常见矿物近红外光谱特征(扬州)

合集下载

远红外光谱、中红外光谱和近红外光谱

远红外光谱、中红外光谱和近红外光谱

远红外光谱、中红外光谱和近红外光谱红外光谱是一种重要的分析技术,可用于确定分子的结构、化学成分和特性。

根据波长范围的不同,可以将红外光谱分为远红外光谱、中红外光谱和近红外光谱。

本文将分别介绍这三种光谱的原理、应用和优缺点。

一、远红外光谱远红外光谱的波长范围通常为400-10 cm-1,对应的波数为2500-1000 cm-1。

远红外光谱是红外光谱中波长最长、能量最低的一种,其能量范围适用于固体、高分子、矿物和金属等化合物的分析。

远红外光谱的应用广泛,包括但不限于以下领域:1. 软物质研究:远红外光谱可以用于研究软物质,如生物大分子(如蛋白质、纤维素等)和聚合物(如聚乙烯、聚丙烯等)的分子结构和动力学特性。

2. 矿物学研究:远红外光谱可以用于分析矿物的组分和结构,以及区分不同类型的矿物。

3. 化学研究:远红外光谱可以用于分析高分子和无机化合物,如纤维素、蛋白质、石墨、硅酸盐和金属氧化物等。

远红外光谱的优点包括分析广泛,分辨率高,可以用于研究分子结构和化学键的振动情况。

其缺点在于需要使用高级仪器和昂贵的样品制备,而且对于液体和气体等透明样品不够灵敏。

二、中红外光谱中红外光谱的波长范围通常为4000-400 cm-1,对应的波数为2.5-25 μm。

中红外光谱是较为常用的红外光谱,适用于研究有机化合物和小分子无机化合物的分析。

中红外光谱的应用领域较广泛,包括但不限于以下领域:1. 化学研究:中红外光谱可以用于分析各种化合物,如羟基、胺基、吡啶、醛基、酮基等有机官能团的振动情况,并在制药、医疗和能源等领域中发挥重要作用。

2. 表面分析:中红外光谱可以用于表面分析,例如检测薄膜、溶液和涂层的化学组成及结构,以及研究催化剂表面的反应。

3. 无机材料分析:中红外光谱可以用于分析各种无机材料,如石墨烯、氧化物和硅酸盐等。

中红外光谱的优点在于分辨率高,可灵敏地检测有机和无机化合物的分子结构。

其缺点是受到水分子的影响,因此需要采用专业的分析装置,且不能分析液体和气体等透明样品。

常见矿物近红外光谱特征 PPT

常见矿物近红外光谱特征 PPT

4、立体模型
5、光谱成像
400 300 200 100
1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
三、矿物的近红外光谱特征
1、常见蚀变矿物及化学式
2、常见矿物倍频及合成频率位置
3、蚀变矿物光谱特征
9、典型蚀变矿物光谱图
便携式近红外矿物 分析仪的仪器结构及应用
1、仪器结构
2、单色仪光路
3、积分球
4、电子电路
5、底层软件
下位机软件
模块1 系统自检
模块2 系统调零
模块3 光谱位置定位
模块4 全谱扫描
模块5 定波长测量
模块6 通讯模块
模块7 工作状态指示
步进电机子 程序
采集子程序
USB通讯程序
1) AL-OH矿物:2170-2210nm为特征吸收 大多数矿物都有铝离子,特别是硅酸盐矿物,含有AL-OH的代表矿物有叶 蜡石、黄玉、白云母、绢云母、伊利石、锂云母、高岭石、地开石、蒙脱 石、钠长石,硬水铝石、刚玉等,其波长在1390-1440nm处有OH+H2O二 者合成峰,其中H2O为结构水;在1940-1950nm处有H2O吸收峰,其中H2O 为吸附水。2170-2210nm为AL-OH的吸收峰,通常由于地质作用矿物中的 阳离子Al被取代,产生贫Al现象,使AL-OH吸收峰位发生位移,一般地贫 Al时峰位向高波长位移,此位移量是红外光谱建模的一个参数。通常白云 母、绢云母、伊利石、锂云母和蒙脱石的特征峰在2200nm附近;21602165nm内的特征峰为高岭石,随着结晶度的增加,肩峰向长波方向移动, 原地型高岭石结晶度好,峰形尖锐;搬运型高岭石结晶度低,峰形缓,需 要指出的是,高岭石在1410nm处有双峰,一般对称,在2160-2165nm也有 双峰,但不对称,这个特征比较容易识别高龄石。需要指出的是,迪开石 也有高龄石特性,只是在2160-2165nm一般双峰对称;叶蜡石是高温形成的, 在1394nm附近有尖的结构水吸收峰,在2160-2170nm也有很尖的吸收峰, 因此通常可作为仪器标样,由于高温含水量少,在1390-1396nm处吸收峰不 明显。

