
不同的方法适用于不同的情况和问题,选择合适的方法可以更方便地求解轨迹方程。
高三高考数学中求轨迹方程的常见方法

52
,方程为
(x
1) 2
( y 1) 2
13 . 故 M 的
2
轨迹方程为 ( x 1) 2 ( y 1) 2 13 .
五、参数法 参数法是指先引入一个中间变量 (参数) ,使所求动点的横、纵坐标
所求式子中消去参数,得到 x, y 间的直接关系式,即得到所求轨迹方程
x, y 间建立起联系,然后再从
.
例 5 过抛物线 y 2 2 px ( p 0 )的顶点 O 作两条互相垂直的弦 OA 、 OB ,求弦 AB 的中点
3
.
3
故 k 的取值范围是 1 k 1且 k
3
.
3
5.已知平面上两定点 M (0, 2) 、 N (0,2) , P 为一动点,满足 MP MN PN MN .
(Ⅰ)求动点 P 的轨迹 C 的方程; (直接法) (Ⅱ)若 A 、 B 是轨迹 C 上的两动点,且 AN
NB .过 A 、 B 两点分别作轨迹 C 的切线,设其交点
9.过抛物线 y2 4 x 的焦点 F 作直线与抛物线交于 P、 Q 两点,当此直线绕焦点 F 旋转时,
弦 PQ 中点的轨迹方程为
.
解法分析: 解法 1 当直线 PQ 的斜率存在时,
设 PQ 所在直线方程为 y k( x 1) 与抛物线方程联立,
y k( x 1),
y2 4x
消去 y 得
k 2 x 2 (2 k 2
1, 即 x
y y1
x1
0 .②
联解①②得
x1
3x y 2
2
.又点 Q 在双曲线 C 上,
3x y 2 2 3y x 2 2
(
)(
)
1 ,化简整理
解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。
4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
高中数学解题方法-----求轨迹方程的常用方法