各典型地物的光谱曲线-文档资料

各典型地物的光谱曲线-文档资料
各典型地物的光谱曲线
常见地物比较光谱曲线 植被光谱曲线 土壤光谱曲线 水体光谱曲线 岩石光谱曲线
地物波谱特征
在可见光与近红外波段,地表物体自身的辐射几乎等于零。地物
发出的波谱主要以反射太阳辐射为主。太阳辐射到达地面之后, 物体除了反射作用外,还有对电磁辐射的吸收作用。电磁辐射未 被吸收和反射的其余部分则是透过的部分,即: 到达地面的太阳辐射能量=反射能量+吸收能量+透射能量 一般而言,绝大多数物体对可见光都不具备透射能力,而有些物 体如水,对一定波长的电磁波透射能力较强,特别是对0. 45 ~ 0. 56μm的蓝绿光波段,一般水体的透射深度可达10~20 m,清澈 水体可达100 m的深度。 对于一般不能透过可见光的地面物体,波长5 cm的电磁波却有透 射能力,如超长波的透射能力就很强,可以透过地面岩石和土壤。
土壤的光谱曲线
自然状态下,土壤表面的 反射率没有明显的峰值和 谷值,一般来说,土质越 细反射率越高。有机质和 含水量越高反射率越低, 土类与肥力也对土壤反射 率有影响。但由于其波谱 曲线较平滑,所以在不同 光谱段的遥感影像上土壤 亮度区别并不明显。
水体的光谱曲线
水体反射率较低,小于 10%,远低于大多数的其 他地物,水体在蓝绿波段 有较强反射,在其他可见 光波段吸收都很强。纯净 水在蓝光波段最高,随波 长增加反射率降低。在近 红外波段反射率为0;含叶 绿素的清水反射率峰值在 绿光段,水中叶绿素越多 则峰值越高。这一特征可 监测和估算水藻浓度。 而浑浊水、泥沙水反射率 高于以上,峰值出现在黄 红区。
岩石的光谱曲线
岩石反射曲线无统一特 征,矿物成分、矿物含 量、风化程度、含水状 况、颗粒大小、表面光 滑度、色泽都有影响。 例如:浅色矿物与暗色 矿物对其影响较大,浅 色矿物反射率高,暗色 矿物反射率低。 自然界岩石多被植、被 土壤覆盖,所以与其覆 盖物也有关

矿物红外分析解读

矿物红外分析解读
例1 水分子
中国地质大学(北京)矿物标型实验室
(2) 吸收峰的峰数
•理论上讲,分子的每一种振动形式都会产生 一个基频吸收峰,即一个多原子分子产生的 基频峰的数目=分子所有的振动形式的数目
中国地质大学(北京)矿物标型实验室
峰数与分子自由度有关。无瞬间偶基距变化时, 无红外吸收。
分子振动自由度指分子独立的振动数目,或基本的振动
带很弱,仪器无法检测; (4)有些吸收带落在仪器检测范围之外。
中国地质大学(北京)矿物标型实验室
基团频率(峰)位移
基团处于分子中某一特定的环境,因此它的振动不是孤立的 。基团确定后,m 固定,但相邻的原子或基团可通过电子效 应、空间效应等影响 K,使其振动频率发生位移。
在特征频率区,不同化合物的同一种官能团吸收振动总是出 现在一个窄的波数范围内,但不是一个固定波数,具体出现在 哪里与基团所处的环境有关,这就是红外光谱用于结构分析的 依据。
中国地质大学(北京)矿物标型实验室
1 红外光谱分析概述
1.1 红外光谱(IR)
分子中基团的振动和转动能级跃迁产生:振-转光谱
中国地质大学(北京)矿物标型实验室
1.2红外光谱的区域
近红外区(泛频区14290~4000cm-1): -OH,-NH,-CH的特征吸收区(组成及定量分析)
中红外区(基本振动区4000~400cm-1): 绝大多数有机和无机化合物的化学键振动基频区(分子中原子的振动及分
在一张红外光谱图上, 波数400-1300cm-1的波段通常被称为指纹区; 波数1300-4000cm-1的波段通常被称为特征区(官能团区) 。一般情况下,一张红外光谱图有5~30个吸收带(峰)。
中国地质大学(北京)矿物标型实验室
红外光谱中的重要波段

常见矿物近红外光谱特征(扬州)

常见矿物近红外光谱特征(扬州)

2、二维数据(地表数据)建模
3、等值线图
3212000
3211800
3211600
3211400
3211200
3211000
3210800
3210600
3210400
3210200 570000
570200
570400
570600
570800
571000
571200
571400
571600
571800
7、控制和测量软件
8、数据处理软件
仪器测量方式
1、仪器准备:本底扫描、参比扫描、标准扫描 2、定性扫描:蚀变矿物识别 3、半定量扫描:矿物含量分析 4、建库扫描:建立本区特征数据库
数据建模与成图
1、数据建模: 包括一维数据建模和二维数据建模 2、数据成图: 包括等值线图、立体模型、光谱成像
1、一维数据(钻孔数据或沟槽数据)建模
8、蚀变矿物 填图矿床种类 可对高硫化物浅成热液矿床、低硫化 物浅成热液矿 床、斑岩型铜矿床、中温热液矿床、沉积岩型金-铜矿床、 铀矿床、火山岩型块状硫化物(VHMS)矿床及金伯利岩矿 床进行系统的蚀变矿物填图,帮助研究者快速评价矿床, 提高勘探效率。
9、典型蚀变矿物光谱图
便携式近红外矿物 分析仪的仪器结构及应用
6、利用近红外光谱可以区分 含羟基之层状硅酸盐矿物(闪石等) 硫酸盐矿物(明矾石,石膏等) 碳酸盐矿物(方解石,白云石等)。 7、地质中的应用 矿物识别,为勘查、地质和土壤/基岩测量进 行矿物填图,钻孔和隧道(平硐)编录,蚀变系 统填图和目标区选择,成矿作用的指示,成矿潜 力评价,矿物地球化学和结晶学,采矿中的品位 控制,下脚料中粘土含量监测,辅助遥感图片的 判别等。

矿物与岩石的可见一近红外光谱特性综述

矿物与岩石的可见一近红外光谱特性综述

铁离子谱带
15, 519,. m为O .518,.523 p 5 H谱带
量有关。 在某些如离子缺失的结构缺陷的情况下, 就
会产生 电子捕获 , C F 中的 F离子丢失而被一 如 a:
个电子取代时, 就会造成红绿吸收, 而呈现紫色, 从 而形成了色心。不同物质的分子振动对光谱特性有 很大的影响, 一般的固体物质 的振动发生在大于
子与晶体场的相互作用来源于晶体场作用(rs l Cyt a F lEf t 、 id e s 电荷转移(hre nf )半导体 e fc ) C a Tas r、 g r e
第 1卷 第 4 8 期 20 年 8 03 月




与 应

Vo . N o 4 l1 8 .
R MO E N IG C N L G A D P IA IN E T S S T H O O Y A LC TO E N E N P
Au .2 0 g 03
矿物与岩石的可见一近红外光谱特性综述
N :. u . m,. u 5 0 7 K 04 i 1 2 m, 5 2 + m;
C 2 :. m; 8 u 0 p +
Mn+ 0 4 . m, 1 . c 3 j 03 t 04 l 04 j 2:. m, 7 . i u m, 5 m,
05 K . m; 5
3 2 碳酸盐的可见一近红外光谱 .
碳酸盐矿物中, 电子成因的光谱大都是由二价 和三价铁离子、 锰离子、 铜离子的跃迁产生的; 振动 过程大都是水, , 经基 碳酸根产生的( 6, 表 )
万方数据
第4 期
燕守勋等: 矿物与岩石的可见一近红外光谱特性综述
表 2 群状和环状硅酸盐矿物可见一近红外光谱表

常见矿物近红外光谱特征(扬州)

常见矿物近红外光谱特征(扬州)