练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;
常见轨迹方程的求法2023届新高考数学

设 A(x1,y1 ),B(x2,y2 ),M(x,y),由韦达定理得 x1+x2=4+k,x1x2=
6.
7
知识梳理
典例精析
课堂练习
课后练习
∴x=x1+2 x2 =4+2 k ,y=kx=4k+2 k2 . 由yx==44k+2+2k, k2, 消去 k 得 y=2x2-4x. 又 2x=x1+x2=4+k,所以 x(-∞,- 6 )∪( 6 ,+∞). ∴点 M 的轨迹方程为 y=2x2-4x,x(-∞,- 6 )∪( 6 ,+∞).
课堂练习
课后练习
利用椭圆、抛物线、双曲线的定义求轨迹方程的方法.
例 4 一个动圆 M 与圆 F1:x2+y2+6x+5=0 相外切,同时与圆 F2:x2 +y2-6x-91=0 相内切,求动圆的圆心轨迹方程.
12
知识梳理
典例精析
课堂练习
课后练习
【解】设动圆半径为 r,依题意: |MF1|=2+r,|MF2|=10-r. 两式相加得|MF1|+|MF2|=12. 所以 M 的轨迹是以 F1(-3,0),F2(3,0)为焦点,长半轴长为 6 的椭圆, 方程为3x62 +2y72 =1.
【答案】 B
18
知识梳理
典例精析
课堂练习
课后练习
4. (2019 新课标Ⅱ理)已知点 A(-2,0),B(2,0),动点 M(x,y)满足直线
AM 和 BM 的斜率之积为-12 ,记 M 的轨迹为曲线 C. 求 C 的方程,并说明 C 什么曲线.
例 2 过原点作直线 l 和抛物线 y=x2-4x+6 交于 A,B 两点,求线段
AB 的中点 M 的轨迹方程.
【解】由题意分析知直线 l 的斜率一定存在,设直线 l 的方程 y=kx.把它
高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。
学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程常用技法。
1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。
例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。
解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。
3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。
例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。
解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。
所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。
例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。
学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程的常用技法。
1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3AM yk x x =≠-+,直线BM 的斜率(3)3AM yk x x =≠- 由已知有4(3)339y y x x x •=≠±+-化简,整理得点M 的轨迹方程为221(3)94x y x -=≠± 练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。
2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=的点,求点P 的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.若(8,0),(8,0)B C -为ABC ∆的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ∆的重心轨迹方程是_______________。
解:设ABC ∆的重心为(,)G x y ,则由AC 和AB 两边上的中线长之和是30可得230203BG CG +=⨯=,而点(8,0),(8,0)B C -为定点,所以点G 的轨迹为以,B C 为焦点的椭圆。
所以由220,8a c ==可得10,6a b ===故ABC ∆的重心轨迹方程是221(0)10036x y y +=≠ 练习:4.方程|2|x y =++表示的曲线是 ( ) A .椭圆 B .双曲线 C .线段 D .抛物线 3.点差法圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+, 122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程。
例3.椭圆22142x y +=中,过(1,1)P 的弦恰被P 点平分,则该弦所在直线方程为_________________。
解:设过点(1,1)P 的直线交椭圆于11(,)A x y 、22(,)B x y ,则有2211142x y += ① 2222142x y += ② ①-②可得12121212()()()()042x x x x y y y y -+-++=而(1,1)P 为线段AB 的中点,故有12122,2x x y y +=+=所以12121212()2()210422x x y y y y x x -⨯-⨯-+=⇒=--,即12AB k =-所以所求直线方程为11(1)2y x -=--化简可得230x y +-= 练习:5.已知以(2,2)P 为圆心的圆与椭圆222x y m +=交于A 、B 两点,求弦AB 的中点M 的轨迹方程。
6.已知双曲线2212y x -=,过点(1,1)P 能否作一条直线l 与双曲线交于,A B 两点,使P 为线段AB 的中点? 4.转移法转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。
当题目中的条件同时具有以下特征时,一般可以用转移法求其轨迹方程: ①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化; ③在变化过程中P 和M 满足一定的规律。
例4. 已知P 是以12,F F 为焦点的双曲线221169x y -=上的动点,求12F F P ∆的重心G 的轨迹方程。
解:设 重心(,)G x y ,点 00(,)P x y ,因为12(4,0),(4,0)F F -则有⎪⎪⎩⎪⎪⎨⎧++=++-=30003044y y x x , 故⎩⎨⎧==y y x x 3030代入19201620=-y x 得所求轨迹方程2291(0)16x y y -=≠ 例5.抛物线24x y =的焦点为F ,过点(0,1)-作直线l 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形AFBR ,试求动点R 的轨迹方程。
解法一:(转移法)设(,)R x y ,∵(0,1)F ,∴平行四边形AFBR 的中心为1(,)22x y P +,将1y kx =-,代入抛物线方程,得2440x kx -+=, 设1122(,),(,)A x y B x y ,则21212121216160||14444k k x x kx x k x x x x ⎧∆=->>⎧⎪⎪⎪⎪+=⇒+=⎨⎨⎪⎪==⎪⎪⎩⎩ ① ∴222212121212()24244x x x x x x y y k ++-+===-,∵P 为AB 的中点.∴⎪⎪⎩⎪⎪⎨⎧-=+=+=+=1222122222121k y y y k x x x ⇒⎩⎨⎧-==3442k y k x ,消去k 得 24(3)x y =+,由①得,||4x >,故动点R 的轨迹方程为24(3)(||4)x y x =+>。
解法二:(点差法)设(,)R x y ,∵(0,1)F ,∴平行四边形AFBR 的中心为1(,)22x y P +,设1122(,),(,)A x y B x y ,则有2114x y = ① 2224x y = ②由①-②得12121212()()4()4l x x x x y y x x k -+=-⇒+= ③而P 为AB 的中点且直线l 过点(0,1)-,所以1211322,22l y x y x x x k x x ++++=⨯===代入③可得34y x x+=⨯,化简可得22124124x x y y -=+⇒=④由点1(,)22x y P +在抛物线口内,可得221()48(1)22x y x y +<⨯⇒<+⑤将④式代入⑤可得222128(1)16||44x x x x -<+⇒>⇒> 故动点R 的轨迹方程为24(3)(||4)x y x =+>。
练习:7.已知(1,0),(1,4)A B -,在平面上动点Q 满足4QA QB ⋅=,点P 是点Q 关于直线2(4)y x =-的对称点,求动点P 的轨迹方程。
5.参数法求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为寻求变量间的关系。
在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。
例6.过点(2,0)M -作直线l 交双曲线221x y -=于A 、B 两点,已知OP OA OB =+。
(1)求点P 的轨迹方程,并说明轨迹是什么曲线;(2)是否存在这样的直线l ,使OAPB 矩形?若存在,求出l 的方程;若不存在,说明理由。
解:当直线l 的斜率存在时,设l 的方程为(2)(0)y k x k =+≠,代入方程221x y -=,得2222(1)4410k x k x k ----=因为直线l 与双曲线有两个交点,所以210k -≠,设1122(,),(,)A x y B x y ,则22121222441,11k k x x x x k k ++==-- ① 21212122244(2)(2)()4411k k ky y k x k x k x x k k k k ⋅+=+++=++=+=--设(,)P x y ,由OP OA OB =+ 得212122244(,)(,)(,)11k kx y x x y y k k =++=--∴2224141k x k k y k ⎧=⎪-⎪⎨⎪=⎪-⎩ 所以x k y =,代入241k y k =-可得241()x y y x y =-,化简得 2240x y x -+=即22(2)4x y +-= ②当直线l 的斜率不存在时,易求得(4,0)P -满足方程②,故所求轨迹方程为22(2)4(0)x y y +-=≠,其轨迹为双曲线。
(也可考虑用点差法求解曲线方程)(2)平行四边OPAB 为矩形的充要条件是0OA OB ⋅=即12120x x y y += ③ 当k 不存在时,A 、B坐标分别为(-、(2,-,不满足③式当k 存在时,222121212121212(2)(2)(1)2()4x x y y x x k x k x k x x k x x k +=+++=++++2222222(1)(14)244011k k k k k k k ++⋅=-+=--化简得22101k k +=-,此方程无实数解,故不存在直线l 使OPAB 为矩形。
练习:8.设椭圆方程为1422=+y x ,过点(0,1)M 的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最小值与最大值。
9.设点A 和B 为抛物线24(0)y px p =>上原点O 以外的两个动点,且OA OB ⊥,过O 作OM AB ⊥于M ,求点M 的轨迹方程。
6.交轨法若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的方程,也可以解方程组先求出交点的参数方程,再化为普通方程。
例7.已知MN 是椭圆12222=+by a x 中垂直于长轴的动弦,A 、B 是椭圆长轴的两个端点,求直线MA 和NB 的交点P 的轨迹方程。