8、蚀变矿物 填图矿床种类 可对高硫化物浅成热液矿床、低硫化 物浅成热液矿 床、斑岩型铜矿床、中温热液矿床、沉积岩型金-铜矿床、 铀矿床、火山岩型块状硫化物(VHMS)矿床及金伯利岩矿 床进行系统的蚀变矿物填图,帮助研究者快速评价矿床, 提高勘探效率。
9、典型蚀变矿物光谱图
便携式近红外矿物 分析仪的仪器结构及应用
• 3) Mg-OH矿物: 2300-2400nm为特征吸收峰 ) 矿物: 矿物 为特征吸收峰
• 含有Mg-OH的代表矿物有绿泥石、滑石、绿帘石、角闪石、 含有Mg-OH的代表矿物有绿泥石、滑石、绿帘石、角闪石、 Mg 的代表矿物有绿泥石 阳起石、金云母、蛇纹石、透闪石和黑云母等。 阳起石、金云母、蛇纹石、透闪石和黑云母等。 • Mg-OH矿物在1390-1420nm内都有OH+H2O二者合成峰,滑 Mg-OH矿物在1390-1420nm内都有OH+ 二者合成峰, 矿物在1390 内都有OH 石和阳起石为尖峰,吸光度强,闪石吸光度小, 石和阳起石为尖峰,吸光度强,闪石吸光度小,且反射率 Mg-OH特征光谱在2300-2400nm, 特征光谱在2300 低;Mg-OH特征光谱在2300-2400nm,典型的滑石特征光谱 2310nm处有很强的吸收峰,2280nm处有一个小的吸收峰 处有很强的吸收峰,2280nm处有一个小的吸收峰, 在2310nm处有很强的吸收峰,2280nm处有一个小的吸收峰, 通常以此峰作为衡量仪器分辨率标志, 2390nm和 通常以此峰作为衡量仪器分辨率标志,在2390nm和2464nm 处有很明显的吸收峰, 处有很明显的吸收峰,这两个吸收峰的质量作为评判仪器 信噪比标志;绿泥石(与黑云母易混淆) 2250信噪比标志;绿泥石(与黑云母易混淆)在2250-2260nm 处与2340 2350nm处有双峰 1910nm,2000nm处为水的双 2340- 处有双峰, 处与2340-2350nm处有双峰,1910nm,2000nm处为水的双 1410nm为OH+ 吸收峰,Fe取代Mg,2340nm强 取代Mg 峰,1410nm为OH+H2O吸收峰,Fe取代Mg,2340nm强, 2250nm弱且向短波方向移动;金云母(与Mg绿泥石接近) 2250nm弱且向短波方向移动;金云母( Mg绿泥石接近) 弱且向短波方向移动 绿泥石接近 2380-2390nm为单峰 2000nm无水吸收峰 为单峰, 无水吸收峰; 在2380-2390nm为单峰,2000nm无水吸收峰;蛇纹石在 2320nm吸收峰最强 2380-2390nm有吸收峰 吸收峰最强, 有吸收峰。 2320nm吸收峰最强,2380-2390nm有吸收峰。

常见矿物药近红外漫反射光谱特征归纳与分析

常见矿物药近红外漫反射光谱特征归纳与分析

常见矿物药近红外漫反射光谱特征归纳与分析结合前期研究工作,对51种不同阴离子类型的常见矿物药的近红外漫反射光谱(near infrared diffuse reflectance spectrometry,NIR)特征谱段进行归纳和解析,并参考矿物学和地质学文献,确定矿物类中药NIR 特征谱段的归属,为其NIR快速鉴别提供理论依据。

结果表明,矿物药的NIR特征主要在8 000~4 000 cm-1,归属于矿物药中所含的水、羟基(OH)及碳酸根[CO2-3]等基团。

水峰具有一定的规律性:一般结构水与OH基团在7 000 cm-1附近有组合峰,尖锐而强,结晶水在7 000,5 100 cm-1附近有2个强峰,吸附水只在5 100 cm-1附近有宽峰。

不同类型矿物药中水的存在形式不同,含量不同,水峰特征不同,据此可用于矿物药的鉴别。

硫酸盐类矿物药多含结晶水,硅酸盐类多含结构水,而碳酸盐类中以吸附水为主,因此,以阴离子类型对矿物药进行分类在NIR分析中具有合理性。

此外,由于某些矿物药所含的阳离子类型、杂质种类以及结晶性和晶型存在差异,在4 600~4 000 cm-1谱段存在专属性的NIR特征,主要可归属于AlOH,MgOH,FeOH,SiOH,[CO2-3]等基团的特征吸收。

煅制过的矿物药常伴随水分和主要成分的改变,其NIR特征亦发生变化,可用于其炮制过程的监测。

该文对NIR技术在矿物药分析中的适用性和局限性进行讨论:绝大部分矿物药具有明显的NIR特征谱段,可用NIR作为系统分析的主要方法,少数矿物药的NIR特征峰不明显,如紫石英、朱砂、雄黄等,可尝试应用拉曼光谱进行补充。

这将为矿物药质量控制提供参考。

标签:近红外漫反射光谱;矿物药;特征谱段;快速鉴别矿物类中药是传统中药(包括植物药、动物药和矿物药)的重要组成部分之一。

由于矿物的形态一般较为类似,一种矿物常伴生有其他矿物,所以矿物药(依据形态和成分)的鉴别较为困难,在市场中常有混淆品,加上其品种和用量少,研究较为薄弱,质量标准不够完善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见蚀变矿物的近红外光谱特征
南京地质矿产研究所 南京中地仪器有限公司
2008年9月21日,扬 州
2021/3/7
CHENLI
1
主要内容
1、近红外矿物分析法的原理和应用概况 2、便携式近红外矿物分析仪原理及应用 3、常见蚀变矿物的光谱特征 4、几个应用实例
2021/3/7
CHENLI
2
近红外矿物分析法的原理 和应用概况
2021/3/7
CHENLI
16
7、控制和测量软件
2021/3/7
CHENLI
17
8、数据处理软件
2021/3/7
CHENLI
18
仪器测量方式
1、仪器准备:本底扫描、参比扫描、标准扫描 2、定性扫描:蚀变矿物识别 3、半定量扫描:矿物含量分析 4、建库扫描:建立本区特征数据库
2021/3/7
CHENLI
3211800
3211600
3211400
3211200
3211000
3210800
3210600
3210400
3210200
570000 570200 570400 570600 570800 571000 571200 571400 571600 571800
2021/3/7
CHENLI
23
4、立体模型
4、官能团吸收频率范围 可见光:400nm-1100nm,氧化物 近红外:1100nm-2500nm,层状硅酸岩矿物等 热红外:8000nm-12000nm,不含水矿物
5、典型应用范围:1300nm~2500nm
2021/3/7
CHENLI
5
6、利用近红外光谱可以区分
含羟基之层状硅酸盐矿物(闪石等)
仪器测量范围 :1300nm-2500nm;
仪器分辨率 :〈8nm;
波长稳定性 :±1nm;
波长重复性 :±1nm;
波长扫描间隔 :2nm,4nm;
信噪比
:63dB;
探测器
:PbS(Te制冷);
仪器体积 :255×110×187;
仪器重量 :4.2kg;
备用电源 :〉2小时 ;
软件
:PC机应用程序;微型PDA应用程序。
2021/3/7
CHENLI
8
9、典型蚀变矿物光谱图
2021/3/7
CHENLI
9
便携式近红外矿物 分析仪的仪器结构及应用
2021/3/7
CHENLI
10
1、仪器结构
2021/3/7
CHENLI
11
2、单色仪光路
2021/3/7
CHENLI
12
3、积分球
2021/3/7
CHENLI
13
4、电子电路
2021/3/7
CHENLI
27
2021/3/7
CHENLI
28
2021/3/7
CHENLI
29
2021/3/7
CHENLI
30
2021/3/7
CHENLI
31
2、常见矿物倍频及合成频率位置
2021/3/7
CHቤተ መጻሕፍቲ ባይዱNLI
32
3、蚀变矿物光谱特征
1) AL-OH矿物:2170-2210nm为特征吸收 大多数矿物都有铝离子,特别是硅酸盐矿物,含有AL-OH的代表矿物有叶 蜡石、黄玉、白云母、绢云母、伊利石、锂云母、高岭石、地开石、蒙脱 石、钠长石,硬水铝石、刚玉等,其波长在1390-1440nm处有OH+H2O二 者合成峰,其中H2O为结构水;在1940-1950nm处有H2O吸收峰,其中H2O 为吸附水。2170-2210nm为AL-OH的吸收峰,通常由于地质作用矿物中的 阳离子Al被取代,产生贫Al现象,使AL-OH吸收峰位发生位移,一般地贫 Al时峰位向高波长位移,此位移量是红外光谱建模的一个参数。通常白云 母 、 绢 云 母 、 伊 利 石 、 锂 云 母 和 蒙 脱 石 的 特 征 峰 在 2200nm 附 近 ; 21602165nm内的特征峰为高岭石,随着结晶度的增加,肩峰向长波方向移动, 原地型高岭石结晶度好,峰形尖锐;搬运型高岭石结晶度低,峰形缓,需 要指出的是,高岭石在1410nm处有双峰,一般对称,在2160-2165nm也有 双峰,但不对称,这个特征比较容易识别高龄石。需要指出的是,迪开石 也有高龄石特性,只是在2160-2165nm一般双峰对称;叶蜡石是高温形成的, 在1394nm附近有尖的结构水吸收峰,在2160-2170nm也有很尖的吸收峰, 因此通常可作为仪器标样,由于高温含水量少,在1390-1396nm处吸收峰不 明显。
19
数据建模与成图
1、数据建模: 包括一维数据建模和二维数据建模
2、数据成图: 包括等值线图、立体模型、光谱成像
2021/3/7
CHENLI
20
1、一维数据(钻孔数据或沟槽数据)建模
2021/3/7
CHENLI
21
2、二维数据(地表数据)建模
2021/3/7
CHENLI
22
3、等值线图
3212000
2021/3/7
CHENLI
3
1、近红外波长范围
780nm~2500nm
2、矿物的近红外光谱特征原理
矿物晶格中原子间的化学键的弯曲和伸缩吸收某些区域 的近红外光谱,根据矿物某些官能团在近红外区域的特征 吸收光谱可以区分不同的矿物及同一矿物的不同结晶度。
2021/3/7
CHENLI
4
3、对近红外光谱产生吸收的官能团种类 氢基团C-H (甲基、亚甲基、甲氧基、羧基、 方基等), 羟基O-H,巯基S-H,氨基N-H等
2021/3/7
CHENLI
24
5、光谱成像
400
300
200
100
1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
2021/3/7
CHENLI
25
三、矿物的近红外光谱特征
2021/3/7
CHENLI
26
1、常见蚀变矿物及化学式
2021/3/7
CHENLI
6
具体意义如下:
1)提供矿化环境的特征,如交代类型和交代带等。
2)鉴别原岩类型:鉴别高岭石,表明其原岩是长英质岩石, 发现蒙脱石表明原岩是镁铁质岩石
3) 指示矿化关系,富镁的绿泥石接近矿化中心,富钾的 白云母更和矿化有关
4)指示风化范围和过程,如三水铝石表示晚期的铝土质环 境
硫酸盐矿物(明矾石,石膏等)
碳酸盐矿物(方解石,白云石等)。
7、地质中的应用
矿物识别,为勘查、地质和土壤/基岩测量进行 矿物填图,钻孔和隧道(平硐)编录,蚀变系统 填图和目标区选择,成矿作用的指示,成矿潜力 评价,矿物地球化学和结晶学,采矿中的品位控 制,下脚料中粘土含量监测,辅助遥感图片的判 别等。
5)指示矿化作用的化学过程,(如K/Na交代)及温度 (叶腊石,黄玉,地开石等矿物是高温矿物)
2021/3/7
CHENLI
7
8、蚀变矿物 填图矿床种类
可对高硫化物浅成热液矿床、低硫化 物浅成热液矿床、 斑岩型铜矿床、中温热液矿床、沉积岩型金-铜矿床、铀 矿床、火山岩型块状硫化物(VHMS)矿床及金伯利岩矿 床进行系统的蚀变矿物填图,帮助研究者快速评价矿床, 提高勘探效率。
2021/3/7
CHENLI
14
5、底层软件
下位机软件
模块1 系统自检
模块2 系统调零
模块3 光谱位置定位
模块4 全谱扫描
模块5 定波长测量
模块6 通讯模块
模块7 工作状态指示
2021/3/7
步进电机子 程序
采集子程序
USB通讯程序
UART通讯子程序
USB固件底层驱动 程序
CHENLI
15
6、仪器指标
相关文档
最新文档